An existence theorem of positive solutions to a singular nonlinear boundary value problem

Gabriele Bonanno

Abstract. In this note we consider the boundary value problem y'' = f(x, y, y') ($x \in [0, X]; X > 0$), y(0) = 0, y(X) = a > 0; where f is a real function which may be singular at y = 0. We prove an existence theorem of positive solutions to the previous problem, under different hypotheses of Theorem 2 of L.E. Bobisud [J. Math. Anal. Appl. **173** (1993), 69–83], that extends and improves Theorem 3.2 of D. O'Regan [J. Differential Equations **84** (1990), 228–251].

 $Keywords\colon$ ordinary differential equations, singular boundary value problem, positive solutions

 $Classification: \ 34B15$

Let f be a real function defined on $[0, X] \times (0, \infty) \times (-\infty, \infty)$; $L^1([0, X])$ the space of all (equivalence classes of) measurable functions $\psi : [0, X] \to \mathbb{R}$ such that $\|\psi\|_{L^1([0,X])} = \int_0^X |\psi(x)| \, dx < \infty$; $W^{2,1}([0,X])$ the space of all $u \in C^1([0,X])$ such that u' is absolutely continuous in [0, X] and $u'' \in L^1([0, X])$.

Consider the problem

(P)
$$\begin{cases} y'' = f(x, y, y') \\ y(0) = 0 \\ y(X) = a > 0. \end{cases}$$

A function $u : [0, X] \to [0, \infty)$ is said to be a generalized solution to (P) if $u \in W^{2,1}([0, X]), u(0) = 0, u(X) = a$ and, for almost every $x \in [0, X]$, one has u''(x) = f(x, u(x), u'(x)). When the function f is continuous in $[0, X] \times (0, \infty) \times (-\infty, \infty)$, any generalized solution to problem (P) is a classical one, that is $u \in C^1([0, X]) \cap C^2((0, X])$ and u''(x) = f(x, u(x), u'(x)) for every $x \in (0, X]$.

Positive solutions to singular nonlinear boundary value problems appear in a variety of applications. Consequently, they have been studied by many authors (see, for instance, [2], [4] and the references given there). In particular, among the latest contributions, there are the following two theorems.

Theorem A ([2, Theorem 2]). Let $X \ge 1$ be fixed. Assume the following hypotheses.

(H₁) $f \in C([0, X] \times (0, \infty) \times (-\infty, \infty))$ and f(x, y, z) is locally Lipschitz in y and z on $[0, X] \times (0, \infty) \times (-\infty, \infty)$.

G. Bonanno

- (H₂) $zf(x, y, z) \leq 0$ on $[0, X] \times (0, \infty) \times (-\infty, \infty)$.
- (H₃) There exist a nonnegative function f_1 continuous on [0, 1], a nonnegative, nonincreasing function g_1 continuous on (0, a], and a function h_1 positive and continuous on $(a, \infty]$ such that
 - (i) $f(x, y, z) \ge -f_1(x)g_1(y)h_1(z)z$ on $[0, X] \times (0, a] \times [a, \infty)$,
 - (ii) $f_1(s)g_1(\frac{a}{X}s) \in L^1([0,1]),$
 - (iii) $\int_{a}^{\infty} dv/vh_{1}(v) > \int_{0}^{1} f_{1}(s)g_{1}(\frac{a}{X}s) ds$

hold.

 (H_4) Put

$$H(z) = \int_{a}^{z} \frac{1}{h_{1}(v)} dv; \text{ and } M_{1} = H^{-1} \left(\int_{0}^{a} g_{1}(u) du \right),$$

there exist a constant $k > M_1$ and a measurable function F on [0, X] satisfying

- (i) $|f(x, y, z)| \le F(x)$ for $0 \le x \le X$, $\frac{a}{X}x \le y \le k$, and $|z| \le k$,
- (ii) $\int_0^X F(x) dx < \infty$.

Then, the problem (P) has at least one solution $u \in C^1([0,X]) \cap C^2((0,X])$ such that u(x) > 0 for every $x \in (0,X]$.

Theorem B ([4, Theorem 3.2 and subsequent remark]). Consider the problem

(P₀)
$$\begin{cases} y'' + \Psi(x)h(x,y) = 0 & 0 < x < 1\\ y(0) = 0\\ y(1) = a > 0. \end{cases}$$

where h and Ψ satisfy

 (K_1)

- (i) h is continuous on $[0,1] \times (0,\infty)$;
- (ii) $\lim_{y\to 0^+} h(x,y) = \infty$ for each $x \in [0,1]$;
- (iii) $0 < h(x, y) \le g(y)$ on [0, 1], where g is continuous and nonincreasing on $(0, \infty)$.
- (iv) In addition $1/\Psi \in C([0,1])$ with $\Psi > 0$ on (0,1).
- (K₂) There exist p > 1, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$ together with $\int_0^1 \Psi^p(z) dz < \infty$ and $\int_0^1 g^q(u) du < \infty$.
- (K₃) For each constant M > 0 there exists $\eta(x)$ continuous and positive on [0,1] such that $h(x,y) \ge \eta(x)$ on $[0,1] \times (0,M]$.

Then, the problem (P₀) has at least one solution $u \in C([0,1]) \cap C^2((0,1))$ such that u(x) > 0 for every $x \in (0,1]$.

An existence theorem of positive solutions to a singular nonlinear boundary value problem 611

The purpose of this note is to establish Theorem 1 below. We remark that our result extends and improve Theorem B (see Remark 3) and is independent of Theorem A. In particular, contrary to (H_1) , we assume that f is continuous in yand z. Moreover, the condition $f(x, y, 0) \equiv 0$, which is implied by (H_2) , does not follow from our assumptions.

Let r > 0, X > 0 and $x \in [0, X]$. Here and in the sequel, W(r, x) stands for the set $\{(y, z) \in (0, \infty) \times (-\infty, \infty) : \frac{a}{X}x \le y \le a + Xr; |z| \le \frac{a}{X} + 2r\}$. Let now f be a real function defined on $[0, X] \times (0, \infty) \times (-\infty, \infty)$. For every $x \in [0, X]$, we put

$$M_r(x) = \sup_{(y,z)\in W(r,x)} |f(x,y,z)|$$
 and $m_r(x) = \sup_{(y,z)\in W(r,x)} f(x,y,z).$

Theorem 1. Let f be a real function defined in $[0, X] \times (0, \infty) \times (-\infty, \infty)$. Assume that

- (a) the function $(y, z) \to f(x, y, z)$ is continuous for almost every $x \in [0, X]$;
- (b) the function $x \to f(x, y, z)$ is measurable for every $(y, z) \in (0, \infty) \times (-\infty, \infty)$;
- (c) there exists r > 0 such that the function M_r belongs to $L^1([0, X])$ and one has

$$||M_r||_{L^1([0,X])} \le r;$$

(d) for almost every $x \in [0, X]$, one has

$$m_r(x) < 0$$

Then, the problem (P) has at least one generalized solution $u \in W^{2,1}([0,X])$ such that u(x) > 0 for every $x \in (0,X]$.

PROOF: Consider the set

$$K = \left\{ v \in L^1([0, X]) : -m_r(x) \le v(x) \le M_r(x) \text{ a.e. in } [0, X] \right\}.$$

Of course, K is nonempty and convex. By the Dunford-Pettis theorem (see, for instance, [3, Theorem 1, p. 101]), it is also weakly compact. For every $v \in L^1([0, X])$ and every $x \in [0, X]$, we put

(1)

$$\phi_1(v)(x) = \frac{a}{X}x + \frac{X-x}{X}\int_0^x sv(s)\,ds + \frac{x}{X}\int_x^X (X-s)v(s)\,ds;$$

$$\phi_2(v)(x) = \frac{a}{X} - \frac{1}{X}\int_0^X sv(s)\,ds + \int_x^X v(s)\,ds;$$

Obviously, one has $\phi_1(v)(0) = 0$, $\phi_1(v)(X) = a$, $[\phi_1(v)]' = \phi_2(v)$; $[\phi_1(v)]'' = [\phi_2(v)]' = -v$; $\phi_1(v) \in W^{2,1}([0,X])$, moreover, if v(x) > 0 for almost $x \in [0,X]$, therefore $\phi_1(x) > 0$ for every $x \in (0,X]$. We now put

$$G(v)(x) = -f(x, \phi_1(v)(x), \phi_2(v)(x))$$

G. Bonanno

for every $v \in L^1([0, X])$ and for every $x \in (0, X]$.

Let us prove that $G(K) \subseteq K$. To this end, fix $v \in K$ and observe that, by (1) and (c), one has

$$\frac{a}{X}x \le \phi_1(v)(x) \le a + \int_0^x Xv(s) \, ds + \int_x^X Xv(s) \, ds$$
$$\le a + X \|M_r\|_{L^1([0,X])} \le a + Xr;$$
$$|\phi_2(v)(x)| \le \frac{a}{X} + \frac{1}{X} \int_0^X Xv(s) \, ds + \int_0^X v(s) \, ds$$
$$\le \frac{a}{X} + 2 \|M_r\|_{L^1([0,X])} \le \frac{a}{X} + 2r.$$

Therefore, $(\phi_1(v)(x), \phi_2(v)(x)) \in W(r, x)$ for every $x \in (0, X]$. Hence, for almost every $x \in [0, X]$, one has:

$$-m_r(x) \le -f(x, \phi_1(v)(x), \phi_2(v)(x)) \le M_r(x).$$

This implies that $G(v) \in K$.

Now, let us prove that the operator G is weakly sequentially continuous. Let $v \in K$ and let $\{v_n\}$ be a sequence in K weakly converging to v in $L^1([0, X])$. From (1) it follows that, for every $x \in [0, X]$, $\lim_{n\to\infty} \phi_1(v_n)(x) = \phi_1(v)(x)$; $\lim_{n\to\infty} \phi_2(v_n)(x) = \phi_2(v)(x)$. Therefore, by (a), the sequence $\{G(v_n)\}$ converges almost everywhere in [0, X] to G(v). Bearing in mind that for almost every $x \in [0, X]$ and every $n \in \mathbb{N}$ one has

$$|G(v_n)(x)| \le M_r(x),$$

the Lebesgue Dominated Convergence theorem yields $\lim_{n\to\infty} G(v_n) = G(v)$ in $L^1([0,X])$. So, $\{G(v_n)\}$ converges weakly to G(v) in $L^1([0,X])$.

We now have proved that the function $G: K \to K$ verifies all that assumptions of Theorem 1 of [1]. Then, there is $v \in K$ such that v = G(v). The function $u(x) = \phi_1(v)(x), x \in [0, X]$, satisfies our conclusion.

Remark 1. This theorem ensures the existence of positive solutions even if f(x, y, z) is not locally Lipschitz in y and z. For example, the problem

(P₁)
$$\begin{cases} y'' = -(\operatorname{sen} y)^{1/3} |y'|^{1/3} - xy^{-1/2} |y'|^{1/2} - x^3 \\ y(0) = 0 \\ y(1) = a > 0, \end{cases}$$

owing to Theorem 1, has at least one positive solution $u \in C^1([0, X]) \cap C^2((0, X])$. Indeed, taking into account that

$$\int_{0}^{X} \sup_{(y,z)\in W(r,x)} |f(x,y,z)| \, dx \le \left(\frac{a}{X} + 2r\right)^{1/3} X + \frac{2}{3} \frac{X^2}{\sqrt{a}} \left(\frac{a}{X} + 2r\right)^{1/2} + \frac{X^4}{4}$$

and

$$\lim_{r \to \infty} \frac{r - \frac{X^4}{4}}{\left(\frac{a}{X} + 2r\right)^{1/3} X + \frac{2}{3} \frac{X^2}{\sqrt{a}} \left(\frac{a}{X} + 2r\right)^{1/2}} = \infty,$$

there exists r > 0 such that $||M_r||_{L^1([0,X])} < r$. Hence, it is easily seen that all the assumptions of Theorem 1 hold.

We cannot apply Theorem A to the problem (P₁), even because $f(x, y, 0) = x^3 \neq 0$.

We also observe that assumption (H_3) and (H_4) of Theorem A and assumption (c) of Theorem 1 are mutually independent.

Remark 2. We explicitly observe that in Theorem 1 f may be singular at some set $\Omega \subseteq [0, X]$, with $|\Omega| = 0$ ($|\Omega|$ denotes the Lebesgue measure of Ω). Particularly, if $f \in C((0, X) \times (0, \infty) \times (-\infty, \infty))$ and the assumptions (c) and (d) of Theorem 1 hold, then there exists at least one function $u \in C^1([0, X]) \cap C^2((0, X))$ such that u(0) = 0, u(X)=a and, for every $x \in (0, X)$, u''(x) = f(x, u(x), u'(x)) and u(x) > 0.

Remark 3. Theorem 1 extends and improves Theorem B. Indeed, the assumptions of Theorem B, even without the condition $\lim_{y\to 0^+} h(x,y) = \infty$, imply the ones of Theorem 1. Let us prove this. Of course, from (i) and (iv) of (K₁), (a) and (b) follow; (c) is verified by choosing $r = \|\Psi\|_{L^p([0,1])} \left(\frac{1}{a}\right)^{1/q} \|g\|_{L^q([0,a])}$, since, by (iii) of (K₁), (K₂) and Hölder inequality, one has

$$\int_{0}^{1} \sup_{\frac{a}{X}x \le y \le a + Xr} |\Psi(x)h(x,y)| \, dx \le \\ \le \int_{0}^{1} \Psi(x)g\left(\frac{a}{X}x\right) \, dx \le \|\Psi\|_{L^{p}([0,1])} \left(\frac{1}{a}\right)^{1/q} \|g\|_{L^{q}([0,a])};$$

(d) follows from (iv) of (K₁) and (K₃), since in (0, a + Xr] one has $\Psi(x)h(x, y) \ge \Psi(x)\eta(x) > 0$, therefore

$$-m_r(x) = \inf_{\frac{a}{X}x \le y \le a + Xr} \Psi(x)h(x,y) \ge \Psi(x)\eta(x) > 0$$

for every $x \in (0, 1)$. Hence, our claim is proved.

Now, consider the problem

(P₂)
$$\begin{cases} y'' + x \left[\left| \operatorname{sen} \frac{1}{y} \right|^{1/2} + y^{1/2} + x \right] = 0\\ y(0) = 0\\ y(1) = a > 0. \end{cases}$$

G. Bonanno

Owing to Theorem 1, the problem (P₂) has at least one positive solution $u \in C^1([0, X]) \cap C^2((0, X])$. Indeed, taking into account that

$$\int_0^X \sup_{\frac{a}{X}x \le y \le a + Xr} |f(x,y)| \, dx \le \frac{X^2}{2} + \frac{X^2}{2} \, (a + Xr)^{1/2} + \frac{X^3}{3}$$

and

$$\lim_{r \to \infty} \frac{r - \left(\frac{X^2}{2} + \frac{X^3}{3}\right)}{\frac{X^2}{2} (a + Xr)^{1/2}} = \infty,$$

there exists r > 0 such that $||M_r||_{L^1([0,X])} < r$. Hence, it is easily seen that all hypotheses of Theorem 1 hold and our claim is proved.

In the previous example the condition $\lim_{y\to 0^+} h(x, y) = \infty$ is not satisfied and moreover there is no function g(y), nonincreasing in $(0, \infty)$, such that $h(x, y) \leq g(y)$, as it is required by Theorem B.

References

- Arino O., Gautier S., Penot J.P., A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations, Funkcial. Ekv. 27 (1984), 273–279.
- [2] Bobisud L.E., Existence of positive solutions to some nonlinear singular boundary value problems on finite and infinite intervals, J. Math. Anal. Appl. 173 (1993), 69–83.
- [3] Diestel J., Uhl J.J., Vector Measures, Math. Survey, no. 15, Amer. Soc., 1977.
- [4] O'Regan D., Existence of positive solutions to some singular and nonsingular second order boundary value problems, J. Differential Equations 84 (1990), 228-251.

DIPARTIMENTO DI INGEGNERIA ELETTRONICA E MATEMATICA APPLICATA, UNIVERSITÀ DI REGGIO CALABRIA, VIA E. CUZZOCREA 48, 89128 REGGIO CALABRIA, ITALY

(Received November 15, 1994)