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Examples of discontinuous, divergence-free

solutions to elliptic variational problems
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Abstract. We give an example of a bounded discontinuous divergence-free solution of
a linear elliptic system with measurable bounded coefficients in R

3 and a corresponding
example for a Stokes-like system.

Keywords: divergence-free solutions,elliptic systems, systems of Stokes-type, regularity

Classification: 35B65, 35D10, 35J45, 35Q

1. Introduction

In this note, we give a simple example of a discontinuous bounded divergence-
free weak solution to a three-dimensional linear elliptic system with measurable
bounded coefficients of the form

−Dα(A
αβ
ij (x)Dβuj) = 0, i = 1, 2, 3(1.1)

(the summation convention has been adopted throughout the paper). We will
suppose that

A := (A
αβ
ij ) ∈ L∞(B, R81), B = {x ∈ R

3 : |x| < 1},(1.2)

uj : B → R, j = 1, 2, 3(1.3)

and that there is a constant λ > 0 such that

(1.4) A
αβ
ij (x)ξ

i
αξ

j
β
≥ λ|ξ|2

for every ξ ∈ R
9 and almost every x ∈ B.

By a (weak) solution to the system (1.1) we understand a function

(1.5) u ∈ W
1,2
loc (B, R3) =

{

u :

∫

K
|∇u|2dx < +∞ ∀K ⊂⊂ B

}

1 The research of the second and the third author was carried out during their visit to North-
ern Illinois University at DeKalb. The third author was supported by the Sonderforschungs-
bereich 256 at the University of Bonn, Germany.
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such that (1.1) holds in the sense of distributions.
On account of the famous example of De Giorgi [2],[5] it is well known that so-

lutions of linear elliptic systems with coefficients in L∞ are not Hölder-continuous
in general.
Generalizing De Giorgi’s example J. Souček in [14] gave a construction of an

elliptic system, which has a solution which is discontinuous on a dense countable
set. This shows that “partial regularity” (see [5], [12]) does not hold for solutions
of linear systems with coefficients, which are only in L∞. Using Souček’s “al-
gorithm”, John, Malý and Stará in [7] constructed a linear elliptic system with
L∞-coefficients and its bounded weak solution for any given Fσ-set F in R

3, which
is essentially discontinuous on F and essentially continuous on R

3 \ F .
Another modification of De Giorgi’s example can be found in Leonardi [10] (see

also [13]): this example shows that generally solutions of linear elliptic systems of
the type (1.1) have no better integrability properties than the Sobolev-embedding
in question tells us (compare also [3] for a nonlinear example). On the other
hand the author presents estimates for the gradient of the solution to a system
of type (1.1) in Morrey-spaces and weighted Morrey-spaces which are close to
the counterexamples and he improves in some sense Koshelev’s condition number
result (see [7], [8], [10], [13]).
Further regularity results in Morrey-spaces or Lp-spaces for solutions of elliptic

systems with coefficients in L∞∩VMO (the space of functions with vanishing mean
oscillation) are established in [15]. These results are in some sense “intermediate”
between Campanato’s result ([1]) for systems with continuous coefficients and
the counterexamples because of the “embedding C0 →֒ L∞∩VMO” and the fact
that the coefficients in De Giorgi’s counterexample have the property that their
gradient belongs to the space weak-Ln. As a consequence of Poincaré’s inequality
we have that W 1,n-functions have locally vanishing mean oscillation.
In this situation a regularity result of De Giorgi-Moser-Nash-type for solutions

of linear elliptic systems with L∞ — coefficients can be expected only if one finds
new additional structure conditions for such systems and/or their solutions. For
example one can ask whether weak solutions to our elliptic system which satisfy
in addition an “incompressibility condition”

div u = Diu
i = 0

are regular, or, more general, whether all solutions of linear elliptic systems with
L∞-coefficients are regular, if the mean flux of the given boundary function
through the boundary of the given domain is zero (see [13,14]). Our example
shows that the answer to these two questions must be negative.
Another still open question (at least to the authors’ knowledge) is, whether

minima of “isotropic” quadratic functionals of the type

J(u) :=
1

2

∫

B
W (Du) dx =

1

2

∫

B
A

αβ
ij (x)DβujDαui dx, u ∈ W 1,2(B, R3)

are regular (see again [13]).
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2. The examples

For our examples we use Souček’s algorithm to construct for a given W 1,2-
function an elliptic system to which it is the solution. To construct a divergence-
free W 1,2-function in the unit ball B we call to mind that such a function must
be a curl because of Poincaré’s Lemma for star-convex open sets (see for example
[11]).
Our divergence-free function in B is

(2.1)

u(x) :=curl





|x|
|x|
|x|



 =
1

|x|





x2 − x3
x3 − x1
x1 − x2





=
1

|x|





0 1 −1
−1 0 1
1 −1 0









x1
x2
x3



 =:
1

|x|
Tx ,

which is an element of L∞ ∩ W 1,2(B, R3), but is not continuous at x = 0 (in
fact we have Du ∈ Lp(B, R3×3) for every p < 3). Notice that the mean flux of u
through ∂B is zero.
Defining

(2.2) bi
α(x) :=

F

|x|

{

tiα +
xαtilxl

|x|2

}

for some positive constant F and the matrix T = (tiα) from (2.1), one verifies

(2.3) bi
α ∈ Lp(B) ∀ p < 3,

and

(2.4) Dαbi
α = 0 for x 6= 0 .

Setting

(2.5)

di
α : = bi

α − Dαui

=
1

|x|

{

(F − 1)tiα + (F + 1)
xαtilxl

|x|2

}

,
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elementary calculations show that for F > 1

di
α Dαui ≥

1

|x|2
(2F − 2) > 0 ,(2.6)

bi
α di

α

di
α Dαui

≤
18F 2 − 2F

2F − 2
=:M < +∞.(2.7)

Therefore we can apply Lemma 1 of Souček’s paper [14] to conclude that our
function u is the solution of the elliptic system

(2.8)

∫

B
A

αβ
ij (x)DβujDαϕi dx = 0 ∀ ϕ ∈ C∞

0 (B, R3),

where the coefficients are defined by

(2.9) A
αβ
ij (x) := δijδ

αβ +
di
αd

j
β

Dρusds
ρ

, α, β, i, j = 1, 2, 3

(δij , δ
α,β , δi

α are always Kronecker symbols).
We remark that one can construct corresponding functions u in higher dimen-

sions using the calculus of differential forms (replacing the special cross product
of R

3).

Furthermore a slight modification of Souček’s above quoted Lemma 1 enables us
to construct for given functions (u, p) an elliptic system of Stokes-type

−Dα(A
αβ
ij Dβuj) +Dip = 0,

div u = 0,

such that (u, p) is the solution of this system (for further details on these systems
see [4], [6], [9]).

Lemma. Let b = (bi
α), α, i = 1, . . . , n, be a matrix of L2-functions such that

(2.10)

∫

B
bi
αDαϕi dx = 0 ∀ ϕ ∈ C∞

0 (B, Rn) .

Further assume that p ∈ L2 ∩ W 1,1(B) and define the matrix c as

(2.11) ci
α := bi

α + pδi
α ,

and the matrix d as

(2.12) di
α := ci

α − Dαui, u ∈ W 1,2(B, Rn) .
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Moreover we suppose, that

(2.13) di
αDαui > 0

and that there is a positive constant M , such that

(2.14)
ci
αdi

α

Dαuidi
α

≤ M .

If u is divergence-free, it is a solution to the elliptic system of Stokes-type:

(2.15)

∫

B
A

αβ
ij DβujDαϕi dx = 0 ∀ ϕ ∈ C∞

0 (B, Rn), div ϕ = 0,

div u = 0,

where the coefficients are given once more by (2.9).

Proof: This is done by easy calculations. The ellipticity corresponds to condition
(2.13) and the boundedness to (2.14). �

Using this lemma we get an example of a singular solution to a system of
Stokes-type in R

3. We take u as in (2.1) and define p by

(2.17) p(x) :=
1

|x|
∈ Lr ∩ W 1,s(B) ∀ r < 3, s <

3

2
.

Defining b as before, i.e.

(2.18) bi
α :=

1

|x|

{

Ftiα + F
xαtilxl

|x|2

}

we get

(2.19) ci
α :=

1

|x|

{

Ftiα + F
xαtilxl

|x|2
+ δi

α

}

and

(2.20) di
α :=

1

|x|

{

(F − 1)tiα + (F + 1)
xαtilxl

|x|2
+ δi

α

}

.

Using these definitions and observing tiαδi
α = 0 and xit

i
lxl = 0 we calculate

(2.21)

di
αDαui =

1

|x|2

{

6(F − 1)− (F − 1)
(tilxl)

2

|x|2

}

≥
1

|x|2
{2F − 2} > 0 ,
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provided F > 1, and

(2.22)

bi
αdi

α =
1

|x|2

{

6F (F − 1) + [F (F − 1) + 2F (F + 1)]
(tilxl)

2

|x|2
+ 3

}

≤
1

|x|2
{18F 2 − 2F + 3}.

So we finally arrive at

(2.23)
bi
αdi

α

di
αDαui

≤
18F 2 − 2F + 3

2F − 2
=:M < +∞

and in view of the variant of Souček’s lemma we have proved that

(2.24) (u, p) =
1

|x|
(Tx, 1)

is a singular solution to a system of Stokes-type, where A
αβ
ij are defined as in

(2.9).
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[14] Souček J., Singular solutions to linear elliptic systems,, Comment. Math. Univ. Carolinae
25 (1984), 273–281.
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