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Sequential closures of σ-subalgebras for a vector measure

W.J. Ricker

Abstract. Let X be a locally convex space, m : Σ → X be a vector measure defined
on a σ-algebra Σ, and L1(m) be the associated (locally convex) space of m-integrable
functions. Let Σ(m) denote {χ

E
;E ∈ Σ}, equipped with the relative topology from

L1(m). For a subalgebra A ⊆ Σ, let Aσ denote the generated σ-algebra and As denote

the sequential closure of χ(A) = {χ
E
;E ∈ A} in L1(m). Sets of the form As arise in

criteria determining separability of L1(m); see [6]. We consider some natural questions

concerning As and, in particular, its relation to χ(Aσ). It is shown that As ⊆ Σ(m) and

moreover, that {E ∈ Σ;χ
E

∈ As} is always a σ-algebra and contains Aσ . Some proper-

ties of X are determined which ensure that χ(Aσ) = As, for any X-valued measure m

and subalgebra A ⊆ Σ; the class of such spaces X turns out to be quite extensive.
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Let X be a locally convex Hausdorff space (briefly, lcHs), Σ be a σ-algebra
of subsets of some set Ω and m : Σ → X be a vector measure (i.e. m is σ-
additive). Associated with m is a lcHs L1(m) of m-integrable functions. Just as
for scalar measures, an important property is the separability of L1(m); see [6].
In particular, if Σ(m) denotes the subset {χ

E
;E ∈ Σ} of L1(m), then one criteria

which ensures the separability of L1(m) is the existence of a countably generated
σ-algebra Σ0 ⊆ Σ such that Σ(m) = Σ0(m), [6, Proposition 2]. So, the idea is to
look for algebras of sets A ⊆ Σ, hopefully countable, such that the generated σ-
algebraAσ satisfiesAσ(m) = Σ(m). A closely related set is the sequential closure,
As, of the set χ(A) = {χ

E
;E ∈ A}, formed in the topological space L1(m). It is

always the case that χ(Aσ) ⊆ As and, if the range, m(Σ) = {m(E);E ∈ Σ}, of
m is metrizable for the relative topology from X , then actually As ⊆ Σ(m) and
χ(Aσ) = As, [6, Proposition 3].

The purpose of this note is to consider the following questions.

(A) Is it always the case that As is a sequentially closed subset of Σ(m), rather
than just of L1(m)?

(B) Is {E;χ
E
∈ As} actually a σ-algebra and is it contained in Σ?

(C) Is it always the case that χ(Aσ) = As?

The first question was raised in [6, Remark 5 (i)]. It will be shown that Ques-
tions A & B have an affirmative answer. The final section is concerned with
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Question C. By the remarks above χ(Aσ) = As whenever X is a Fréchet lcHs or
has the property that bounded sets are metrizable (e.g. the strict inductive limit
of a sequence of Fréchet spaces). It will be shown that Question C has a positive
answer in a much larger class of lcH-spaces.

1. Preliminaries

Let X be a lcHs andm : Σ→ X be a vector measure. A Σ-measurable function
f : Ω → C is called m-integrable if it is integrable with respect to the complex
measure 〈m, x′〉 : E 7→ 〈m(E), x′〉, for E ∈ Σ, for every x′ ∈ X ′ (the continuous
dual space of X) and if, for every E ∈ Σ, there exists an element of X , denoted
by

∫
E fdm, which satisfies 〈

∫
E fdm, x′〉 =

∫
E fd〈m, x′〉, for every x′ ∈ X ′. The

linear space of all m-integrable functions is denoted by L(m). Let P(X) denote
the family of all continuous seminorms in X or, at least enough seminorms to
determine the given lc-topology τ in X . Each q ∈ P(X) induces a seminorm
q(m) in L(m) via the formula

(1) q(m) : f 7→ sup{

∫

Ω
|f |d|〈m, x′〉|;x′ ∈ U0q }, f ∈ L(m),

where |ν| denotes the total variation measure of a complex measure ν : Σ → C

and U0q ⊆ X ′ denotes the polar of the closed q-unit ball Uq = q−1([0, 1]). The

seminorms (1), as q varies through P(X), define a lc-topology τ(m) in L(m). Since
τ(m) may not be Hausdorff we form the usual quotient space of L(m) with respect
to the closed subspace ∩q∈P(X)q(m)

−1({0}). The resulting Hausdorff space (with

topology again denoted by τ(m)) is denoted by L1(m); it can be identified with
equivalence classes of functions from L(m) modulo m-null functions, where a
function f ∈ L(m) is m-null whenever

∫
E fdm = 0, for every E ∈ Σ. All of the

above definitions and further properties of L1(m) can be found in [4].
Let Σ(m) denote the subset of L1(m) corresponding to {χ

E
;E ∈ Σ} ⊆ L(m).

Elements of Σ(m) will be identified with equivalence classes of elements from Σ.
The topology τ(m) of L1(m) induces a topology on Σ(m) by restriction (again
denoted by τ(m)).
Let Λ be a topological Hausdorff space and Y ⊆ Λ. Then [Y ] denotes the set

of all elements in Λ which are the limit of some sequence of points from Y . A
set Y ⊆ Λ is called sequentially closed if Y = [Y ]. The sequential closure Y s, of
a set Y ⊆ Λ, is the smallest sequentially closed subset of Λ which contains Y .
Alternatively, let Y0 = Y . Let Ω1 be the smallest uncountable ordinal. Suppose
that 0 < α < Ω1 and that Yβ has been defined for all ordinals β satisfying

0 ≤ β < α. Define Yα = [∪0≤β<αYβ ]. Then Y s = ∪0≤α<Ω1Yα.

2. Questions A and B

Throughout this section X is a lcHs. Given a vector measure m : Σ→ X and
a R-valued function f ∈ L(m) we define A(f) = {w ∈ Ω; |1− f(w)| ≤ 1

2}.
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Lemma 1. Let f ∈ L1(m) be R-valued. Then, for every E ∈ Σ,

|χ
E
− χ

A(f)
| ≤ 2|χ

E
− f |.

Proof: follows from the identity |χ
E
− χ

F
| = χ

E△F
, valid for every E, F ∈ Σ,

where E△F = (E\F ) ∪ (F\E). �

Proposition 1. Let m : Σ → X be a vector measure. Then Σ(m) is a τ(m)-
closed subset of L1(m).

Proof: Given any f ∈ L1(m) and E ∈ Σ, Lemma 1 implies that

|χ
E
− χ

A(Re(f))
| ≤ 2|χ

E
− Re(f)| = 2|Re(χ

E
− f)| ≤ 2|χ

E
− f |.

These inequalities and (1) show that

q(m)(χ
E
− χ

A(Re(f))
) ≤ 2q(m)(χ

E
− f), q ∈ P(X).

It follows that if {χ
E(α)

} is a net in Σ(m) which is τ(m)-convergent to f ∈ L1(m),

then f = χ
A(Re(f))

and so f ∈ Σ(m). �

Remark 1. (i) An affirmative answer to Question A is now immediate from
Proposition 1 and the fact that χ(A) ⊆ Σ(m) with As being the sequential closure
of χ(A) in L1(m).

(ii) For the particular case of A = Σ, Proposition 1 implies that As = Σ(m) is
not just sequentially closed in L1(m) but, is actually closed. This is not typically

the case for a proper σ-subalgebra A ⊆ Σ. For instance, let X = C [0,1] denote
the vector space of all C-valued functions on Ω = [0, 1] equipped with pointwise
operations. Then X is a (complete) lcHs for the topology τ of pointwise conver-
gence on Ω. Let Σ denote the σ-algebra of all subsets of Ω and define a vector
measure m : Σ→ X by m(E) = χ

E
, for E ∈ Σ. It turns out that every function

f : Ω → C belongs to L1(m) and
∫
E fdm = χ

E
f , for E ∈ Σ. The topology

τ(m) is the topology in L1(m) of pointwise convergence on Ω. Let A ⊂ Σ be the
σ-algebra of all Borel sets. Then As = χ(A) which is clearly sequentially closed
in L1(m) but, is surely not closed. �

The answer to Question B is provided by the following

Proposition 2. Let m : Σ → X be a vector measure and A ⊆ Σ be an algebra
of sets. Then {E;χ

E
∈ As} is a σ-subalgebra of Σ and contains Aσ.

Proof: Define A0 = χ(A) ⊆ Σ(m) and A1 = [A0]. Let χ
E

∈ A1, say χ
E
=

limχ
E(n)

where E(n) ∈ A for n = 1, 2, · · · . Since χ
E
− χ

E(n)
= χ

E(n)c
− χ

Ec , for

all n = 1, 2, . . . , it follows from (1) that

q(m)(χ
Ec − χ

E(n)c
) = q(m)(χ

E
− χ

E(n)
), q ∈ P(X).
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Accordingly, χ
E(n)c

→ χ
Ec in Σ(m). Hence, χEc ∈ A1 whenever χ

E
∈ A1.

Suppose also that χ
F

∈ A1 and F (n) ∈ A, for n = 1, 2, · · · , are sets such
that χ

F (n)
→ χ

F
in Σ(m). Since A is an algebra F (n) ∩ E(n) ∈ A, for each

n = 1, 2, . . . . Moreover,

|χ
E∩F

− χ
E(n)∩F (n)

| ≤ |χ
E
− χ

E(n)
|χ

F
+ |χ

F
− χ

F (n)
|χ

E(n)

and hence, for each q ∈ P(X),

q(m)(χ
E∩F

− χ
E(n)∩F (n)

) ≤ q(m)((χ
E
− χ

E(n)
)χ

F
) + q(m)((χ

F
− χ

F (n)
)χ

E(n)
).

But, it is clear from (1) that q(m)(χ
R
f) ≤ q(m)(f), for every R ∈ Σ and f ∈

L1(m), from which it follows that

q(m)(χ
E∩F

− χ
E(n)∩F (n)

) ≤ q(m)(χ
E
− χ

E(n)
) + q(m)(χ

F
− χ

F (n)
).

Accordingly, also χ
E∩F

∈ A1 whenever χ
E

, χ
F
∈ A1. Hence, {E;χE

∈ A1} is an
algebra of subsets of Σ.
By a transfinite induction argument it now follows that

{E;χ
E
∈ As} = ∪0≤α<Ω1{E;χE

∈ Aα} is an increasing union of algebras of sets
from Σ and hence, is itself an algebra of sets from Σ.
Suppose that {E(n)}∞n=1 is a monotone sequence from {E;χ

E
∈ As} with

limit E ∈ Σ, say. Then {χ
E(n)

}∞n=1 is a sequence in Σ(m) with pointwise limit

χ
E
. Let j : X → X̂ be an isomorphism of X onto a dense subspace j(X) of

its completion X̂. Then the set function m̂ : Σ → X̂ given by m̂ = j ◦ m

is a vector measure and L1(m) is a linear subspace of L1(m̂). Moreover, each

q ∈ P(X) has a unique extension to a continuous seminorm q̂ ∈ P(X̂) which
satisfies q̂(m̂)(χ

F
) = q(m)(χ

F
), for every F ∈ Σ. Accordingly,

q(m)(χ
E
− χ

E(n)
) = q(m)(χ

E△E(n)
) = q̂(m̂)(χ

E△E(n)
) = q̂(m̂)(χ

E
− χ

E(n)
),

for each n = 1, 2, . . . . By the Dominated Convergence Theorem for vector mea-

sures in sequentially complete spaces, [4, II Theorem 4.2], applied to m̂ in X̂, it fol-
lows that q̂(m̂)(χ

E
−χ

E(n)
)→ 0, as n → ∞, and hence, also q(m)(χ

E
−χ

E(n)
)→ 0.

This shows that χ
E(n)

→ χ
E
in L1(m). The sequential closedness of As implies

that χ
E
∈ As. This shows that {E;χE

∈ As}, in addition to being an algebra of
sets, is also a monotone class and hence, is actually a σ-algebra.
The inclusion χ(Aσ) ⊆ As is established in [6, Lemma 2 (iii)] for the case when

X is sequentially complete. By passing to the completion X̂ and arguing as above,
the proof given in [6, Lemma 2 (iii)] can easily be modified to apply in any lcHs X .

�

We give a simple application of Proposition 2. Let Y be a Banach space and
X = L(Y ) be the space of all bounded linear operators from Y into itself, equipped
with the strong operator topology. The notion of a Boolean algebra (briefly, B.a.)
of projections which is σ-complete (in the sense of W. Bade) is by now standard,
[2, Chapter XVII, §3]. This is a generalization to Banach spaces of the classical
notion of the resolution of the identity of a normal operator in Hilbert space.
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Corollary 2.1. Let Y be a Banach space,M ⊆ L(Y ) be a Bade σ-complete B.a.

and B ⊆ M be a Boolean subalgebra. Then the sequential closure Bs, of B, in
the lcHs L(Y ) is a sequentially complete, Bade σ-complete B.a. containing B and
is minimal with respect to these properties.

Proof: An argument along the lines of the proof of Proposition 2 shows that
Bs = ∪0≤α<Ω1Bα is the increasing union of a family of B.a.’s and hence, is itself a
B.a. It then follows from a standard result about monotone limits of sequences in
a Bade σ-complete B.a., [2, XVII Lemma 3.4], that Bs is Bade σ-complete. Since
closed, bounded subsets of the quasicomplete lcHs L(Y ) are complete and Bs is
sequentially closed, it follows that Bs is sequentially complete. The minimality
condition is routine to verify. �

A Bade σ-complete B.a. is a complete subset of L(Y ) iff it is Bade complete as
a B.a., [2, XVII Corollary 3.7 & Lemma 3.23]. Hence, Corollary 2.1 is of some in-
terest since, in applications, sequential completeness often suffices. Moreover, the
sequential closure is sometimes easier to determine than the full closure in L(Y ).

3. Question C

Let m : Σ → X be a vector measure and A ⊆ Σ be an algebra of sets. Recall
that Aσ is the σ-algebra generated by A. It has been shown that always χ(Aσ) ⊆
As and, under certain conditions on X (e.g. bounded sets are metrizable), it is
known this inclusion is an equality. The question is whether it is always true
that χ(Aσ) = As. Of course, this is equivalent to the question of whether χ(Aσ)
is sequentially closed in Σ(m)? The construction of Aσ from A is a transfinite

procedure of a set theoretic nature whereas the construction of As = χ(A)s is a
transfinite procedure of a topological nature; it is unclear whether these different
processes lead to the “same” set.
It is now necessary to have a more precise notation. If we wish to indicate the

dependence of the sequential closure of a subset Y of a topological space Λ on
the particular topology τ under consideration, then we will denote the sequential

closure by Ys(τ). Let X be a lcHs and m : Σ → X be a vector measure. Let
ρ be any lcH-topology in X consistent with the duality 〈X, X ′〉; for brevity we
will simply call ρ a consistent lcH-topology. If Xρ denotes X equipped with the
topology ρ and mρ : Σ → Xρ denotes the set function m considered as taking
its values in Xρ, then the Orlicz-Pettis theorem, [4, I Theorem 1.3], guarantees

that mρ is also a vector measure. Clearly L1(m) and L1(mρ) coincide as vector
spaces and Σ(m) and Σ(mρ) coincide as sets. Proposition 2 applied to mρ in Xρ

shows that χ(Aσ) ⊆ As(ρ) for every consistent lcH-topology ρ. If ρ1 is weaker

than ρ2, then clearly As(ρ2) ⊆ As(ρ1). It follows that if χ(Aσ) = As(ρ) for some

consistent lcH-topology ρ, then actually χ(Aσ) = As(ν) for every consistent lcH-
topology ν in X satisfying ρ ⊆ ν ⊆ µ, where µ is the Mackey topology in X . We
summarise these comments in the following
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Lemma 2. Let m : Σ → X be a vector measure and A ⊆ Σ be an algebra of
sets. If ρ is any consistent lcH-topology in X for which χ(Aσ) = As(ρ), then also

χ(Aσ) = As(ν) for every consistent lcH-topology ν in X satisfying ρ ⊆ ν ⊆ µ.

The weak topology σ(X, X ′) is also denoted simply by σ.

Proposition 3. Let X be a quasicomplete lcHs with the property that its weakly
compact sets are metrizable for σ(X, X ′). Let m : Σ → X be a vector measure

and A ⊆ Σ be an algebra of sets. Then χ(Aσ) = As(ρ) for every consistent
lcH-topology ρ in X . In particular, χ(Aσ) = As where As is formed with respect

to the given topology in X .

Proof: It is known that the range m(Σ), of m, is relatively σ(X, X ′)-compact,
[4, IV Theorem 6.1]. Consider mσ : Σ→ Xσ. An examination of the proof of [6,
Proposition 3 (i)] shows that it does not require the lcHsX there to be sequentially
complete (a standing hypothesis in [6]) and hence, by this result applied to mσ

in Xσ it follows that χ(Aσ) = As(σ). Then Lemma 2 implies the result. �

Remark 2. (i) Proposition 3 applies to a large class of spaces X , different from
the spaces X admitted in Proposition 3(i) of [6] where typically the bounded sets
of X are required to be metrizable for the given topology in X . For example, if X
is a quasicomplete Suslin lcHs, then it is also Suslin for the weak topology, [8], and
hence, compact subsets of Xσ are metrizable for the weak topology, [1, Chapter 9,
Appendix 1, Corollary 2 to Proposition 3]. The class of lcH Suslin spaces is quite
extensive, [7]; [8]. Or, ifX ′ is weak-star separable, then compact subsets ofXσ are
metrizable for σ(X, X ′), [3, Proposition 3.2]. Or, if X = Y ′ is a dual space, then
certain properties of Y may imply that particular balanced, convex, σ(X, Y )-
closed and bounded (or equicontinuous) subsets of X , including the balanced,
closed, convex hull of m(Σ), are σ(X, Y )-metrizable, [6, Proposition 4].

(ii) For a particular measure m : Σ→ X the conclusion of Proposition 3 holds
under the assumption that just m(Σ) itself is σ(X, X ′)-metrizable; no particular
properties of the space X are then required. �

Remark 2, Proposition 3 and [6, Proposition 3 (i)] show that there is an exten-
sive class of spaces X with the property that χ(Aσ) = As, whenever m : Σ→ X
is a vector measure and A ⊆ Σ is an algebra of sets. For all further examples of
vector measures m in spaces X which are known to the author (some such ex-
amples are given in [6] where X does not have any properties of the type above)
the equality χ(Aσ) = As also holds. This suggests the conjecture that perhaps
χ(Aσ) = As always holds in general. If so, then this would be an interesting result

because it would follow that χ(Aσ) = As(ρ), for every consistent lcH-topology ρ

in X . That is, the sequential closure of χ(A) in Σ(m) would be, as a subset of
Σ(m), independent of which topology ρ(mρ) is used in Σ(m)!
In conclusion, we recall that a vector measure m : Σ → X is called closed,

[4, Chapter IV], if (Σ(m), τ(m)) is a complete topological space. It is easy to
exhibit examples of vector measures m which are not closed, [4, p. 77]. However,
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all examples of vector measures m known to the author have the property that
Σ(m) is τ(m)-sequentially complete; call such a vector measure σ-closed. It would
be interesting to know whether all vector measures are necessarily σ-closed.
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