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Applications of the spectral
radius to some integral equations

MIROSELAWA ZIMA

Abstract. In the paper [13] we proved a fixed point theorem for an operator A, which
satisfies a generalized Lipschitz condition with respect to a linear bounded operator A,
that is:

m(Az — Ay) < Am(z — y).

The purpose of this paper is to show that the results obtained in [13], [14] can be
extended to a nonlinear operator A.
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1. Fixed point theorem
Let X be a Banach space. An operator A : X — X is said to be linearly
bounded if (analogously to a linear operator)
>0 Vaex [[Az]| < M|,

This definition implies that A vanishes at zero. The number

|A]| = inf{M > 0: ||Az|| < M||z||, =z € X}
we call the norm of A. Since, as in the case of linear operator,

A" < A7) [A™],
there exists the limit
T nyl/n

1) r(A4) = lim A7

We call r(A) the generalized spectral radius of A. If we assume additionally that
A is a positively homogeneous operator then the following formula holds:

(2) |All = sup ||Az|.
[[z[|=1
Let (X, - ||, <,m) denote a Banach space of elements x € X, with a binary

relation < and a mapping m : X — X. We shall assume that:

1° the relation < is transitive,

2° 0 < m(z) and ||m(z)|| = ||z|| for all z € X,

3° the norm || - || is monotonic, that is, if < z < y then ||z|| < |ly]|.
Now we can formulate a variant of Banach’s contraction principle.
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Theorem 1. In the Banach space considered above, let the operators A : X —
X, A: X — X be given with the following properties:

4° A is linearly bounded and r(A) < 1,
5° A is positively increasing, that is, if 0 < x < y then Ax < Ay,
6° m(Az — Ay) < Am(z —y) for all z,y € X.
Then the equation
Az ==z

has a unique solution in the set X.

The proof of Theorem 1 is analogous to that of Theorem 1 [13], so it can be
omitted. Similar theorems can be found in [5], [8], [9], [11].

2. An integral-functional equation

In this section we shall show an application of Theorem 1 to an integral-
functional equation. Consider the equation

(3) a(t) = /Otf(s, max{x(T)}) ds, t€[0,T), T > 1.

[0,/5]

We show that under suitable assumptions the equation (3) has exactly one solution
in the set of continuous functions on the interval [0, T7.

Remark. The equation (3) can be considered with connection to the Cauchy
problem

o) = /(1 max(a(n)}), t€[0.T), T 21,

x(0) = 0.

Differential equations with maxima or suprema were studied for example in the
papers [3], [6] and in the monograph [1].
Theorem 2. Suppose that

7 f :[0,T] x R — R is a continuous function and satisfies the Lipschitz
condition

[f(t,x) = f(t,y)] < Ltz —yl,
where L is continuous and non-negative function on the interval [0, T,
80 max[(),T] L(t) < 2.
Under the assumptions 7°—8° the equation (3) has a unique solution in the set of
continuous functions on the interval [0, T.

PROOF: We set the Banach space (X, [|-||, <, m) from Theorem 1 as follows: let X
be a set of continuous functions on (0,7}, |[z| = maxy 7 |z(t)| and (m(z))(t) =
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|z(t)| for t € [0, T]. Moreover, we say that = < y if and only if z(t) < y(t) for all
t € [0, T]. Obviously, the conditions 1°-3° are satisfied in this case. Consider the
operator

(4) (Az)(t) _/Otf(s max {z(7 )}) ds, t € [0,T], T > 1.

[0,+/5]

To prove Theorem 2 we shall show that A has a unique fixed point in X. From
7° it follows that

t
|(Az)(t) — (Ay)(®)] S/O L(s)| max {z(7)} — max {y(7)}|ds

[0,/5] [0,/5]

() ¢

</ ds,

< [ 5 max o) ~ y(r)l s
where L = max(g 77 |L(t)|. Let

t

6 Axtz/Lmax:v ds, t €10,T].
(6) (Az)(t) A [Oﬂl(ﬂ [0, 7]

The operator (6) maps X into X and it is linearly bounded. Moreover, in view
of (5), the condition 6° of Theorem 1 is fulfilled. It remains to show that the
spectral radius of the operator (6) is less than 1. Observe that

T

t
A2 /L L dsy| ds
(A%z)(t) = max} A [511\75] |lz(1)] dsy

0
= 2/ / max |:1: 71)|ds1 ds.

Continuing this process, we get

A =L ' B o max dsp d d
") () = L™ ndsp—1...dsq.
( x)() /0 /0 /0 [0, \75} |£C( )| on Gon—1 °1

Thus 5 4 on-1
- 2"—1
g e el
and 2 4 o=l an_1y1/
n|l/n (_._. i 271—:11') "
[|A™]] <L 3T 2n_sz .

Therefore r(A) < % By the assumption 8°, r(A) < 1. Hence, in virtue of
Theorem 1, the operator (4) has a unique fixed point in X. This completes the
proof of Theorem 2. O
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3. A method of evaluation of the generalized spectral radius

Evaluation of the spectral radius of a linearly bounded operator by defini-
tion (1) is not easy. It is known that if A is a linear bounded operator then we
can use the formula

1 n 1/n
™ P(A) = lim_ | A%a M,

where z¢ is a suitably chosen element of a Banach space (see [2], [4]). We shall
show that (7) holds also for some nonlinear operators.

Let S(X) denote a class of linearly bounded operators A : X — X satisfying
the following implication

(8) (li;n_)solép | APz M/n < a) — (r(4) < a), z € X.

Particularly, the linear bounded operators belong to S(X) (see [10]). It is easy to
show that the linearly bounded and positively homogeneous operators for which
there exists T € X, ||Z|| = 1 such that for n € N ||A™|| = ||A"Z||, belong to S(X),
too. Indeed, if A is linearly bounded and positively homogeneous then (2) holds.

Suppose, on the contrary, that limsup,,_, . ||A"||*/" < a and r(A) > a, that is,
there exists § > 0 such that r(A) > a + d. Then there exists N1 € N such that
for n > Ny

14" > (a+3)"

On the other hand, it follows from limsup,, . ||A"z|}/"™ < a that for T there
exists Ny € N such that for n > Ny

4/
Put ng = max(Ny, N2) + 1. Then

9) ) = sup [ A4mx] = [ 4%0F] > (at )"
llzl=1

and Sun
0

no=|| < hd
jAama)| < (a+ 7)™

contrary to (9).
Let K be a solid and normal cone in a Banach space X. For zg € int K we
define || - ||zo-norm of an element x € X as follows (see [4], [12])

(10) |2)lzo = inf{t > 0: —txg <x x <k tzo},

where the relation <y is generated by K.
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Lemma. Suppose that the operator A : X — X belongs to S(X). Suppose
further that A is positive, subadditive, positively increasing (with respect to the
relation <) and positively homogeneous. Then r(A) < ||Azogl|zo-

PROOF: In view of (10) we get
Azg <k || Az zeTo-
Let z € K. Then Az € K and, by (10),
Az <k || Az zox0-

Put u(z) = || Ax||z,- Since A is positively increasing and positively homogeneous,
we get for x € K and n € N:

(11) Ar < u(w)An_lxo <K u(:v)HAxOHZO_le.
The cone K is normal, so there exists M > 0 such that
-1
[A"z]| < Mu()||Azoz, ~ [[zoll-

Moreover, K is generating (since int K # ()). Therefore for every x € X there
exist x1,x9 € K such that x = 1 — x2. Thus, by positive homogeneity and
subadditivity of A we have

[A™z]| < [|A"zq | + | A" 22|l < 2max{|| A"z ][, | A"22]]}.

Hence )
A2 < (2max{||A" a1 ], | A™a2]}) m,

But, in view of (11), for 21,29 € K there exist the constants u(z1), u(zg) such
that )
A" 21| < Mu(z1)|[Azo ||z~ [lzoll

and )
A z2 || < Mu(x2)||Azollz, ~ lzoll-

Thus
_ _ 1
1A ||V < (2 max{ Mu(zy) || Azo |2 lwoll, Mu(zs)|| Azo |2 lzol|}) /™

and consequently

(12) lim sup | A"z |/ < || Azg |z,
n—oo

Since the operator A belongs to S(X), we conclude from (12) that r(A) <
lAzo|| 2o, which ends the proof of the lemma. O
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Theorem 3. Let K be a normal and solid cone in a Banach space X and let
xg € int K. If the assumptions of the lemma are satisfied then (7) holds.

PRrROOF: It is easily seen that
Az <k [|A"2o[[zo o0
Hence, in virtue of the lemma, we get

r(A") < [[A"2o o

but
r(A") = [r(A)]".
Thus
o 1
(13) r(4) < liminf A" w0 2"
On the other hand, since the norms || - ||, || - ||z, are equivalent (see for example

[12]), there exists a constant m > 0 such that
A" 0llzo < ml|A™xol| < mllA"||[|zo]-
Hence

(14) limsup | Ao [ < r(A).

n—oo

Combining (13) with (14) we obtain

. 1
r(A) = nh_)rréo ||A"x0||xén.
Finally, we apply equivalence of the norms | - ||, || - ||z, again, which gives (7).
This ends the proof of Theorem 3. O

Remark. The proof of Theorem 3 is similar to that of Theorem 9.1 [4].

4. The generalized spectral radius of the sum of two operators

In applications of Theorem 1 it may occur that the operator A has the form
A = A1+ As. Tt is known that if A1 and Ag are linear, bounded and commutative
then ([4], [7])

(15) r(Ay + A2) <r(A1) 4+ r(A2).

In this section we give a sufficient condition for linearly bounded operators, dif-
ferent from the global commutativity, under which the inequality (15) holds.

Consider a Banach space (X, | - ||, <) assuming that the conditions 1° and 3°
are satisfied and moreover:

9° the relation < is reflexive,
10° if z < y then x + z < y + z.
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Theorem 4. In the Banach space considered above, let the linearly bounded
operators A1 : X — X, Ay : X — X be given. Suppose that if § < = then
0 < Aix and 0 < Asx. Moreover, we assume that there exists an element xg € X,
0 < :vo such that:

(Al + Ag) = limp 0 H(Al + Ag) .CL'0||1/",
12° Ag Al Abwg < A AE T ag for j=1,2,..., k=0,1,....
Then (15) holds.
The proof of Theorem 4 is analogous to that of Theorem 1 [14], so it can be
omitted.

Finally we shall show an application of Theorems 1, 3 and 4. Consider the
integral-functional equation

(16) (1) _/Otf(s max {z(r )},x(sa)) ds,

[0,5]

where t € [0,7], T >1,0<a < 1.

Theorem 5. Assume that:

13° f:[0,T] x R? — R is continuous and satisfies the Lipschitz condition

|f(t, 1, m2) = f(Ey1,y2)] < Li(t)|zr — yif + La(t)|z2 — y2l,
where the functions L1, Lo are continuous and non-negative on the interval
0,71,
140 max[(),T]{Ll(t)} + max[(),T]{Lg(t)} < ﬁ

Then the equation (16) has a unique solution in the set of continuous functions
on the interval [0, T].

ProoOF: Let (X, ] - |, <, m) be the Banach space from the proof of Theorem 2.
We shall show that the operator

(Ax)(t) = /Otf(s max{x (T )},x(s“)) ds, t€[0,T], T >1,

[0,s2]

has exactly one fixed point in X. In view of our assumptions we have

t t
(A2)(t) — (Ay)(1)] < /0 Ly max [2(r) — y(r)|ds + /0 Lole(s%) — y(s®)| ds,

[0,5]

where L; = max(g 7{Li(t)}, i = 1,2. Let

t t
(Az)(t) = /0 L1 max |z(7)| ds —|—/O La|z(s*)| ds.

[0,s9]
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Obviously, A is linearly bounded and positively increasing. To prove our theorem
it is sufficient to show that r(A) < 1. Observe that A = Ay + Ag, where

t
(A12)(t) = /0 Ly max |z(7)|ds

[0,57]

and .
(Aga)(t) = /0 Lol(s%)] ds.

It is easy to check that A, A1 and Az belong to S(X). In the space of continuous
functions on the interval [0, 7] we choose the cone K of non-negative functions.
Such a cone is solid and normal and z(t) = 1 for ¢ € [0,T] is its interior element.
Clearly, A, A1 and Ag satisfy the remaining assumptions of Theorem 3. Thus the
condition 11° of Theorem 4 is fulfilled. Moreover, for j = 1,2,..., k =0,1,...
we have

Ag A} ABwo)(t) = LI LA ————— ¢+ = (A] AE T ag) (1),
(A2 A4y A320)(t) = L Ly anar - ar (41437 20)(t)

where a1 =a+1, ap, =a-an,—1 + 1. Hence
Ag Al Ay < Al AE T g, j=1,2,..., k=0,1,... .
Therefore, in virtue of Theorem 4
r(A4) <r(A41) + r(A2).

Using (7), we obtain
r(A1) = (1 —a)ly

and

r(A2) = (1 —a)Ls.
Thus, by 14°, r(A) < 1. This ends the proof of Theorem 4. O

REFERENCES

[1] Bainov D.D., Mishev D.P., Oscillation theory for neutral differential equations with delay,
Adam Hilger, Bristol Philadelphia New York, 1991.

[2] Forster K.-H., Nagy B., On the local spectral radius of a nonnegative element with respect
to an irreducible operator, Acta Sci. Math. 55 (1991), 155-166.

[3] Hristova S.G., Bainov D.D., Monotone-iterative techniques of V. Lakshmikantham for
a boundary value problem for systems of impulsive differential equations with “supremum?”,
J. Math. Anal. Appl. 172 (1993), 339-352.

[4] Krasnoselski M.A. et al., Ndherungsverfahren zur Lésung von Operatorgleichungen, Aka-
demie Verlag, Berlin, 1973.

[5] Kwapisz M., On the existence and uniqueness of solutions of a certain integral-functional
equation, Ann. Polon. Math. 31 (1975), 23-41.



Applications of the spectral radius to some integral equations 703

[6] Myshkis A.D., On some problems of the theory of differential equations with deviating
argument (in Russian), Uspehi Mat. Nauk 32 (1977), 173-202.

[7] Riesz F., Sz.-Nagy B., Functional analysis, Ungar, New York, 1955.

[8] Wazewski T., Sur un procédé de prouver la convergence des approzimations successives
sans utilisation des séries de comparaison, Bull. Acad. Polon. Sci. 1 (1960), 45-52.

[9] Zabrejko P.P., The contraction mapping principle in K-metric and locally convez spaces
(in Russian), Dokl. Akad. Nauk BSSR 34 (1990), 1065-1068.

[10] Zabrejko P.P., Krasnoselski M.A., Stecenko V.Ya., On estimations of the spectral radius of
the linear positive operators (in Russian), Mat. Zametki 1 (1967), 461-470.

[11] Zabrejko P.P., Makarevich T.A., On some generalization of the Banach-Caccioppoli prin-
ciple to operators in pseudometric spaces (in Russian), Diff. Uravn. 23 (1987), 1497-1504.

[12] Zeidler E., Nonlinear functional analysis and its applications I, Springer Verlag, New York
Heidelberg Berlin, 1993.

[13] Zima M., A certain fized point theorem and its applications to integral-functional equations,
Bull. Austral. Math. Soc. 46 (1992), 179-186.

(14] Zima M., A theorem on the spectral radius of the sum of two operators and its application,
Bull. Austral. Math. Soc. 48 (1993), 427-434.

DEPARTMENT OF MATHEMATICS, PEDAGOGICAL UNIVERSITY, REJTANA 16A,
35-310 RzZESzOW, POLAND

(Received November 15,1994)



