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Analytic nonregular cocycles over irrational rotations

M. Lemańczyk*

Abstract. Analytic cocycles of type III0 over an irrational rotation are constructed and
an example of that type is given, where all corresponding special flows are weakly mixing.
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Introduction

Assume that T : (X,B, µ) −→ (X,B, µ) is an ergodic automorphism of a stan-
dard Borel space. Each measurable function f : X −→ R is called a cocy-
cle. In fact, the cocycle corresponding to f and a Z-action of T is defined as

f (n)(x) =
∑n−1
0 f(T kx) if n ≥ 0 and f (n)(x) = −

∑−1
n f(T kx) if n < 0. Let

R = R ∪ {∞} be the one-point Alexandroff compactification of R. Then r ∈ R
is said to be an extended essential value of f (see [9]) if for each open neighbour-
hood U(r) of r (in R) and an arbitrary set C of positive measure, there exists an
integer n such that

µ(C ∩ T−nC ∩ {x ∈ X : f (n)(x) ∈ U(r)}) > 0.

The set of extended essential values will be denoted by E(f). The set E(f) =
E(f) ∩R is called the set of essential values of f and it is a closed subgroup of
R. The skew product

Tf : (X ×R, B̃, µ̃) −→ (X ×R, B̃, µ̃), Tf (x, r) = (Tx, f(x) + r)

is said to be a cylinder flow. Here by µ̃ we denoted the product measure of
µ and infinite Lebesgue measure λ on the line. A cylinder flow is ergodic iff
E(f) = R ([9]); in this case the cocycle f will be called ergodic. A necessary
condition for an integrable f to be ergodic is

∫

X f dµ = 0. One case, where Tf
is far from being ergodic is the case of f coboundary, i.e. f equal to g − gT for
a certain measurable g : X −→ R. One has f is a coboundary iff E(f) = {0}.
It may happen that E(f) is {0} but f is not a coboundary. According to [9],
such cocycles are said to be of type III0. A cocycle f is said to be regular if the
quotient cocycle f∗ : X −→ R/E(f) is a coboundary. It is not hard to see that
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nonregular cocycles are exactly those of type III0. It is also clear that a cocycle
f is a coboundary if and only if∞ /∈ E(f) (that is there exists a set B of positive

measure and a compact set K in R such that f (n)(x) ∈ K whenever x, Tnx ∈ B).
In this note, we introduce a subclass of type III0 cocycles namely those with

unbounded gaps. This gives rise to a new condition for a real cocycle to be
nonregular. Using it and the idea of almost analytic constructions from [7] we
conclude with constructions of analytic cocycles of type III0.
As an application, we give an answer to A. Katok’s question. Given an ergodic

automorphism T and a real zero mean cocycle f which is assumed to be in L1,
A. Katok in [4, Section 12.4] considers the special flows over T built under the
function fk,l = f+2παk+2πl for any integers k and l (here we assume that e

2πiα

is an eigenvalue of T and that fk,l is positive). If the cylinder flow Tf is ergodic
then all these flows are weakly mixing. According to [2] an ergodic real cocycle
is weakly mixing (meaning no L∞-eigenfunctions for Tf ) iff the only measurable
solution ξ : T −→ T to the equation

(1) e2πirf(x) = c
ξ(Tx)

ξ(x)

(where r ∈ R, |c| = 1) exists for r = 0 (and then c must be an eigenvalue of
T ). Examples of ergodic weak mixing cocycles are contained in [2] (such are,
for example, all ergodic squashable cocycles). A. Katok asks whether it is pos-
sible to have a nonergodic cocycle f such that (1) has no nontrivial solution. If
E(f) = rZ with r 6= 0 then f is necessarily regular and it follows from [9] that
f is cohomologous to a cocycle taking values in rZ, whence we have a solution
to (1) for 1/r and c = 1. Combining our methods of constructing nonregular
cocycles and [7] we obtain however that there exist type III0 analytic cocycles
over certain irrational rotations for which there is no nontrivial solution of (1)
and in particular, an answer to the Katok’s question is obtained (see also [1], [3],
from which one can deduce a similar answer but only for the case c = 1).
A complete discussion of the existence of smooth type III0 cocycles over an

irrational rotation is given in [10].

1. Type III0 cocycles. A general condition

Let τ : (Y, C, ν) −→ (Y, C, ν) be an ergodic automorphism and f : Y −→
R a cocycle. Then f is called a cocycle with unbounded gaps if there exists
a sequence of open intervals Pn such that |Pn| −→ ∞ and

{f (k)(y) : y ∈ Y, k ∈ Z} ∩ Pn = ∅

for all n ≥ 1.
Let T : (X,B, µ) −→ (X,B, µ) be an ergodic automorphism. Denote by

R(T ) = {(x, T kx) : x ∈ X, k ∈ Z}
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the relation generated by T . An orbit cocycle is any measurable map ϕ̃ : R(T ) −→
R satisfying

ϕ̃(x, y) + ϕ̃(y, z)− ϕ̃(x, z) = 0

for all (x, y), (y, z) ∈ R(T ) (ϕ̃(x, Tnx) = ϕ(n)(x), for a measurable ϕ : X −→ R
is an example of an orbit cocycle). If B ∈ B then put

RB(T ) = R(T ) ∩B ×B.

The corresponding restricted orbit cocycle ϕ̃B is defined as

ϕ̃B = ϕ̃|RB(T ).

Lemma 1. Let ϕ : X −→ R be a cocycle. If there exists B ∈ B such that the
restricted orbit cocycle ϕ̃B is a cocycle with unbounded gaps then ϕ is of type
III0 provided that it is not a coboundary.

Proof: Suppose that r ∈ R \ {0} is an essential value of ϕ. Choose n so that
there exists an integer l satisfying lr ∈ Pn. Now, lr ∈ E(ϕ) so given ε > 0 there
exists N such that

µ(B ∩ T−NB ∩ [ϕ(N) ∈ B(lr, ε)]) > 0

which leads to an easy contradiction with the fact that ϕ̃B has unbounded gaps.
�

Proposition 1. Suppose that T : (X,B, µ) −→ (X,B, µ) is ergodic and that
ϕ : X −→ R is a cocycle whose certain restriction has unbounded gaps. Then

sup ({µ(B) : B ∈ B, ϕ̃B has unbounded gaps}) = 1.

Proof: Fix ε > 0 and let C ∈ B, µ(C) > 0 be such that ϕ̃C has unbounded
gaps with a sequence (Pn), Pn = (an, bn) of the corresponding intervals. Since T

is ergodic, we can find K ≥ 1 so that if we put B1 =
⋃K−1

i=0 T iC then µ(B1) >

1− ε/2. Consider ϕ(s), s = −K, . . . , 0, . . . ,K as 2K +1 measurable functions on
X . Then we can find a constantW > 0 and a set Y ⊂ X such that µ(Y ) > 1−ε/2
and

(2) |ϕ(s)(y)| ≤W for all y ∈ Y and s = −K, . . . ,K.

Finally put B = B1 ∩ Y . It remains to show that ϕ̃B has unbounded gaps.

Suppose that x, TNx ∈ B. If |N | ≤ K then |ϕ(N)(x)| is simply bounded by
W since x ∈ Y . We can hence suppose that |N | > K. We have x ∈ T iC,

TNx ∈ T jC, where 0 ≤ i, j ≤ K−1. Since |N | > K, the signs of N and N + i− j
are the same and

ϕ(N)(x) = ϕ(N+i−j)(T−ix) + ϕ(−i)(x)− ϕ(−j)(TNx),

where z = T−ix ∈ C and TN+i−j(z) = TN−jx ∈ C. Since at the same time

x, TNx ∈ Y , it follows from (2) that ϕ̃B has unbounded gaps with a corresponding
sequence (Qn)n≥n0 , where Qn = (an + 2W, bn − 2W ) for n large enough. �
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Remark 1. In the next section, we will construct some type III0 cocycles, where
the supremum in Proposition 1 is achieved (i.e. ϕ itself is a cocycle with unbounded
gaps). In general however the supremum is not achieved (we will construct type
III0 analytic, hence continuous cocycles over irrational rotations and such cocy-
cles cannot have unbounded gaps).
Notice that if a restriction ϕ̃B of a cocycle ϕ has unbounded gaps then for each

cohomologous cocycle ψ = ϕ + f − fT and ε > 0 we can find a subset Bε ⊂ B
with µ(Bε) > (1 − ε)µ(B) and such that ψ̃Bε

has unbounded gaps.

Remark 2. For ϕ ∈ L1(X,µ) recurrent (i.e. ϕ of zero mean), T. Hamachi has
found examples of type III0 cocycles whose no restriction has unbounded gaps.
Notice moreover that since the notion of a cocycle is in fact a notion depending

only on orbits of T , by a standard argument involving Dye theorem, we obtain
that each ergodic automorphism admits a recurrent cocycle with unbounded gaps
once there exists an ergodic automorphism with such a property. In the next
section we slightly strengthen this observation.

2. Abstract constructions of nonregular cocycles

First construction. We will now present a detailed construction of a cocycle
with unbounded gaps over T admitting a special sequence of Rokhlin towers. This
can be directly applied to any irrational rotation by α, where α has unbounded
partial quotients (see Appendix in [6]). An advantage of this kind of constructions
is that if α is sufficiently fast approximated by rationals then cocycles similar to
those presented below are cohomologous to smooth ones ([6], [7]).

Step 1. Given a1 ∈ R
+ and n1 ≥ 2, n1 ∈ N, denote

E1 = {0,±a1, . . . ,±n1a1}.

Let b1 > 0 be a number which is a multiple of any element of E1.

Step 2. Given a2 ∈ R+ and n2 ≥ 2, n2 ∈ N satisfying certain additional
conditions, denote

E2 = {e1 ± ja2 : j = 0, . . . , n2, e1 ∈ E1}.

We require that for each e1 ∈ E1 and j = 1, . . . , n2,

|e1 ± ja2| > b1.

Finally, fix a positive number b2 which is a multiple of all elements of E2.

Step k + 1. Given ak+1 ∈ R+ and nk+1 ≥ 2, nk+1 ∈ N satisfying certain
additional conditions, denote

Ek+1 = {ek ± jak+1 : j = 0, . . . , nk+1, ek ∈ Ek}.
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We require that for each ek ∈ Ek and j = 1, . . . , nk+1,

(3) |ek ± jak+1| > bk.

Finally, fix a positive number bk+1 which is a multiple of all elements of Ek+1.
By the construction, we obtain that

E1 ⊂ E2 ⊂ . . . ⊂ Ek ⊂ . . . , k ≥ 1.

Moreover, in view of (3), for each k ≥ 2, a, b ∈ Ek

(4) |a− b| ≥
1

2
bk−1

if a 6= b and either a /∈ Ek−1 or b /∈ Ek−1.
Assume that T : (X,B, µ) −→ (X,B, µ) is an ergodic automorphism of a stan-

dard probability Borel space. We assume that T admits a special sequence of
Rokhlin towers

Rk = {Ik, T Ik, . . . , T
qk−1Ik} (k ≥ 1),

where µ(
⋃qk−1

i=0 T iIk) ≥ 1− εk with εk −→ 0; moreover

Ik = J
(k)
0 ∪ J

(k)
1 ∪ . . . ∪ J

(k)
nk+1

(a disjoint union),

where T qkJ
(k)
i = J

(k)
i+1 for i = 0, 1, . . . , nk. Furthermore, we assume that

Ik+1 ⊂ J
(k)
0 , k ≥ 1.

Definition of a real cocycle. For each k ≥ 1 let ϕk : X −→ R be defined by
the following formula

ϕk(x) =



























0 x ∈ J
(k)
0

ak x ∈ J
(k)
1 ∪ . . . ∪ J

(k)
nk

−nkak x ∈ J
(k)
nk+1

0 otherwise.

Finally, put
ϕ(x) =

∑

k≥1

ϕk(x), x ∈ X.

Notice that ϕk’s have disjoint supports, so ϕ is a well defined real cocycle. Denote

Bk =

qk−1
⋃

i=1

T i(Ik \ (J
(k)
nk

∪ J
(k)
nk+1

)).

Clearly, µ(Bk) ≥ 1− (εk +
2

nk
+ 1

qk
).
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Proposition 2. Assume that nk −→ ∞. If (qk) is a rigidity time for T (i.e. if
fT qk − f −→ 0 in measure for each measurable f : X −→ R) such that for each
k ≥ 1

∑

i≥1

2
qk
qk+i

<
1

2

then ϕ is not a coboundary.

Proof: We have that ϕ
(qk)
k = ak on Bk, while for all i = 1, . . . , k− 1 and x ∈ X

we have
∑k−1

i=1 ϕ
(qk)
i (x) ∈ Ek−1. Hence

|(
k

∑

i=1

ϕi)
(qk)(x)| ≥ ak − supEk−1 > bk−1 > 1 on Bk.

For each i ≥ 1 the cocycle ϕ
(qk)
k+i = 0 on a set of measure at least 1−2

qk

qk+i . Hence,

because of our standing assumption (
∑

i≥1 ϕk+i)
(qk) = 0 on a set of measure at

least 1/2. Since the measure ofBk tends to 1, ϕ
(qk) does not go to zero in measure,

so ϕ cannot be a coboundary. �

Proposition 3. Under the assumptions of Proposition 2, ϕ is of type III0. In
fact ϕ itself is a cocycle with unbounded gaps.

Proof: A simple use of Borel-Cantelli lemma shows that given N for a.e. x ∈ X

there exists k = k(x) such that ϕ
(N)
k+i(x) = 0 for all i ≥ 1 (i.e. with probability 1,

the trajectory x, . . . , TN−1x does not cross Ik+i). We have then that ϕ
(N)(x) =

∑k
i=1 ϕ

(N)
i (x), whence ϕ(N)(x) ∈ Ek. We have shown that ϕ

(N) takes values
only in

⋃

k≥1Ek. It follows now from (4) that ϕ has unbounded gaps. �

Second construction. We assume now that T : (X,B, µ) −→ (X,B, µ) is an
ergodic automorphism. Let a1 ∈ R+ and put F1 = {−a1, 0, a1}. Suppose that
sets Fi = {−ai, 0, ai} with ai ∈ R+, i = 1, . . . , n are already defined. Choose
an+1 ∈ R

+ so that

(5) inf
en∈En

| ± an+1 − en| ≥ n+ 1,

where En = F1+ . . .+Fn. Let (hn) be an increasing sequence of natural numbers
such that

(6) hn(
1

hn+1
+
1

hn+2
+ . . . ) −→ 0.

Given n, find a Rokhlin tower Rn of height hn, i.e.

Rn = (In, T In, . . . , T
hn−1In)
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with µ(
⋃hn−1

i=0 T iIn) > 1− 1/2n. Finally define (a coboundary)

ϕn(x) =











an if x ∈ T [hn/2]In

−an if x ∈ T hn−1In

0 otherwise.

It follows from (6) that
∑

n≥1 µ(suppϕn) < +∞ hence by Borel-Cantelli lemma

the cocycle ϕ(x) =
∑

n≥1 ϕn(x) is well-defined and moreover for a.e. x ∈ X and

all N ∈ Z, ϕ(N)(x) ∈
⋃

k≥1Ek. Therefore, in view of (5), ϕ has unbounded gaps.
Notice however that if we represent

ϕ([hn/2])(x) = ψ
([hn/2])
1 (x) + ψ

([hn/2])
2 (x),

where

ψ1(x) =
n

∑

k=1

ϕk(x) and ψ2(x) =
∑

k≥n+1

ϕk(x)

then ψ
([hn/2])
1 (x) ≥ an − sup En−1 ≥ n for x from a set of measure at least 1/3

while

supp (ψ
([hn/2])
2 ) ⊂

[hn/2]
⋃

s=−[hn/2]

T s(suppϕn+1 ∪ suppϕn+2 ∪ . . . ).

Hence, µ(suppψ
([hn/2])
2 ) ≤ 2hn(

1
hn+1

+ 1
hn+2

+ . . . ) and in view of (6) we conclude

that ϕ([hn/2]) is bigger that n on a set of measure at least 1/4 and therefore ϕ
cannot be a coboundary.
Notice that if in addition

(7)
∑

n≥1

an

hn
< +∞

then the ϕ which we construct is integrable. Therefore

Proposition 4. For each ergodic automorphism T there exists a recurrent cocy-
cle ϕ ∈ L1(X,µ) which is of type III0 and of unbounded gaps.

�

Remark 3. We can easily strengthen the above result to each Lp(X,µ), p < +∞,
while for p = +∞ it is no longer true (obviously, ϕ with zero mean bounded as
a function cannot have unbounded gaps as a cocycle unless it is a coboundary).
However, using well-known results concerning cohomology of L1-cocycles with
bounded ones (e.g. [4], see also [5]), we obtain that each ergodic T admits a recur-
rent cocycle bounded as a function and whose certain restriction has unbounded
gaps.
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3. Nonregular analytic cocycles over irrational rotations

In Construction 1 of the previous section there is a lot of freedom. Our idea

was to construct ϕ as a series of coboundaries
∑

k≥1 ϕk, in such a way that ϕ
(N)

takes values in
⋃

k≥1Ek and Ek is a set of the form F1 + . . . + Fk, where Fs is

a (finite) set of the values assumed by ϕ
(N)
s , N ∈ Z. In such a construction if we

know that the smallest nonzero value in Fk is much bigger than the sup Ek−1 we
are sure that ϕ is a cocycle with unbounded gaps. Therefore, if in Construction 1
we play with values

a
(k)
0 , . . . , a

(k)
nk+1

,

where a
(k)
i is the constant value of ϕk on J

(k)
i , i = 0, . . . , nk + 1 with

nk+1
∑

i=0

a
(k)
i = 0, a

(k)
0 = 0

then we will obtain a cocycle with unbounded gaps whenever the smallest nonzero

value from Fk := {
∑j

i=s a
(k)
i : s, j ≥ 0} (if j < s this sum is understood as the

sum from s to nk + 1 and then from 0 to j) will be sufficiently big with respect

to any number from Ek−1. Obviously many of the a
(k)
s ’s can be equal to zero. It

is now clear that a construction of nonregular cocycles can be carried out using
the idea of an a.a.c.c.p. from [7] (with (qk) a subsequence of denominators of an
irrational number α). As a corollary, we obtain that

Corollary 1. If α can be approximated sufficiently fast by rationals (so that
irrational rotation by α admits an a.a.c.c.p. construction) then for the rotation
by α there exists an analytic type III0 cocycle. �

In [7], there is a construction of an analytic real cocycle f such that the cor-
responding special flows are weakly mixing. In fact, it is clear from the proof of
Proposition 3 of that paper that f itself is weakly mixing (i.e. (1) is satisfied). It
is also easy to see that there is no special restriction on the growth of the param-
eters in the corresponding a.a.c.c.p. . This gives rise to the proof of the following
proposition (which, in particular is an answer to the Katok’s question).

Proposition 5. There is an irrational rotation T and an analytic type III0
cocycle f such that the only measurable solution ξ : T −→ T to the equation

e2πirf(x) = c
ξ(Tx)

ξ(x)

exists only for r = 0. �

Acknowledgments. The author thanks the referee and S. Sinelshchikov for re-
marks improving the paper.



Analytic nonregular cocycles over irrational rotations 735

References

[1] Aaronson J., Hamachi T., Schmidt K., Associated actions and uniqueness of cocycles, to
appear in Proc. of Okayama Conference, 1992.
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