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Upper and lower estimates in Banach sequence spaces

Raquel Gonzalo

Abstract. Here we study the existence of lower and upper ℓp-estimates of sequences in
some Banach sequence spaces. We also compute the sharp ℓp estimates in their basis.
Finally, we give some applications to weak sequential continuity of polynomials.
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The existence of ℓp-estimates in the sequences in a Banach space is of great
interest in the study of the structure of the space. It is also relevant in some
questions of non linear analysis such the behaviour of polynomials (see [4], [8],
[11], [22], [25]) and the smoothness of a Banach space, in the sense of the existence
of real bump functions with higher order of differentiability (see [11]). Here we
study how these estimates are in some well known Banach sequence spaces.
Let X be a Banach space over K, where K = R or C and 1 < p, q < ∞.

Recall that a sequence {xn} is said to have an upper p-estimate (respectively,
a lower q-estimate) if there exists a constant C > 0 such that for all scalars
a1, . . . , an ∈ K and n ∈ N we have
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A Banach space X has Sp-property [18], 1 < p < ∞, if every weakly null nor-
malized sequence in X has a subsequence with an upper p-estimate. Analogously,
a Banach space X has Tq-property [10], 1 < q < ∞, if every weakly null nor-
malized sequence has a lower q-estimate. In the same way, X has USp-property

[18] (respectively UTq-property) if there exists a constant C > 0 such that every
weakly null normalized sequence {xn} has a subsequence {xnk

} with constant C,
i.e. for all a1, . . . , an ∈ K, n ∈ N,
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In [18] it is proved that Sp and USp-property coincide. The properties Tq

and UTq-property are not equivalent, even in reflexive spaces, as we shall see in
Example 1.3.
Related to these properties the following indexes have been defined in [10]:

l(X) = sup{p ≥ 1; X has Sp-property} ∈ [1,∞]

u(X) = inf{q ≥ 1; X has Tq-property} ∈ [1,∞].

It is clear that for X = ℓp, 1 < p < ∞, we have l(ℓp) = u(ℓp) = p. In Section 1
we compute these indexes for Orlicz sequence spaces; we also compute the exact
lower and upper estimates in the usual basis of these spaces.
The same is done for Lorentz sequence spaces in Section 2. We also compute

the exact upper estimate for the canonical basis. By using these results we obtain
a very easy way to find examples of non superreflexive Lorentz spaces.
Section 3 is devoted to the study of these indexes for James spaces, and we also

compute Sp-property for the James type spaces introduced by Lohman-Cassaza
[19].
In the last section we obtain some applications of these results regarding to

weak sequential continuity of polynomials on these spaces.

1. Orlicz sequence spaces

Recall that an Orlicz function M is a continuous, convex, and non decreasing
function defined for all t ≥ 0 and such thatM(0) = 0 and limt→∞ M(t) =∞. The
Orlicz sequence space hM with Orlicz function M is the Banach space consisting
of all sequences {ak} of scalars such that

∞
∑

n=1

M(|an|/λ) < ∞ for all λ > 0,

endowed with the norm

‖{an}‖hM
= inf{λ > 0;

∞
∑

n=1

M(|an|/λ) ≤ 1}.

The lower and upper Boyd indexes associated to M (see e.g. [20]) are defined
by

αM = sup{p ≥ 1; sup
0<u,v≤1

M(uv)

upM(v)
< ∞}

βM = inf{q ≥ 1; inf
0<u,v≤1

M(uv)

upM(v)
> 0}.

Concerning the Sp-property the following result was proved in [16].
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Theorem 1.1 ([16]). Consider 1 < p < ∞ and let hM be an Orlicz sequence

space that does not contain ℓ1. The following statements are equivalent:

(i) hM has Sp-property.

(ii) The function M satisfies

sup
0<u,v≤1

M(uv)

upM(v)
< ∞.

In a similar way we have the following result:

Theorem 1.2. Consider 1 < q < ∞ and let hM be an Orlicz sequence space

that does not contain ℓ1. The following statements are equivalent:

(i) hM has UTq-property.

(ii) The function M satisfies

inf
0<u,v≤1

M(uv)

uqM(v)
> 0.

Proof: (i) ⇒ (ii). Consider C > 0 such that every weakly null normalized
sequence admits a subsequence which has a lower q-estimate with constant C.

For each k ∈ N consider 1/λk = ‖
∑k

i=1 ei‖, and we construct the following
sequence for each k as in [16]:

b
(k)
m = λk

k
∑

i=1

emk+i.

Since hM does not contain ℓ1, {b
(k)
m }m is a weakly null sequence, and therefore

a subsequence of {b
(k)
m }m has a lower q-estimate with constant C. Then it is easy

to see that for any k
∥

∥

∥

n
∑

i=1

b
(k)
i

∥

∥

∥
≥ Cn1/q .

Now, consider 0 < s, t ≤ 1 and choose k ∈ N such that λk+1 ≤ s < λk and
n ∈ N verifying

1

C(n+ 1)1/q
≤ t <

1

Cn1/q
.

We may assume that s < λ1 and t < 1/C. Then

M(st)

M(s)tq
≥

M(λk+1/C(n+ 1)1/q)

M(λk)(1/Cn1/q)q
≥

Cqn

(k + 1)(n+ 1)M(λk)
=
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and since M(λk)k = 1,

=
Cqnk

(k + 1)(n+ 1)
≥
1

4
Cq,

as we required.

(ii) ⇒ (i). If (ii) holds, by [20, p. 139] there exists C > 0 such that for every
choice of pairwise disjoint elements x1, . . . , xn ∈ hM in X , we have

C
(

n
∑

i=1

‖xi‖
p
)1/p

≤
∥

∥

∥

n
∑

i=1

xi

∥

∥

∥
.

Then since every weakly null sequence has a subsequence equivalent to a block
basis sequence, the result follows. �

Remark 1.3. It is not true in general that Tq and UTq-properties are equivalent;
indeed, there is a reflexive Banach space X which has Tq-property but fails UTq-
property. In order to see this we consider the example which appears in [15] (see
Example 1). Let 1 < p < 2. For each 0 < λ < 1 let Xλ be the subspace of
(ℓp⊕ ℓp)ℓp

generated by {λen+ δn}n where {en}n (respectively {δn}n) is the unit

vector basis of ℓp (respectively in ℓ2). Each Xλ is isomorphic to ℓp. Consider
X = (⊕nX1/n)ℓp

. By using Proposition 3.1 in [15], every weakly null normalized
sequence in X contains a subsequence that is equivalent to the unit vector basis
of ℓp. In particular X has Tp-property. Fix M > 0, and for m large enough we
construct the following sequence

xn = m−1(1 +mp)( 1

m
en + δn

)

;

which is a weakly null and normalized sequence in X and verifies that for any
k1 < · · · < kn

∥

∥

∥

n
∑

i=1

xki

∥

∥

∥
≤

M

2
n1/p.

If X had UTp-property with constant M > 0 it would follow that

Mn1/p ≤
∥

∥

∥

n
∑

i=1

xki

∥

∥

∥
≤

M

2
n1/p

for a certain subsequence {xni} of {xn}, which is not possible.

Corollary 1.4. Let hM be an Orlicz sequence space. Then l(hM ) = αM and

u(hM ) = βM .

Proof: From Theorems 1.1 and 1.2 and since hM contains an isomorphic copy
of ℓαM

and ℓβM
, the result follows. �
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Now we compute the exact upper and lower estimates in the canonical basis in
Orlicz sequence spaces. We define

γM = sup{p ≥ 1 : sup
0<t≤1

M(t)

tp
< ∞}

δM = inf{q < ∞ : inf
0<t≤1

M(t)

tq
> 0}.

Proposition 1.5. Let hM be the Orlicz sequence space associated to an Orlicz

function M that does not contain ℓ1. Let {en} be the unit vector basis in hM .

Then the following statements are equivalent:

(i) sup0<t≤1
M(t)

tp < ∞ (respectively inf0<t≤1
M(t)

tq > 0).

(ii) The sequence {en} satisfies an upper p-estimate (respectively a lower q-
estimate). Besides

γM = sup{p ≥ 1 : {en} satisfies an upper p-estimate}

δM = inf{q < ∞ : {en} satisfies a lower q-estimate}.

Proof: We shall only prove the assertion concerning γM ; the assertion concern-
ing δM can be proved in an entirely similar way.

(i)⇒ (ii). Assume thatM(t) ≤ Atp for all 0 < t ≤ 1. Consider x =
∑∞

i=1 aiei,
‖x‖ > 0. Then

1 =

∞
∑

n=1

M

(

|an|

‖x‖

)

≤ A1/p
∞
∑

n=1

|an|
p

‖x‖p

and therefore {en} has an upper p-estimate.

(ii) ⇒ (i). If (i) does not hold, there is a decreasing to zero real sequence {tn}
verifying:

M(tn)

tpn
→ ∞ when n → ∞.

As it is done in [21, Corollary 2.4], for each n, consider λn = ‖
∑n

i=1 ‖. Since

{en} has an upper p-estimate, there exists a constant C > 0 such that λn ≤ Cn1/p

for all n. Consider a subsequence {tnj} of {tn} such that

nj ≥
( 1

Ctnj

)p
≥ nj−1 .

Then
1

C(nj)1/p
≤ tnj ≤

1

C(nj−1)
1/p

.
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Therefore, since nM(1/λn) = 1,

1 ≥ (nj−1)M
( 1

C(nj−1)
1/p

)

≥ (nj−1)
M(tnj )

t
p
nj

tpnj
≥

≥
(nj−1)M(tnj )

Cnjt
p
nj

≥
1

2C

M(tnj )

tpnj

→ ∞

which is not possible. �

From the above proposition we easily deduce the following well known result:

Corollary 1.5. Let M be an Orlicz function. Then if 1 < p < ∞, the following
statements are equivalent:

(i) ℓM is isomorphic to ℓp.

(ii) M ∼= tp at 0, i.e there exist constants A, B > 0 such that Atp ≤ M(t) ≤
Btp when t ∈ [0, 1].

Remark 1.6. As a consequence of Proposition 1.5 we obtain that the existence
of an upper p-estimate (or lower q-estimate) in a basis, even in a symmetric basis,
does not imply the existence of upper p-estimates (or lower q-estimates) in the
sequences of the space, since αM is, in general, different from γM (the same for
βM and δM ), see [20, p. 140].

2. Lorentz sequence spaces

We now study lower and upper estimates in the Lorentz sequence spaces.
Let 1 ≤ p < ∞ and let w = {wn} ∈ c0 \ ℓ1, such that 1 ≥ w1 ≥ w2 ≥ . . . . The

Banach space of all sequences of scalars x = (x1, x2, . . . ) for which

‖x‖ = sup
σ∈Π

(

∞
∑

i=1

∣

∣xσ(i)

∣

∣

p
wi

)

< ∞

where Π ranges over all the permutations of the integers, is denoted by d(w, p)
and it is called the Lorentz sequence space associated to w and p. For the
basic properties of these spaces see for instance [20].

Proposition 2.1 ([5]). The Lorentz sequence space d(w, p) has Sp-property, if

1 < p < ∞.

Corollary 2.2. If 1 < p < ∞, then l(d(w, p)) = p.

Proof: The result follows from Proposition 2.1 and since d(w, p) contains ℓp.
�

In the sequel we compute upper estimates in the usual basis in the Lorentz
sequence space. In order to get it we define the following index associated to
space d(w, p):

r = r(w) = inf{s ∈ [1,∞]; {wn} ∈ ℓs},

(note that such an index only depends on w).
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Proposition 2.3. Let {en} be the unit vector basis of d(w, p). Then, if 1r+
1
r∗ =

1, where r∗ = 1 (respectively r∗ =∞) if r =∞ (respectively r = 1), we have

pr∗ = sup{s > 1 : {en} has an upper s-estimate}.

Proof: We first prove that if q > p, the following statements are equivalent:

(a) {en} has an upper p-estimate.
(b) {wn} ∈ ℓ(q/p)∗ .

(a) ⇒ (b). Let M > 0 be verifying that for any a1, . . . , an ∈ R and n ∈ N

∥

∥

∥

n
∑

i=1

aiei

∥

∥

∥
≤ M

(

n
∑

i=1

|ai|
q
)1/q

.

Fix b = {bn} ∈ ℓq/p; then

(

n
∑

i=1

|bi|wi

)1/p
≤

∥

∥

∥

n
∑

i=1

|bi|
1/pei

∥

∥

∥
≤ M

(

n
∑

i=1

|bi|
q/p

)1/q
≤ M‖b‖

1/p
q/p

.

Hence
∞
∑

i=1

|bi|wi ≤ Mp‖b‖q/p

and therefore {wn} ∈ ℓ(q/p)∗ .

(b)⇒ (a). Assume that {wn} ∈ ℓ(q/p)∗ . Consider a = {an} ∈ ℓq, ‖a‖q ≤ 1 and

a permutation of integers π such that {|aπ(n)|} is a decreasing to zero sequence.

Then for each n ∈ N

∥

∥

∥

n
∑

i=1

aiei

∥

∥

∥
≤

∞
∑

n=1

|aπ(n)|
pwn ≤ ‖{wn}‖(q/p)∗ ,

hence
∥

∥

∥

n
∑

i=1

aiei

∥

∥

∥
≤ ‖w‖(q/p)∗‖a‖q

and therefore {en} has an upper q-estimate.

The result is now easily deduced. Indeed, if q < pr∗ then (q/p)∗ > r and
{wn} ∈ ℓ(q/p)∗ . By the preceding, {en} has an upper q-estimate. Conversely, if

{en} has an upper q-estimate then {wn} ∈ ℓ(q/p)∗ and therefore r ≤ (q/p)∗ and

q ≤ pr∗. �
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Corollary 2.4. Let d(w, p) be a Lorentz sequence space, for 1 < p < ∞. Then
u(d(w, p)) ≥ r∗p.

Proof: Assume the contrary, that is, u(d(w, p)) < r∗p. Choose s such that
u(d(w, p)) < s < r∗p. Since d(w, p) has Ts-property than there is a subsequence
of the basis {en} with a lower s-estimate. Since {en} is a symmetric basis, {en}
itself would have lower s-estimate. Now, by using Proposition 2.3, {en} admits
an upper s-estimate; therefore {en} is equivalent to the unit vector basis of ℓs

and then d(w, p) coincides with the space ℓs, which is not possible. �

In [2] it is studied when a given function can be the modulus of convexity of a
Lorentz sequence space d(w, p). In general, such spaces need not be superreflexive.
From the above result we obtain in a very simple way examples of Lorentz sequence
spaces that are non superreflexive.

Corollary 2.5. Let d(w, p) be a Lorentz sequence space such that r = inf{p ≤
∞ : {wn} ∈ ℓp} = 1. Then d(w, p) is not superreflexive.

Proof: Since r = 1, by using Proposition 2.3 we have that {en} admits an upper
q-estimate for all q > 1. If d(w, p) were superreflexive, it would have Tq-property
for some q < ∞ (see [12], [10]). In particular, a subsequence of {en} would admit
a lower q-estimate, and therefore so would {en}; this is impossible. �

3. James type spaces

We now study the James space J ; J is the space of all sequences of real numbers,
x = (a1, a2, . . . ), such that lim |an| = 0 and

‖x‖ = sup
{[

n
∑

i=1

[(

ap2i−1 − ap2i

)2]1/2
}

< ∞

where the supremum is taken when we consider all possible choices of n ∈ N and
of integers p1 < · · · < p2n.
(J, ‖ · ‖) is a Banach space. For an extensive treatment of the properties of this

space, see for instance [9]; there, it is proved the following result:

Theorem 3.1 ([9]). Let yj =
∑qj

n=pj
αnen, j = 1, 2, . . . be a block basic semi-

normalized sequence of {en} in J . If pj+1 − qj > 1 then the sequence {yj} is
equivalent to the unit vector basis of ℓ2.

Corollary 3.2. The James space has S2 and T2-properties. Therefore l(J) =
u(J) = 2.

Proof: Let {xn} be a weakly null normalized basic sequence in J . Then there
is a subsequence of {xn} which is equivalent to a block basis {yn} and {yn} may
be assumed to be as in Theorem 3.1. Therefore {yn} is equivalent to the basis in
ℓ2, in particular has upper and lower 2-estimates. �

Let J∗ be the dual space of J . The sequence {e∗n} of biorthogonal functionals
associated to {en} in J is a basis in J∗.



Upper and lower estimates in Banach sequence spaces 649

Proposition 3.3. The space J∗ has S2 and T2-properties. Then l(J∗) =
u(J∗) = 2.

Proof: In the first place, by [10] since J has S2-property the space J∗ has T2-
property. We now see that J∗ has S2-property. Let {x

∗
n} be a weakly null basic

normalized sequence in J∗. We may assume, by passing to a subsequence and
relabeling again, that

x∗n =

qj
∑

pj+1

αie
∗
i where pj+1 − qj > 1.

Fix x =
∑∞

i=1 aiei, ‖x‖ ≤ 1, and define xn =
∑qj

pj+1
aiei. By Theorem 3.1

{xn/‖xn‖} is equivalent to the unit vector basis of ℓ2. In particular, {xn/‖xn‖}
admits a lower 2-estimate, that is, there exists M > 0 such that for any n ∈ N

and b1, . . . , bn ∈ R
(

n
∑

i=1

|bi|
2
)1/2

≤ M
∥

∥

∥

n
∑

i=1

bi
xi

‖xi‖

∥

∥

∥
.

Consider x∗ =
∑∞

n=1 bnx∗n, then

|x∗(x)| =
∣

∣

∣

∞
∑

n=1

bn〈x
∗
n, xn〉

∣

∣

∣
≤

∞
∑

n=1

|bn| ‖x
∗
n‖ ‖xn‖ ≤

≤
(

∞
∑

n=1

|bn|
2‖x∗n‖

2
)1/2(

∞
∑

n=1

‖xn‖
2
)1/2

≤ C
(

∞
∑

n=1

|bn|
2
)1/2

.

Therefore,

‖x∗‖ =
∥

∥

∥

∞
∑

n=1

bnx∗n

∥

∥

∥
≤ C

(

∞
∑

n=1

|bn|
2
)1/2

and {x∗n} has an upper 2-estimate. �

In [19] the James’ construction is generalized by considering norms determined
by Banach spaces with basis in the following way:

Let X be a Banach space with normalized monotone basis {xn}; then we define
XJ as the space of all scalar sequences {an} such that

‖{an}‖XJ
= sup

{
∥

∥

∥

n
∑

i=1

(

ap2j−1 − ap2j

)

xj

∥

∥

∥

}

< ∞

where the supremum is taken when we consider all possible choices of n ∈ N and
of integers p1 < · · · < p2n.
Recall that a basis {xn} in X is said to be block p-Hilbertian if there exists

a constant C > 0 such that if {yn} is a normalized block sequence in X then {yn}
has an upper p-estimate with constant C.
It is easy to see that if X has a block p-Hilbertian basis then X has Sp-property.

By using the following result that is proved in [19] we obtain that some James
type spaces have Sp-property.
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Theorem 3.4 ([19]). If X has a block p-Hilbertian basis then {en} is block
p-Hilbertian in Xj . In particular, Xj has Sp-property.

Proposition 3.5. The space (lp)J has Sp-property and Tp-property. Therefore

l((ℓp)J ) = u((ℓp)J ) = p.

Proof: (i) By Theorem 3.4 the space (ℓp)J has Sp-property. We now see that
(ℓp)J has Tp-property. Let {yn} be a weakly null normalized sequence in (ℓp)J , by
a standard perturbation argument we may assume that {yn} has a subsequence
equivalent to a normalized sequence {xn}, where

xn =

pn
∑

i=ln

aiei

and ln−1 < kn < ln < kn+1, kn − ln−1 > 2 for all n.
For each n ∈ N, consider a choice of integers pn

0 < · · · < pn
2jn
such that

‖xn‖ =
(

jn
∑

i=1

∣

∣apn
2i
− apn

2i−1

∣

∣

p
)1/p

≥ 1,

where pn
0 = kn − 1 if apn

0
= 0 and pn

2jn
= 0 if apn

2jn
= 0, and kn − 1 ≤ pn

0 < · · · <

pn
2jn

≤ ln + 1.

Now, if α1, . . . , αm ∈ K, and if we consider the following choice of integers

p10 < · · · < p12j1 < p20 < · · · < p22j2 < · · · < pm
0 < · · · < pm

2jm
,

we have that

∥

∥

∥

m
∑

n=1

αnxn

∥

∥

∥

p
≥

m
∑

n=1

|αn|
p
(

jn
∑

i=1

∣

∣apn
2i
− apn

2i−1

∣

∣

p
)

≥
1

2

m
∑

n=1

|αn|
p.

Therefore, {xn} has a lower p-estimate, and (ℓp)J has Tp-property. �

Now we consider the original Tsirelson space T ∗ and the associated Tsirelson-
James space T ∗

J space constructed by Aron-Dineen in [3]. Then:

Proposition 3.6. The space T ∗
J has Sp-property for all 1 < p < ∞. In parti-

cular, no weakly null normalized subsequence in T ∗
J admits a lower q-estimate for

any q, 1 < q < ∞.

Proof: By [3, Corollary 10], if {uj} is a normalized block basis in T ∗
J then

∥

∥

∥

2n
∑

n+1

ajuj

∥

∥

∥

T ∗

J

≤ 4 sup
1+n≤j≤2n

|aj |.

Now, by the same procedure as in [6] it can be proved that {uj} has an upper
p-estimate for any 1 < p < ∞. Therefore, since every weakly null sequence in T ∗

J
has a subsequence equivalent to a block basis, we have that T ∗

J has Sp-property
for any 1 < p < ∞. �
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4. Some applications to polynomials

The upper and lower ℓp-estimates in sequences give us much information about
weak continuity of polynomials, and this is of a great interest in some problems
of smoothness ([11]) and in the study of reflexivity of the spaces of polynomials
(see [1], [7], [21]). The relationship between the existence of these estimates and
the behavior of polynomials has been studied in [10] and [11].

Proposition 4.1. Let X be a Banach space.

(i) If a sequence {xn} in X has an upper p-estimate, then for every N -homo-
geneous polynomial P on X , with N < p, the sequence {P (xn)} is con-
vergent to zero.

(ii) If X has a basis {en} which satisfies a lower q-estimate, then there exists
an N -homogeneous polynomial on X , with N ≥ q, such that P (en) ≥ 1
for all n ∈ N.

Proof: (i) is proved in [10]. In order to prove (ii), since {en} has a lower p-
estimate, there is C > 0 such that for all a1, . . . , an ∈ K

(

n
∑

i=1

|ai|
q
)1/q

≤ C
∥

∥

∥

n
∑

i=1

aiei

∥

∥

∥
.

Then the result follows by considering for N ≥ q the polynomial defined by

P
(

∞
∑

i=1

aiei

)

=

n
∑

i=1

(ai)
N .

�

By applying the above result to the spaces studied here we have:

Corollary 4.2.

(i) On the Orlicz sequence space hM , where hM does not contain ℓ1, all
polynomials of degree N with < αM are weakly sequentially continuous;

moreover if N < γM it follows from Corollary 1.4 and Proposition 4.1 that
every N -homogeneous polynomial on hM verifies that {P (en)}n is conver-

gent to zero and if N > δM there exists an N -homogeneous polynomial
which is not weakly sequentially continuous.

(ii) On the Lorentz sequence spaces d(w, p) every N -homogeneous polynomial
with N < p is weakly sequentially continuous. From Proposition 2.3 and
4.1 it follows that if N < r∗p and P is an N -homogeneous polynomial
then {P (en)} is convergent to zero. In the particular case that r = 1, the
sequence {en} is weak-polynomial convergent to zero, i.e. for all polyno-
mials P with P (0) = 0 we have that {P (en)} converges to zero; therefore
d(w, p) is not a Λ-space (see [13]).
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(iii) On the space (ℓp)J every N -homogeneous polynomial with N < p is
weakly sequentially continuous. Besides, since (ℓp)J has a quotient iso-
morphic to ℓp, it is proved in [14] (see Remark 3) that there exists an
N -homogeneous polynomial for N ≥ p which is not weakly sequentially
continuous.

(iv) On T ∗
J all polynomials are weakly sequentially continuous.
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