Applications of the spectral radius to some integral equations

Mirosława Zima

Abstract. In the paper [13] we proved a fixed point theorem for an operator \mathcal{A} , which satisfies a generalized Lipschitz condition with respect to a linear bounded operator A, that is:

$$m(\mathcal{A}x - \mathcal{A}y) \prec Am(x - y).$$

The purpose of this paper is to show that the results obtained in [13], [14] can be extended to a nonlinear operator A.

Keywords: fixed point theorem, spectral radius, integral-functional equation *Classification:* 47H07, 47H10, 47G10

1. Fixed point theorem

Let X be a Banach space. An operator $A : X \to X$ is said to be linearly bounded if (analogously to a linear operator)

$$\exists_{M>0} \forall_{x \in X} \|Ax\| \le M \|x\|.$$

This definition implies that A vanishes at zero. The number

$$||A|| = \inf\{M > 0 : ||Ax|| \le M ||x||, \ x \in X\}$$

we call the norm of A. Since, as in the case of linear operator,

$$||A^{n+m}|| \le ||A^n|| ||A^m||,$$

there exists the limit

(1)
$$r(A) = \lim_{n \to \infty} ||A^n||^{1/n}.$$

We call r(A) the generalized spectral radius of A. If we assume additionally that A is a positively homogeneous operator then the following formula holds:

(2)
$$||A|| = \sup_{||x||=1} ||Ax||.$$

Let $(X, \|\cdot\|, \prec, m)$ denote a Banach space of elements $x \in X$, with a binary relation \prec and a mapping $m : X \to X$. We shall assume that:

 1° the relation \prec is transitive,

 $2^{\circ} \ \theta \prec m(x)$ and ||m(x)|| = ||x|| for all $x \in X$,

3° the norm
$$\|\cdot\|$$
 is monotonic, that is, if $\theta \prec x \prec y$ then $\|x\| \leq \|y\|$.

Now we can formulate a variant of Banach's contraction principle.

Theorem 1. In the Banach space considered above, let the operators $\mathcal{A} : X \to X$, $A : X \to X$ be given with the following properties:

 4° A is linearly bounded and r(A) < 1,

5° A is positively increasing, that is, if $\theta \prec x \prec y$ then $Ax \prec Ay$,

 $6^{\circ} m(\mathcal{A}x - \mathcal{A}y) \prec Am(x - y) \text{ for all } x, y \in X.$

Then the equation

$$\mathcal{A}x = x$$

has a unique solution in the set X.

The proof of Theorem 1 is analogous to that of Theorem 1 [13], so it can be omitted. Similar theorems can be found in [5], [8], [9], [11].

2. An integral-functional equation

In this section we shall show an application of Theorem 1 to an integralfunctional equation. Consider the equation

(3)
$$x(t) = \int_0^t f\left(s, \max_{[0,\sqrt{s}]} \{x(\tau)\}\right) ds, \ t \in [0,T], \ T \ge 1.$$

We show that under suitable assumptions the equation (3) has exactly one solution in the set of continuous functions on the interval [0, T].

Remark. The equation (3) can be considered with connection to the Cauchy problem

$$x'(t) = f\left(t, \max_{[0,\sqrt{t}]} \{x(\tau)\}\right), \ t \in [0,T], \ T \ge 1,$$
$$x(0) = 0.$$

Differential equations with maxima or suprema were studied for example in the papers [3], [6] and in the monograph [1].

Theorem 2. Suppose that

 $7^\circ~f:[0,T]\times\mathbb{R}\to\mathbb{R}$ is a continuous function and satisfies the Lipschitz condition

$$|f(t,x) - f(t,y)| \le L(t)|x - y|,$$

where L is continuous and non-negative function on the interval [0,T], $8^{\circ} \max_{[0,T]} L(t) < 2$.

Under the assumptions $7^{\circ}-8^{\circ}$ the equation (3) has a unique solution in the set of continuous functions on the interval [0,T].

PROOF: We set the Banach space $(X, \|\cdot\|, \prec, m)$ from Theorem 1 as follows: let X be a set of continuous functions on [0, T], $\|x\| = \max_{[0,T]} |x(t)|$ and (m(x))(t) =

|x(t)| for $t \in [0, T]$. Moreover, we say that $x \prec y$ if and only if $x(t) \leq y(t)$ for all $t \in [0, T]$. Obviously, the conditions $1^{\circ}-3^{\circ}$ are satisfied in this case. Consider the operator

(4)
$$(\mathcal{A}x)(t) = \int_0^t f\left(s, \max_{[0,\sqrt{s}]} \{x(\tau)\}\right) ds, \ t \in [0,T], \ T \ge 1.$$

To prove Theorem 2 we shall show that \mathcal{A} has a unique fixed point in X. From 7° it follows that

(5)
$$\begin{aligned} |(\mathcal{A}x)(t) - (\mathcal{A}y)(t)| &\leq \int_0^t L(s) |\max_{[0,\sqrt{s}]} \{x(\tau)\} - \max_{[0,\sqrt{s}]} \{y(\tau)\} | \, ds \\ &\leq \int_0^t L \max_{[0,\sqrt{s}]} |x(\tau) - y(\tau)| \, ds, \end{aligned}$$

where $L = \max_{[0,T]} |L(t)|$. Let

(6)
$$(Ax)(t) = \int_0^t L \max_{[0,\sqrt{s}]} |x(\tau)| \, ds, \ t \in [0,T].$$

The operator (6) maps X into X and it is linearly bounded. Moreover, in view of (5), the condition 6° of Theorem 1 is fulfilled. It remains to show that the spectral radius of the operator (6) is less than 1. Observe that

$$(A^{2}x)(t) = \int_{0}^{t} L \max_{[0,\sqrt{s}]} \left| \int_{0}^{\tau} L \max_{[0,\sqrt{s_{1}}]} |x(\tau_{1})| \, ds_{1} \right| ds$$
$$= L^{2} \int_{0}^{t} \int_{0}^{\sqrt{s}} \max_{[0,\sqrt{s_{1}}]} |x(\tau_{1})| \, ds_{1} \, ds.$$

Continuing this process, we get

$$(A^{n}x)(t) = L^{n} \int_{0}^{t} \int_{0}^{\sqrt{s_{1}}} \cdots \int_{0}^{\sqrt{s_{n-1}}} \max_{[0,\sqrt{s_{n}}]} |x(\tau)| \, ds_{n} \, ds_{n-1} \dots ds_{1}.$$

Thus

$$||A^{n}x|| \le L^{n}\frac{2}{3} \cdot \frac{4}{7} \cdot \ldots \cdot \frac{2^{n-1}}{2^{n}-1} T^{\frac{2^{n}-1}{2^{n-1}}} ||x||$$

and

$$||A^{n}||^{1/n} \le L \left(\frac{2}{3} \cdot \frac{4}{7} \cdot \ldots \cdot \frac{2^{n-1}}{2^{n-1}} T^{\frac{2^{n}-1}{2^{n-1}}}\right)^{1/n}.$$

Therefore $r(A) \leq \frac{L}{2}$. By the assumption 8°, r(A) < 1. Hence, in virtue of Theorem 1, the operator (4) has a unique fixed point in X. This completes the proof of Theorem 2.

3. A method of evaluation of the generalized spectral radius

Evaluation of the spectral radius of a linearly bounded operator by definition (1) is not easy. It is known that if A is a linear bounded operator then we can use the formula

(7)
$$r(A) = \lim_{n \to \infty} \|A^n x_0\|^{1/n},$$

where x_0 is a suitably chosen element of a Banach space (see [2], [4]). We shall show that (7) holds also for some nonlinear operators.

Let S(X) denote a class of linearly bounded operators $A: X \to X$ satisfying the following implication

(8)
$$\left(\limsup_{n \to \infty} \|A^n x\|^{1/n} \le a\right) \Longrightarrow (r(A) \le a), \ x \in X.$$

Particularly, the linear bounded operators belong to S(X) (see [10]). It is easy to show that the linearly bounded and positively homogeneous operators for which there exists $\overline{x} \in X$, $\|\overline{x}\| = 1$ such that for $n \in \mathbb{N}$ $\|A^n\| = \|A^n \overline{x}\|$, belong to S(X), too. Indeed, if A is linearly bounded and positively homogeneous then (2) holds. Suppose, on the contrary, that $\limsup_{n\to\infty} \|A^n x\|^{1/n} \leq a$ and r(A) > a, that is, there exists $\delta > 0$ such that $r(A) \geq a + \delta$. Then there exists $N_1 \in \mathbb{N}$ such that for $n > N_1$

$$||A^n|| \ge \left(a + \frac{\delta}{2}\right)^n.$$

On the other hand, it follows from $\limsup_{n\to\infty} ||A^n x||^{1/n} \leq a$ that for \overline{x} there exists $N_2 \in \mathbb{N}$ such that for $n > N_2$

$$||A^n\overline{x}|| \le \left(a + \frac{\delta}{4}\right)^n.$$

Put $n_0 = \max(N_1, N_2) + 1$. Then

(9)
$$\|A^{n_0}\| = \sup_{\|x\|=1} \|A^{n_0}x\| = \|A^{n_0}\overline{x}\| \ge \left(a + \frac{\delta}{2}\right)^{n_0}.$$

and

$$\|A^{n_0}\overline{x}\| \le \left(a + \frac{\delta}{4}\right)^{n_0},$$

contrary to (9).

Let K be a solid and normal cone in a Banach space X. For $x_0 \in \text{int } K$ we define $\|\cdot\|_{x_0}$ -norm of an element $x \in X$ as follows (see [4], [12])

(10)
$$||x||_{x_0} = \inf\{t > 0 : -tx_0 \prec_K x \prec_K tx_0\},$$

where the relation \prec_K is generated by K.

Lemma. Suppose that the operator $A : X \to X$ belongs to S(X). Suppose further that A is positive, subadditive, positively increasing (with respect to the relation \prec_K) and positively homogeneous. Then $r(A) \leq ||Ax_0||_{x_0}$.

PROOF: In view of (10) we get

$$Ax_0 \prec_K \|Ax_0\|_{x_0} x_0.$$

Let $x \in K$. Then $Ax \in K$ and, by (10),

$$Ax \prec_K \|Ax\|_{x_0} x_0.$$

Put $u(x) = ||Ax||_{x_0}$. Since A is positively increasing and positively homogeneous, we get for $x \in K$ and $n \in \mathbb{N}$:

(11)
$$A^{n}x \prec_{K} u(x)A^{n-1}x_{0} \prec_{K} u(x) \|Ax_{0}\|_{x_{0}}^{n-1}x_{0}.$$

The cone K is normal, so there exists M > 0 such that

$$||A^{n}x|| \le Mu(x)||Ax_{0}||_{x_{0}}^{n-1}||x_{0}||.$$

Moreover, K is generating (since int $K \neq \emptyset$). Therefore for every $x \in X$ there exist $x_1, x_2 \in K$ such that $x = x_1 - x_2$. Thus, by positive homogeneity and subadditivity of A we have

$$||A^{n}x|| \le ||A^{n}x_{1}|| + ||A^{n}x_{2}|| \le 2\max\{||A^{n}x_{1}||, ||A^{n}x_{2}||\}$$

Hence

$$||A^{n}x||^{1/n} \le \left(2\max\{||A^{n}x_{1}||, ||A^{n}x_{2}||\}\right)^{1/n}$$

But, in view of (11), for $x_1, x_2 \in K$ there exist the constants $u(x_1), u(x_2)$ such that

$$|A^{n}x_{1}|| \le Mu(x_{1})||Ax_{0}||_{x_{0}}^{n-1}||x_{0}||$$

and

$$||A^{n}x_{2}|| \le Mu(x_{2})||Ax_{0}||_{x_{0}}^{n-1}||x_{0}||.$$

Thus

$$\|A^{n}x\|^{1/n} \leq \left(2\max\{Mu(x_{1})\|Ax_{0}\|_{x_{0}}^{n-1}\|x_{0}\|, Mu(x_{2})\|Ax_{0}\|_{x_{0}}^{n-1}\|x_{0}\|\}\right)^{1/n}$$

and consequently

(12)
$$\limsup_{n \to \infty} \|A^n x\|^{1/n} \le \|A x_0\|_{x_0}.$$

Since the operator A belongs to S(X), we conclude from (12) that $r(A) \leq ||Ax_0||_{x_0}$, which ends the proof of the lemma.

Theorem 3. Let K be a normal and solid cone in a Banach space X and let $x_0 \in \text{int } K$. If the assumptions of the lemma are satisfied then (7) holds.

PROOF: It is easily seen that

 $A^n x_0 \prec_K \|A^n x_0\|_{x_0} x_0.$

Hence, in virtue of the lemma, we get

$$r(A^n) \le ||A^n x_0||_{x_0},$$

but

$$r(A^n) = [r(A)]^n$$

Thus

(13)
$$r(A) \leq \liminf_{n \to \infty} \|A^n x_0\|_{x_0}^{1/n}.$$

On the other hand, since the norms $\|\cdot\|$, $\|\cdot\|_{x_0}$ are equivalent (see for example [12]), there exists a constant m > 0 such that

 $||A^{n}x_{0}||_{x_{0}} \le m||A^{n}x_{0}|| \le m||A^{n}|| ||x_{0}||.$

Hence

(14)
$$\limsup_{n \to \infty} \|A^n x_0\|_{x_0}^{1/n} \le r(A).$$

Combining (13) with (14) we obtain

$$r(A) = \lim_{n \to \infty} \|A^n x_0\|_{x_0}^{1/n}$$

Finally, we apply equivalence of the norms $\|\cdot\|$, $\|\cdot\|_{x_0}$ again, which gives (7). This ends the proof of Theorem 3.

Remark. The proof of Theorem 3 is similar to that of Theorem 9.1 [4].

4. The generalized spectral radius of the sum of two operators

In applications of Theorem 1 it may occur that the operator A has the form $A = A_1 + A_2$. It is known that if A_1 and A_2 are linear, bounded and commutative then ([4], [7])

(15)
$$r(A_1 + A_2) \le r(A_1) + r(A_2).$$

In this section we give a sufficient condition for linearly bounded operators, different from the global commutativity, under which the inequality (15) holds.

Consider a Banach space $(X, \|\cdot\|, \prec)$ assuming that the conditions 1° and 3° are satisfied and moreover:

 9° the relation \prec is reflexive,

 10° if $x \prec y$ then $x + z \prec y + z$.

Theorem 4. In the Banach space considered above, let the linearly bounded operators $A_1 : X \to X$, $A_2 : X \to X$ be given. Suppose that if $\theta \prec x$ then $\theta \prec A_1 x$ and $\theta \prec A_2 x$. Moreover, we assume that there exists an element $x_0 \in X$, $\theta \prec x_0$ such that:

$$11^{\circ} r(A_1 + A_2) = \lim_{n \to \infty} \|(A_1 + A_2)^n x_0\|^{1/n},$$

$$12^{\circ} A_2 A_1^j A_2^k x_0 \prec A_1^j A_2^{k+1} x_0 \text{ for } j = 1, 2, \dots, k = 0, 1, \dots$$

(hen (15) holds

Then (15) holds.

The proof of Theorem 4 is analogous to that of Theorem 1 [14], so it can be omitted.

Finally we shall show an application of Theorems 1, 3 and 4. Consider the integral-functional equation

(16)
$$x(t) = \int_0^t f\left(s, \max_{[0,s^a]} \{x(\tau)\}, x(s^a)\right) ds,$$

where $t \in [0, T], T \ge 1, 0 < a < 1$.

Theorem 5. Assume that:

13° $f:[0,T]\times\mathbb{R}^2\to\mathbb{R}$ is continuous and satisfies the Lipschitz condition

$$|f(t, x_1, x_2) - f(t, y_1, y_2)| \le L_1(t)|x_1 - y_1| + L_2(t)|x_2 - y_2|,$$

where the functions L_1 , L_2 are continuous and non-negative on the interval [0, T],

$$14^{\circ} \max_{[0,T]} \{L_1(t)\} + \max_{[0,T]} \{L_2(t)\} < \frac{1}{1-a}.$$

Then the equation (16) has a unique solution in the set of continuous functions on the interval [0, T].

PROOF: Let $(X, \|\cdot\|, \prec, m)$ be the Banach space from the proof of Theorem 2. We shall show that the operator

$$(\mathcal{A}x)(t) = \int_0^t f\left(s, \max_{[0,s^a]} \{x(\tau)\}, x(s^a)\right) ds, \ t \in [0,T], \ T \ge 1,$$

has exactly one fixed point in X. In view of our assumptions we have

$$|(\mathcal{A}x)(t) - (\mathcal{A}y)(t)| \le \int_0^t L_1 \max_{[0,s^a]} |x(\tau) - y(\tau)| \, ds + \int_0^t L_2 |x(s^a) - y(s^a)| \, ds,$$

where $L_i = \max_{[0,T]} \{L_i(t)\}, i = 1, 2$. Let

$$(Ax)(t) = \int_0^t L_1 \max_{[0,s^a]} |x(\tau)| \, ds + \int_0^t L_2 |x(s^a)| \, ds.$$

M. Zima

Obviously, A is linearly bounded and positively increasing. To prove our theorem it is sufficient to show that r(A) < 1. Observe that $A = A_1 + A_2$, where

$$(A_1x)(t) = \int_0^t L_1 \max_{[0,s^a]} |x(\tau)| \, ds$$

and

$$(A_2 x)(t) = \int_0^t L_2 |x(s^a)| \, ds.$$

It is easy to check that A, A_1 and A_2 belong to S(X). In the space of continuous functions on the interval [0,T] we choose the cone K of non-negative functions. Such a cone is solid and normal and $x_0(t) \equiv 1$ for $t \in [0,T]$ is its interior element. Clearly, A, A_1 and A_2 satisfy the remaining assumptions of Theorem 3. Thus the condition 11° of Theorem 4 is fulfilled. Moreover, for $j = 1, 2, \ldots, k = 0, 1, \ldots$ we have

$$(A_2A_1^jA_2^kx_0)(t) = L_1^jL_2^{k+1}\frac{1}{a_1a_2\dots a_{k+j+1}}t^{a_{k+j+1}} = (A_1^jA_2^{k+1}x_0)(t),$$

where $a_1 = a + 1$, $a_n = a \cdot a_{n-1} + 1$. Hence

$$A_2 A_1^j A_2^k x_0 \prec A_1^j A_2^{k+1} x_0, \quad j = 1, 2, \dots, \quad k = 0, 1, \dots$$

Therefore, in virtue of Theorem 4

$$r(A) \le r(A_1) + r(A_2).$$

Using (7), we obtain

$$r(A_1) = (1-a)L_1$$

and

$$r(A_2) = (1-a)L_2.$$

Thus, by 14° , r(A) < 1. This ends the proof of Theorem 4.

References

- Bainov D.D., Mishev D.P., Oscillation theory for neutral differential equations with delay, Adam Hilger, Bristol Philadelphia New York, 1991.
- [2] Förster K.-H., Nagy B., On the local spectral radius of a nonnegative element with respect to an irreducible operator, Acta Sci. Math. 55 (1991), 155–166.
- [3] Hristova S.G., Bainov D.D., Monotone-iterative techniques of V. Lakshmikantham for a boundary value problem for systems of impulsive differential equations with "supremum", J. Math. Anal. Appl. 172 (1993), 339–352.
- Krasnoselski M.A. et al., Näherungsverfahren zur Lösung von Operatorgleichungen, Akademie Verlag, Berlin, 1973.
- [5] Kwapisz M., On the existence and uniqueness of solutions of a certain integral-functional equation, Ann. Polon. Math. 31 (1975), 23–41.

702

- [6] Myshkis A.D., On some problems of the theory of differential equations with deviating argument (in Russian), Uspehi Mat. Nauk 32 (1977), 173–202.
- [7] Riesz F., Sz.-Nagy B., Functional analysis, Ungar, New York, 1955.
- [8] Ważewski T., Sur un procédé de prouver la convergence des approximations successives sans utilisation des séries de comparaison, Bull. Acad. Polon. Sci. 1 (1960), 45–52.
- [9] Zabrejko P.P., The contraction mapping principle in K-metric and locally convex spaces (in Russian), Dokl. Akad. Nauk BSSR 34 (1990), 1065–1068.
- [10] Zabrejko P.P., Krasnoselski M.A., Stecenko V.Ya., On estimations of the spectral radius of the linear positive operators (in Russian), Mat. Zametki 1 (1967), 461–470.
- [11] Zabrejko P.P., Makarevich T.A., On some generalization of the Banach-Caccioppoli principle to operators in pseudometric spaces (in Russian), Diff. Uravn. 23 (1987), 1497–1504.
- [12] Zeidler E., Nonlinear functional analysis and its applications I, Springer Verlag, New York Heidelberg Berlin, 1993.
- [13] Zima M., A certain fixed point theorem and its applications to integral-functional equations, Bull. Austral. Math. Soc. 46 (1992), 179–186.
- [14] Zima M., A theorem on the spectral radius of the sum of two operators and its application, Bull. Austral. Math. Soc. 48 (1993), 427–434.

DEPARTMENT OF MATHEMATICS, PEDAGOGICAL UNIVERSITY, REJTANA 16A, 35-310 RZESZÓW, POLAND

(Received November 15, 1994)