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An existence theorem of positive solutions to
a singular nonlinear boundary value problem

GABRIELE BONANNO

Abstract. In this note we consider the boundary value problem vy’ = f(z,vy,vy') (z €
[0, X]; X > 0), y(0) =0, y(X) = a > 0; where f is a real function which may be singular
at y = 0. We prove an existence theorem of positive solutions to the previous problem,
under different hypotheses of Theorem 2 of L.E. Bobisud [J. Math. Anal. Appl. 173
(1993), 69-83], that extends and improves Theorem 3.2 of D. O’Regan [J. Differential
Equations 84 (1990), 228-251].
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Let f be a real function defined on [0, X] x (0,00) x (=00, 00); L'([0, X]) the
space of all (equivalence classes of) measurable functions ¢ : [0, X] — R such that
1921 0,x7) = fOX l(z)|de < oo; W21(]0, X]) the space of all u € C([0, X])
such that u is absolutely continuous in [0, X] and «” € L1([0, X]).

Consider the problem

y' = f,y,9)
(P) y(0) =0
y(X)=a>0.
A function u : [0, X] — [0,00) is said to be a generalized solution to (P) if
u € W20, X]), u(0) = 0, u(X) = a and, for almost every z € [0, X], one
has v”(z) = f(x,u(x),u'(z)). When the function f is continuous in [0, X] x
(0, 00) x (—00, 00), any generalized solution to problem (P) is a classical one, that
is u € C([0, X]) N C?((0, X]) and v (x) = f(z,u(x),u (z)) for every z € (0, X].
Positive solutions to singular nonlinear boundary value problems appear in
a variety of applications. Consequently, they have been studied by many authors

(see, for instance, [2], [4] and the references given there). In particular, among
the latest contributions, there are the following two theorems.

Theorem A ([2, Theorem 2]). Let X > 1 be fixed. Assume the following hy-
potheses.
(Hy) f € C([0,X] x (0,00) X (—00,00)) and f(z,y, 2) is locally Lipschitz in y
and z on [0, X] x (0,00) x (—00,00).
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(Ha) zf(z,y,2) <0 on[0,X] x (0,00) x (—00,00).

(H3) There exist a nonnegative function f1 continuous on [0, 1], a nonnegative,
nonincreasing function g1 continuous on (0, a|, and a function hy positive
and continuous on (a, co| such that

(i) f(z,y,2) > —f1(2)g1(y)h1(2)z on [0, X] x (0,a] x [a,0),
(11) fl(s)gl(%s) € Ll([07 1])7
(i) [ dv/vhi(v) > [§ fi(s)g1(%s)ds
hold.
(H4) Put

H(z)_/:%(v)dv; and M, =H™ ! (/Oagl(u)du),

there exist a constant k > M; and a measurable function F on [0, X]
satisfying

(i) [f(z,y,2)| < F(x) for 0 <z < X, o <y <k, and |z| <k,

(ii) de F(x)dz < co.
Then, the problem (P) has at least one solution u € C1([0,X]) N
C2((0, X]) such that u(z) > 0 for every x € (0, X].

Theorem B ([4, Theorem 3.2 and subsequent remark]). Consider the problem

'+ U(x)h(z,y) =0 O<z<l1
(Po) y(0) =0
y(l)=a>0.

where h and ¥ satisfy
(K1)
(i) h is continuous on [0,1] x (0, 00);
(i) lim,_ g+ h(z,y) = oo for each z € [0, 1];
(iii) 0 < h(z,y) < g(y) on [0, 1], where g is continuous and nonincreasing
on (0, 00).
(iv) In addition 1/¥ € C([0,1]) with ¥ > 0 on (0, 1).
(K2) There exist p > 1, ¢ > 1 with % + % = 1 together with fol PP (2)dz < 00
and fol g7(u) du < co.
(K3) For each constant M > 0 there exists n(z) continuous and positive on
[0,1] such that h(x,y) > n(z) on [0,1] x (0, M].
Then, the problem (Pg) has at least one solution u € C([0,1])NC?((0,1)) such
that u(x) > 0 for every z € (0,1].
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The purpose of this note is to establish Theorem 1 below. We remark that
our result extends and improve Theorem B (see Remark 3) and is independent of
Theorem A. In particular, contrary to (Hj), we assume that f is continuous in y
and z. Moreover, the condition f(z,y,0) = 0, which is implied by (H2), does not
follow from our assumptions.

Let r > 0, X > 0 and = € [0, X]. Here and in the sequel, W(r, z) stands for
the set {(y,2) € (0,00) X (—00,00) : $2 <y <a+ Xr;|z| < & +2r}. Let now
f be a real function defined on [0, X] x (0, 00) x (—00,00). For every z € [0, X],
we put

M, (z) = sup |f(z,y,2)] and my(z) = sup flz,y, 2).
(y,2)EW (r,x) (y,2)eW (r,x)
Theorem 1. Let f be a real function defined in [0, X] x (0,00) x (—00,00).
Assume that
(a) the function (y,z) — f(x,y,z) is continuous for almost every = € [0, X];
(b) the function x — f(x,y,z) is measurable for every (y,z) € (0,00) X
(—OO, OO):
(c) there exists r > 0 such that the function M, belongs to L'([0,X]) and
one has
1Ml jo,x7) <75

(d) for almost every x € [0, X], one has
my(z) < 0.
Then, the problem (P) has at least one generalized solution u € W21(]0, X])
such that u(z) > 0 for every x € (0, X].

PRroor: Consider the set
K= {v e LY([0, X)) : —myp(z) < v(z) < My(z) ae. in [o,X]}.

Of course, K is nonempty and convex. By the Dunford-Pettis theorem (see,
for instance, [3, Theorem 1, p.101]), it is also weakly compact. For every v €
LY([0, X]) and every z € [0, X], we put

a —x (% z (X
o1(v)(x) = }x 4 XX sv(s)ds + }/ (X — s)v(s)ds;
1) L X 0 v F
pa(v)(z) = X X/, sv(s) ds —I—/ v(s) ds;

Obviously, one has ¢1(v)(0) = 0, ¢1(v)(X) = a, [p1(v)] = d2(v); [¢1(v)]" =
[p2(v)) = —v; ¢1(v) € W2L([0, X]), moreover, if v(z) > 0 for almost = € [0, X],
therefore ¢1(z) > 0 for every = € (0, X]. We now put

G(v)(z) = —f (2, ¢1(v)(x), p2(v)(x))
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for every v € L'([0, X]) and for every 2 € (0, X].
Let us prove that G(K) C K. To this end, fix v € K and observe that, by (1)
and (c), one has

a T X
§x§¢1(v)(x)§a+/o Xu(s)ds—i—/m Xwv(s)ds

<a+X HMTHLl([O,X]) <a+ Xr;
a 1 (X X
@) < F g [ Xo@dst [ o

o a
5 T 2IMrliox)) < 5 +2r

IN

Therefore, (¢1(v)(x), p2(v)(z)) € W(r,x) for every = € (0, X]. Hence, for almost
every z € [0, X|, one has:

—my(2) < = f(z,01(0)(2), P2(v)(2)) < My (2).

This implies that G(v) € K.

Now, let us prove that the operator G is weakly sequentially continuous. Let
v € K and let {v,} be a sequence in K weakly converging to v in L([0, X]).
From (1) it follows that, for every = € [0, X], limp—oo ¢1(vn)(x) = ¢1(v)(x);
limy,— o0 @2(vn)(z) = ¢2(v)(x). Therefore, by (a), the sequence {G(vy,)} converges
almost everywhere in [0, X] to G(v). Bearing in mind that for almost every
x € [0, X] and every n € N one has

|G (vn)(2)] < My (),

the Lebesgue Dominated Convergence theorem yields limy,— o G(vn) = G(v) in
LY(]0, X]). So, {G(vy)} converges weakly to G(v) in L([0, X]).

We now have proved that the function G : K — K verifies all that assumptions
of Theorem 1 of [1]. Then, there is v € K such that v = G(v). The function
u(z) = ¢1(v)(z), = € [0, X], satisfies our conclusion. O

Remark 1. This theorem ensures the existence of positive solutions even if
f(z,y, 2) is not locally Lipschitz in y and z. For example, the problem

y// = —(sen y)1/3|y/|1/3 _ xy—1/2|y/|1/2 _ 3
(P1) y(0)=0

y(1)=a>0,

owing to Theorem 1, has at least one positive solution u € C*([0, X])NC?((0, X]).
Indeed, taking into account that

X a 1/3 2X2 /¢ 12 x4
sup fxayuz dl’g _+2T X+—— ——|—27"
~/0 (y,2)eW (r,z) | ( )l (X ) 3 \/6 (X )
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and -
lim 73 T_Tz 1/2:oo,
(o) X 135 (g o)

there exists r > 0 such that ||M;[[11(o,x]) < 7. Hence, it is easily seen that all
the assumptions of Theorem 1 hold.
We cannot apply Theorem A to the problem (P;), even because f(z,y,0) =
3
x° # 0.
We also observe that assumption (Hs) and (H4) of Theorem A and assumption
(c) of Theorem 1 are mutually independent.

Remark 2. We explicitly observe that in Theorem 1 f may be singular at some
set Q C [0, X], with |©2] = 0 (|| denotes the Lebesgue measure of ). Particularly,
if f € C((0,X)x(0,00) % (—00,00)) and the assumptions (c) and (d) of Theorem 1
hold, then there exists at least one function u € C([0, X]) N C2((0, X)) such
that u(0) = 0, u(X)=a and, for every z € (0,X), v”(z) = f(z,u(x),v (z)) and
u(z) > 0.

Remark 3. Theorem 1 extends and improves Theorem B. Indeed, the assump-
tions of Theorem B, even without the condition lim,_,q+ h(z,y) = oo, imply the
ones of Theorem 1. Let us prove this. Of course, from (i) and (iv) of (K1), (a) and

. . . 1 .
(b) follow; (c) is verified by choosing r = [|¥|| s ((0,1]) (%) /4 91l La([0,a]), since, by
(iii) of (K1), (K2) and Hélder inequality, one has

1/q

1 a 1
< [ wt@g () do < 19lgony (3) Iolagoay

(d) follows from (iv) of (K1) and (K3), since in (0, a + Xr| one has ¥ (x)h(z,y) >
U(x)n(z) > 0, therefore

—my(z) = %xgli/r%fa_i_XT\Il(:z:)h(x,y) > U(z)n(x) >0

for every x € (0,1). Hence, our claim is proved.

Now, consider the problem

" 1
Yy +z Usen v

y(0) =
y(1)=a>0.

1/2
‘ / +y1/2+:c} =0

(P2)
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Owing to Theorem 1, the problem (P2) has at least one positive solution u €
C(]0, X]) N C?((0, X]). Indeed, taking into account that

X 2 2 3

X X X

/ sup |f(:1c,y)|d:v§—+—(a+XT)1/2+—
0 Fr<y<at+Xr 2 2

and ) .
(%4 %)
im ————% = 00,
r—00 XTZ (a+ Xr)l/?

there exists r > 0 such that ||M;[[11 x]) < r- Hence, it is easily seen that all
hypotheses of Theorem 1 hold and our claim is proved.

In the previous example the condition lim,_, o+ h(z,y) = oo is not satisfied and
moreover there is no function g(y), nonincreasing in (0, 00), such that h(z,y) <
g(y), as it is required by Theorem B.
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