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On the asymmetric divisor problem
with congruence conditions

MANFRED KUHLEITNER

Abstract. A certain generalized divisor function d*(n) is studied which counts the num-
ber of factorizations of a natural number n into integer powers with prescribed exponents
under certain congruence restrictions. An Q-estimate is established for the remainder
term in the asymptotic for its Dirichlet summatory function.

Keywords: multidimensional asymmetric divisor problems
Classification: 11N37, 11P21, 11N69

Introduction

For N = p+ g > 2 (where p and ¢ are positive integers), and fixed natural
numbers ai, ..., ap,apy1 = b1,... ,aptq = by, let d*(n) denote the number of
ways to write the positive integer n as a product of different powers of NV factors,
of which p satisfy certain congruence conditions,

d*(n) =d(ay,... ,an;mi,...mp;n) =
#{(u1,... ,uN)ENN:u‘fl...u‘;VN =n,u; =1l (mod m;) (j=1,...,p)}

where I; and m; are given natural numbers, with [; < m.
For a large real variable z, we consider the remainder term E(zx) in the asymp-

totic formula
D*(z) =Y _d*(n) = H(z) + E(x)
n<x

where s

H(z)= Y Reses <F(S) ]\j88>

where M = m{'...my" and F(s) is the generating function
00 p q
F(s)=M* Z d*(n)n™?% = H Clajs, Aj) H ¢(b;s) (Res > 1),
n—=1 j=1 i=1

This article is part of a research project supported by the Austrian Science Foundation
(Nr. P 9892-PHY).

99



100

M. Kiihleitner

Aj = r% for j=1,...,p and {(s),((s,.) denote the Riemann and Hurwitz zeta-
functions, respectively.

Upper bounds for the error term E(x) can be readily established as a trivial gen-
eralization of the corresponding results for the asymmetric divisor problem. For
a historical survey see e.g. the textbooks of Ivi¢ [7], Krétzel [8], Titchmarsh [16].

As in Nowak [10], [11] we generalize the asymmetric divisor problem with
respect to arithmetic progressions. In the present paper, we shall be concerned
with a lower bound for this remainder term. We therefore use a classical method
of Szegt and Walfisz [14] with a more recent technique due to Hafner [5].

Remark. Throughout the paper we denote by C(X, u), A, p real numbers, the
oriented polygonal line which joins the points A —ico, A — 4, u — 4, u+ 4, A+ 100
in this order.

Statement of results

Theorem 1. For each integer m > %(N — 1), the Liouville-Riemann integral of
order m of the error term F(x) possesses an absolutely convergent series repre-
sentation

def 1 “ _ L, ym—1 _
En( )_F(m)/o (x —u) E(u)du =
1 o]
1) — ¥ Sm) pm § pmm 3 ﬁ(ll,...,lp;h)Ili7___7lp;m(%7TEh)

h=1 (11, 5lp)
(1;=0,1)

where ¥ = a1 + ...+ ay for short, and
2)
By, ... lp;h) =

p
_ 3 v [ 1 (sin(@mjie i)™ (cos(2mjpA)) .

FLseeesdpsitseeerig N Jpll 91
31%1...5p@P i1 P1.ig%=h

The functions 11*17--- Jp;m(y) are defined, for every integer m > 0, by

Il*l,... ,lp;m(y) =

I'(s
- Z Res—p, (Glh--wlp(s)ﬁyﬁm) 1y, i (Y)

k=—1,...,—m
where Iy, lp;m(y) is given by an absolutely convergent integral representation

I'(s)

1
Ill...,lp;m(y) = %/C(A 0 Glh---,lp(s)mstrm ds.
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Here A, u, are real numbers satisfying

N
A > i, w < —m,
and
bl 1_lk lk
(3) G . (s)*HF(%_Ts) H <F(%_%)> <F(1_%)>
Lyeeey - bl ags l 2RO
’ o Ty o\ e I(z + %)
The functions I}, .. 1,.m(y) possess an asymptotic expansion
Iy, m(y) =
L
_ Zcmjym+%(—§+%+m—j)
@) K 1 wjzo T T
cos(eTys + 1 N -3) - 5(11 +.oo4+ 1)+ Ej —m)+
M+m+3
+om T )

where L is an arbitrary positive integer and the coefficients Cp, ; are computable.
In particular, the leading coefficient is given by

N
[T 1N
007():71' 521 2 H\/ai.
1=

Theorem 2. Let a* be the minimum value of the numbers aq,...,ay and
1 1 N
For N > 4, and x — oo,

E(a1,.,an;mi, ., mp; ) = Qu (2% (log 2)® % (log log )7 (log log log x)_(%""“*)@).

For N > 2 and ¢ — o0,

E(ay,.,an;my, ., mp; x) = Qzf (log 2)* % (log log )7~ (log log log a:)_(%"'a*)e).

For the case of N = 2, this can be refined to
E(x) = Q4 ((a(log )’ (log log log z) ~(374°)7)
if

0< < or < <

S| Ut

L
m

[N
N =

’
m
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For the case of N = 3, the remainder term E(x) satisfies
E(x) = Qx((z(log 2)" )" (log log log ) ~(3 7)),
if we induce only on one factor a congruence condition, and this satisfies
l 1
E 7& 57

whereas if we induce congruence conditions on two factors, the remainder term
E(z) satisfies

E(z) = Qu((2(log2)*")? (log log log z) (2 +¢)¢,

if
. l1 1 Iy . lo 1 l1
log (2sin (Wml))(2 m2) + log (2sin (7Tm2))(2 mp) 70
Proof of Theorem 1
A version of Perron’s formula yields
1 o

D;‘n(x)d:ef— / (z —uw)™ " 1D*(u) du =

5) I'(m) Jo
1 2+100 F(S) F(S) xs—i—m ds

:% 2_ico MS F(s—l—m—i—l)

where m is an integer greater than % Now we shift the line of integration left

to zero, observing that for § be a suitable small positive constant, then for each
e>0 L

Clo+it,\) < (1+t)zTe
in [t| > 1, 0 > —¢ (this is a consequence of the Phragmén-Lindeldf principle). For
the Gamma-functions involved, we recall Stirling’s formula in the weak form

, 1 ™
IT(o +it)| = [t]7~2 exp(—[t])

uniformly in [t| > 1, 01 < 0 < 09, (01, 09 arbitrary). From this it is an immediate
N /

consequence that the integrand in (5) is < [t| 7™ 1T 2 where ¢’ can be made

arbitrarily small by the choice of 4. The sum of the residues at s = 0, %, cey é

is obviously just the order term H(x), thus we obtain

1 —d0+i0c0 F(S) xm—i—s
E = __ F d
m(®) = 35 /_5_,~OO TG+m+1) Ms 7
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for the new integral is absolutely convergent, since m > %
By the functional equations of the Riemann and the Hurwitz zeta-function (see
e.g. [1], pp. 257-259)

1

((s) = W

I(1—s)¢(1—3) sin(gs),

1 oo
C(S,)\)—W (1-y9) Z S sin 27Th)\+§s) (Res < 0),

we conclude that, for Res < 0,

N q
2% .
F(s) = Psi [IT@ —ais) [J ¢ —bis) sin( 5 bis) <
=1 i=1
P 1 T
X H Tajs sin(2whA; + Eajs).
j=1h=1

Inserting the Dirichlet series for all of the factors {(1 — a;s) gives,

228 N 00
F(s) = > ) 1:[1r(1 —ais) Y b5 B, lpih)x

h=1 (I1,--+5lp)
(1;=0,1)

q P
X Hsin(gb s kl:Il cos( aks (sin(gaks))l—lk7

150 5lp(s)

with 5(l1,...,lp; h) defined in (2).
By well known properties of the Gamma function,

LG —%)
I(1—us)s 2-
(1 — us) 1n( s) =/ I‘(%)

1 us
i _ \/—2 —usL( 5;7)7 for [=0

(1 - us)(cos(§us))l(sin(§us))1—l _ o 2. .
VT2~ us_(l_,’_—us)7 for =1

2

we obtain

_ x
En(2) — o3 S(1+m) Mm§ AT E B, lps W lp;m(ﬁﬂzh)
h=1 (Igseees ll;)
(1;=0,1
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with

1 —d+io0 1—1(5)
*k _ s+m
T, W) = 2 /—5—2‘00 Gll,...,lp(S)F(s+m+ 1)y ds.

It is evident from the functional equation that all the singularities of Gy, .. 1 (s)
are on the positive real axis. Observing this, we can deform the line of integration
such that I;* ,lp;m(y) =1 Jp;m(y), provided that A > 0 and p < —m. In

order to get absolutely convergent integrals [;, Jp;m(y) for m > 0 we choose A

greater than % Therefore

d
©6) d_y(];kly"',lp;m(y)) = I;;,...,lp;m(y)-

(Notice that this is also valid for I, . ;. (y) for this differs from Ilﬁ,... " (y) only

by a finite sum of differentiable functions.)

To complete the proof of Theorem 1, it remains to establish the asymptotic ex-
pansion of

™ Gt O

In what follows we write Ry/(s) for expressions of the form
L+1

Ri(s) = Z c;w's_j
j=1

where ¢y, ; are any complex coefficients. We use Stirling’s formula in the form

1 1
logT'(s+¢)=(s+c— §)logs —s+ 3 log 27 + Ry (s) + O(|s|L72)

with ¢ € C arbitrary, which holds uniformly for |arg(s + ¢)| < By < 7. (The
coefficients c1 ; and the O-constant may depend on c.) Employing this we com-
pute an asymptotic expansion for the logarithm of (7) and compare it with the
asymptotic expansion of the logarithm of

F(_Q/S + b/) st

rl-2+)TE+%s-¢)

(8)

This yields that the logarithm of (7)

N 1 % N 1
Fy(s) = CFef5D (=2 + 5 T me §)cos7r(7s +1+m— 5 E(ll +...+1p))
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has the same asymptotic expansion as the logarithm of (8), where

z
K= log ———l—Zall—log ))

N A
C:n:exp( 10g(27r)+10g7r+(1+m—— log Zﬁ )

Thus, on any set avoiding the poles of the terms involved,

I'(s) _ —L-2yy _
Gy, ,zp(s)F(HmH) = Fp(s)(1 + Ra(s) + O([s] ) =
L+1 J N 1
=Fo(s)(1+ > & [[(-=s+ 5 —m=—5 =i +O0(1+ Is|~L=2)) =
j=1 i=1
L+1
)+ > ciFj(s) + A(s)
j=1
with
N 1 s N
F;(s) = Cr e (—3s +?—m—§—])cos7r(7 +14+m-— 5 + = (ll +...+1p))

by the functional equation for the I'-function, and
As) < [t ~E2 Fy(s)] < [t ~Emm 3 E e

uniformly in [¢| > 1, 01 < o < 09 (01,09 arbitrary). We can therefore bound the
contribution of A(s) to the integral Iy, . 1 .m(Y),

L+m+3 | N
/ A(s)y*TM ds < yH T 4 Ay e
C(A,p)
L 3
by the choice of A = — +T£+2 + % (notice that p is only restricted by pu < —m

and may therefore be assumed to be less than A). Consequently,

L+l N L+m+3
Ly g @) = Jiy o) + D () + O™ s s )

where, for j =0,1,... ,L+1,

1
T @) = 5z [ F6 s
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To evaluate the remaining integrals, we use the following identity (valid for

M > 3,1 <0, 2 € RT),
1

2mi Je (A1,p1)

(see e.g. [12]). Recalling the definition of F}(s), we substitute

I'(—s1) cos (gsl +7)z%1 dsy = cos (z — )

N 1 ™ 3 1
81=E*S—E+m+§+j, 7=5*(§+m—N—j+(ll+...—Hp)), 2= (e xy)s

in this last identity. After a few simple calculations the assertion of Theorem 1
follows, at least for m > %Np. But since Y 32 B(l1,... ,lp; h)h ™% < oo for each
e > 0, it is evident from (4) that the series in (1) converges absolutely for every
m > %(N p — 1). Appealing to (6), we complete the proof for this slightly larger
range of m.

Proof of Theorem 2

We employ a classic method of Szeg6 and Walfisz [14] involving the Borel mean-
value with more recent technique due to Hafner [5]. For a large real parameter ¢,
we put

9) X = X(t) = K1 (logt)~% (loglog log t)%""“*
and
(10) k= k(t) = Ka(C +tX )2,
with positive constants K1, Ko and real  to be specified later. We consider
1 o0 by
B(t)= —— P E(u? X) du.
0 F(k:+1)/0 ¢t E(uz X) du

. = 2 2 2041 4
We substitute v = u2 and put h(v) = s exp(—v=)v~ = .

We choose m = [%N] + 1 and observe that h(v) and its first m derivatives
vanish at v = 0 and at v = oo if ¢ and thus k£ is sufficiently large. Therefore, an
iterated integration by parts gives

B(t) = — 1 / ) B(Xv) do = S0 / R (0) B (X ) .
L'(k+1) Jo Lk+1) Jo
We insert the series representation (1), interchange the order of summation
and integration and apply iterated integration by parts one more time, keeping

(6) in mind. This leads to

B(t):ﬂ' _EZ Z ﬂ(ll, ,lp;h)ﬁx
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Now we insert the asymptotic expansion (4) for the integrals I ,...,lp;O(y) =
;... 1,0(y) and remark that B(l1,...,lp;h) < h® for each ¢ > 0. We choose
L so that the exponent of n in the error term of (4) be less than —1. This is
achieved for

L:[%(N—3)+E]+1.

The contribution of the O-term to the asymptotic expansion of B(t) is then
bounded by

15 o
< 71“(/!: 1)/ e Uy T2 (D) gy «
0
< BT o3 kD,
in view of Stirling’s formula.

To deal with the main terms of (4), we make use of a result from classic analysis
going back to Szego [14], and Szegé and Walfisz [15].

Lemma 1. Let o, c, ¢, be real constants. Then for k — oo,

1 o
J(k, T) = m /O e_uuk+a exp (ZT\/E) du =
[ Kexp (—2T) exp (TVE) + O(k*~2¢) if ek <T < ck*
<71 ¢ for every real constant C, if T > ¢/k®

ProOF: This is an immediate consequence of a result of Szego [14, pp. 100-102],
and Szeg6-Walfisz [15]. Applying this Lemma to the integrals which arise if we
insert the significant terms of (4), we conclude that the main term, with j =0 is
of the form

(hX)? /°° —u k429 1 ™ m

% u — — R — =

c Tkt D) Jo e “utT2 cos(cl(hX)E\/ﬂ+4(N 3) 2(ll+..+lp))du
. 0,81 oo (hx)® L+ TN - n
=c*(hX)'k™ 7 e cos (c1(hX)=Vk + 4(N 3)+ 2(ll+..—|—lp))—|-
+{ O((hX)Pk"TF5),  for ck=¢ < e1(hX)S < dk°

1
< (hX)~C, for every real constant C, if c¢1(hX)S > k®
1
where ¢* = coo(M~17%)? and ¢; = (ef 7M1=,
The contribution of the other terms is

N—-2

2
< (hX)P-3k2 02 e=e2(h )T o (1x)0p T,
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1
for c;k™¢ < c1(hX)s <k®and j=1,...,L.
We estimate the contribution of the error term to the asymptotic expansion of
1
B(t). The terms corresponding to h which satisfy c1 (hX)s < 'k, contribute

N—2

< XYY Bl X R T <
h<c3X—1ke® (I1,...,lp)
(1;=0,1)

N-—2 N-—2 ’ 3
< X0k (XTI« pa < ka T,

2

1
whereas the terms corresponding to h which satisfy c¢1(hX)= > k€, contribute
only

< > > Bl ) (RX) T < XX TR T = 0(1)
h263X71k62 (éll’fo’llg)

as t — oo by the choice of C' =146+ 2.
Altogether, we deduce that

B()=Cc X% Y S Bl Ty h)x

h<czX—1keE (I1,...,lp)
(1;=0,1)

Mo

Xhee—cz(hX) %_%)

cos(cl(hX)%\/E—i— Z(N -3)— g(ll +..+1p)+ Ok

where
N
o — W%+E(6—1)+1M—6\/E21—% H Jai.
2 i=1

In order to extend the range of summation in this series to 1 < h < o0, it suffices
to observe that

x0T Y S B,y MR exp (—ea (hX)B) <

h>03X*1k52 (11, 5lp)
(1;=0,1)

N-1 2
<kTT Y exp(—ea(hX)¥) <
h>c3 X ~1ke=
N-ot 2¢e o
<k 1 |exp(—csk*®) + exp (—cq(uX)
03X*1k52
< exp (—cgh®) < k1

Mo

) du> <
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Consequently,

B(t) = C* X% 1 Z S Bl )R exp (—ea(hX)F)x
(11) h=1 (l1,-.-,lp)

(1;=0,1)

x(cos(cl(hX)%\/E—i— Z(N -3)— g(ll +.. 4+ 1p))) + Ok

T8,

We recall the definition of 5(l1,... ,lp; h), keep h = ji*. jgngl ) igq fixed for
the moment and compute (with Z = ¢1(hX)T \/_ k+ % (N — 3) for short)

D Bl by )COS(Z—£(11+...+ZI,)):

(15 slp)

(1;=0,1)
_ 3 1 «
(G1seee dprilsee viq) J1---Jphl
R
p
3 TTsin 2mjihe))* (cos (2mh)) M cos (Z — 201+ 1) =
(I1,---5lp) k=1

(1i=0,1)

1
D I el 23 i)
) Ji---Jpi1-
(315 53psi15ee 53q) Jj=1
]‘111 JZP 1111 . ‘lq:h
by the general addition theorems for the cosine and sine functions.
We conclude that

B(t) = C*k*7 {XGZheexp (—ea(hX)%)x
h=1

X (ay, cos (c1(hX)%\/E+ Z(N -3)) +bhsin(c1(hX)%\/E+ %(N _ 3+
+O(k™3))
where
aj, = Z cos'(27r Zgzljk,)\k) |
J1s-sdpyits- J1---Jptl---1q
a1 Jpp b1 q h

Z sin (27 Zk 1Jk)\k)

Ji---Jpl1 -
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The next step is to approximate a finite partial sum of the infinite series in
(11) by an expression of the form

f(Xv C) = Z (ahgl(Xa th) + thQ(thvC))v

h<DBy

where, for short,

2 1
910X, 1,€) = exp (—ea(Xu) £ )u cos (C(Xu) ¥ + (N ~3),
2 1
92(X,u, ¢) = exp (—ca(Xu) T )u? sin (C(Xu) ¥ + Z(N 3)).
Let a* be the minimum value of a1,... ,ap, b1,... , by, then it is clear that if

either of ay, by, is # 0, then h must be a*-full. It is known that the number of a*-
1

full numbers h < By is < cgB{"" (see e.g. Kriitzel [8]). We now apply Dirichlet’s
approximation principle (see e.g. [8]): Let Bj be a large positive integer and
q = [(log B1)™V]. Then there exists a value of ¢ in the interval

1

(12) B <t< qucsBl“*

such that || 5 .. hEt H< for the a*-full h < By, where || . || denotes the distance
from the nearest mteger It is an easy consequence of (12) that

By > (logt)*" (log q) ™.

Let us define
By = cg(logt)® (logq) ™

with cg so small that By < Bj for ¢ > 2 and sufficiently large t.
Choosing in (10) Ky = 01_2, we thus may conclude that

|cos(cl(hX)%\/E+ Z(N—3)) —cos(C(hX)% +-(N=-3)) <

PN

1 1
<l g-hetll<
m q

for all h € N with h < By and (11, ... ,lp;h) # 0.
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We consider the contribution from those h with h < By. This is bounded by

X ST W exp (—ea(hX) ) x ((ap cos (1 (hX) 5V + g(zv —3))+
h<By

by, sin (e (hX)EVE + g(N ~3)) - (X, Q)| <

1_, 0 2 :
< =X 3" nlexp(—ca(hX)E) Y Moy o
hSBo hi,... h N
h{t RN =k

1 g [P0 2
< EX/ exp (—ca(hX)=T)dS(u) <

1
< EXGBg(log By)N-1

where

S(u) = Z h? Z % = u?(logu)N 1.

...h
h<u Ry, hpy N
ap AN _
N

Those h with h > By contribute,
2 1
< x? Z hgexp(—CQ(hX)i) Z - - <«

1> Do ahlv“‘éhN hi...hy
hll...hNN:h

2 00 2
< X {Bg(logBo)N_le(_c2(BoX)E) + / elme2(uX)= )(uX)%_lXS(u) du} :
Bo

2
We split up the last integral in | B‘i) o4 f gé. The first integral contributes,

2

< (logBo)N_l/ ’ exp (—cz(uX)%)(uX)%ue_l du <
By

2
< B (log Bo)N " exp (—ca(BoX) %)
In a similar way one verifies that the contribution of the second integral is o(1)
(as t — 00). In exactly the same way the infinite “tail” of the series in (11) can
be estimated.
Combining this, we arrive at

N-1

B(t)=C"k 4

(X0 1% exp (—ea(hX) %) x
h=1

% (ay, cos (C(hX)T + Z(N — 3)) + by, sin (C(hX) T + (N — 3)))+

) +o(1)}-

m

4
1

+O(aXeBg(log Bo)N 1) + 0(X9 B (log Bo)N ! exp (—ca(BoX)

Me
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We conclude that

B(t) = C*k T {X? Z h? exp (—ca(hX) %) x
h=1
x (ay, cos (C(hX)S + Z(N —3)) + by, sin (C(hX) T + %(N —3))) +o(1)}.

Our next step is an asymptotic formula for this last series, as X — 0T, ¢ some
real constant, in the spirit of Berndt [2]. To this end, we need an asymptotic
formula for Sy(u) = 3 ,<, hPan, Sa(u) = 3 ,<, h?bp,. This can be done in one
step.

For Res > 1, consider the generating function of ap, + iby,

Z(s)d:efzah“bh Hgbs+1—b9 HZGXPM"A’“ Res > 0.

nokst+l—ag6 ’
h=1 k=1n=1

By standard techniques it follows that

S

S1(u) +1iSa(u) = Resszg(Z(S)u?) + o(u”) = Byu? (log u)?~ + O(u? (log u)72)

where p < 1 and

p
exp 2mn)\k T
B, = H E H —log(2sin () —|—z(§ — 7).
k=1n=1 k=1

Let By = |By|e?™ with 0 < 8 < 1, then

g S0 = Byl os(2n) + 1By s (2m))ulog )+
+0(u? (logu)772).
Lemma 2. For X — 07,

o

F(X,O% ST 1 exp (—ea(hX) %) x
h=1

% ((an os (C(hX) + (N = 3))) + (b sin (C(AX)S +
= c6|Bg| X ~’|log X |71 (G(C) + (1)),

(N =3)))) =

u>|=1

where

G(¢) = /Oooe"’2v‘¥ cos (CQ%CU - %(N —3) —2708) dv
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PRrOOF: With our previous notation, put S(u) = S1(u)+iS2(u) and write Hy (u)+
iHo(u) for the main term on the right hand side of the assertion of Lemma 2.
Using Stieltjes integral notation

I3

F(X,¢) = /000 exp(—CQ(uX)%)cos (g(uX)% + —(N -=3))dS1(u)+

I

+ /000 exp (—cz(uX)%)sin (C(uX)% + —(N —3)) dSa(u).

Integration by parts and inserting the asymptotic expansion given in (1), we
estimate the contribution of the error to be less than

< exp (—CQ(UX)%)ue(l +logu)dt15o, +

o
+/ exp(—cz(uX)%)((uX)%_lX + (uX)%_lX)ue(l +logu)i~! <«
0
o
< X7 logX|q_2/ (v% + v%)v9_1| log 0|92 dv < X %) log X |92,
0

We obtain the order term by a quite similar reasoning and a change of variable

v = \/E(nX)%

Using this Lemma, we arrive at our desired asymptotic expansion,
N-1 N-1
B(t) = ciok 1 |log X|97H(G(C) + o(1)) + o(k 7))

with a positive constant cig. O

We now make use of a deep result due to Steinig [13] which provides necessary
and sufficient conditions for functions like our G(¢{) to have a change of sign.

Lemma 3. For (,B,v€R, v> —1, let

G%B(C)d:ef /000 e 47 cos (au + B7) du.
Then G, g(C) as a function of  has a sign change if and only if
(14) v > —2|B—[B+%]|.

Otherwise, G, g(¢) # 0 for all real values of (.

For N > 4, (14) is satisfied for any choice of the A;. Thus there exist real
numbers (7 and (2 and a positive constant ¢11 such that G(¢1) < —e11, G(¢2) >
c11- We take once ¢ = (7, then ¢ = (2 in the definition (9), i.e. we put

by = ki(t) = Ko(G 41X (052 (i =1,2),
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define B;(t) like B(t) before, with k replaced by k;, and infer from the above
argument that there exists an unbounded sequence of reals ¢ with

2

Bi(t) < —ci2ky * (loglogt)?™*

=z

By(t) < —ciky * (loglogt)?™".
To complete the proof, let us suppose that, for some small positive constant K3,
+E(z) < K3(z(logz)® )? (loglog )7~ ! (log log log :v)_(% +a”)o

for all sufficiently large x. By the definition of B;(t), this would imply that, for
every large real ¢,

Nin K3 % oy ki) N "
OB < i | (X(t)u3)'L(X (1)

where L(w) = (logw)® ?(loglogw)?~1(logloglog w)_(%"'a*)e for w > 10 and
L(w) = L(10) else. Estimating this integral by Hafner’s Lemma 2.3.6 in [5, p. 51],
we obtain . N1

(=1)'B;(t) < e13(ki(t)) "+ (loglogt)?~ 1.

Together this yields a positive lower bound for K3 (for both i = 1,2) and thus
completes the proof of Theorem 2. ([

It remains to deal with the case that N = 2, 3.

Case N = 2. We have to check under which conditions (14) is satisfied. Compar-
ing our asymptotic expansion with the Lemma of Steinig we have

1 1
7=§(N—3), BZZ(N—3)—26.

Here v = %, B= —% — 2. Hence (14) becomes
1 1 1
- <|=-+2 - —2
L <l a8+ [ 20,
which is easily seen to be satisfied if and only if
1 1 3
0 — = —.
<p< 1 3 <pB< 1
Now 3 depends on \ = %by the equation

By = C1(—log (2sin (7)) + i(g —7m\) (BERO0<B<I).
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This implies for the values A,

1 1 5
0<)\<5 or §<)\<5’

which completes the proof of Theorem 2.

Case N = 3. Here we have v = 0 and B = —20, hence (14) is true if and only if
B ¢ Z or equivalently 5 ¢ {0, %, 1}. Now there are two possibilities. In the case
where p = 1, ¢ = 2 the above arguments holds, and we simply get A # % In the
second case, where p = 2, ¢ = 1, we have that 3 ¢ {0, %, 1} is equivalent that

By =Cy [ (~log(2sin(m)y)) + i(g — 7).

j=1,2
We simplify this equation by writing u, v for 751—11, 7%, which yields
1 1
(15) log (2 sin(7u)) (v — 5) + log (2 sin(mv)) (u — 5) =0.
Writing
w=1-—w,
this equation simplifies to
(*) D(u) = (w),
ith
wi B(t) = log(2 sinl(ﬂt)) .
t—1
2

Now ®(t) decreases monotonically from +oo to —oo on each of the subintervals
10, %[ and ]%, 1[. Tt follows that (x) possesses two solutions for w: the trivial one
w = u and a second function w = ¢(u) which is smooth on |0, %[ and on ]%, 1].
Consequently, (15) is satisfied for v + v = 1 and for v = 1 — ¢(u). Both curves
are shown in the picture below. Note that the second one contains the rational
points (%, %) and (%, %)

=
[V

[
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