Notes on slender prime rings

Robert El Bashir, Tomáš Kepka

Abstract. If R is a prime ring such that R is not completely reducible and the additive group R(+) is not complete, then R is slender.

Keywords: ring, prime, slender Classification: 16N60

The purpose of this short note is to discuss a few sufficient conditions for a prime ring to be slender. As concerns the concept of slenderness (various results, references, historical remarks, etc.), a reader is fully referred to [4, Chapter III].

1. Introduction

In the sequel, R is a non-zero associative ring with unit and modules are unitary left R-modules. The ring R is said to be prime (resp. a domain) if $aRb \neq 0$ (resp. $ab \neq 0$) for all $a, b \in R$, $a \neq 0 \neq b$. Commutative domains are also called integral domains.

Let M be a module. By a filtration \mathcal{F} of M we mean any sequence M_i , $i < \omega$, of submodules of M such that $M_i \supseteq M_{i+1}$. The filtration \mathcal{F} is said to be separating if $\bigcap_{\mathcal{F}} M_i = 0$ and it is said to be discrete if $0 \in \mathcal{F}$. The filtration \mathcal{F} determines a linear closure operator on M and the module M is said to be \mathcal{F} -complete if every

Cauchy \mathcal{F} -sequence of elements from M is convergent.

A module M is said to be complete if it is \mathcal{F} -complete for a non-discrete separating filtration \mathcal{F} of M.

A left (right) ideal I of R is said to be l. s. \cup -compact (r. s. \cup -compact) if every countable subset S of I is contained in a finitely generated left (right) ideal $K \subseteq I$.

The ring R is said to be left (right) \cap -compact if the left (right) module $_RR$ (R_R) possesses no non-discrete separating filtration.

We denote by \mathcal{T}_R the set of ideals I of R such that the factor R/I is completely reducible. For a module M, let Soct(M) be the set of all $x \in M$ such that (0:x)contains an ideal from \mathcal{T}_R . Finally, let $V = R^{\omega}$, $U = R^{(\omega)}$ and W = V/U. If $i < \omega$, then $V[i] = \{a \in V; a(j) = 0 \text{ for every } j < i\}$.

For further basic terminology concerning rings and modules, we refer to [1].

This research has been partially supported by the Grant Agency of the Czech Republic, grant $\#\mathrm{GA\check{C}R}\text{-}2433$

2. Slender modules

A module M is said to be slender if, for every homomorphism $\varphi : V \to M$, $\varphi(e_i) = 0$ for almost all $i < \omega$. The following result is implicitly contained in [5] and is proved in [3] for torsionfree modules over integral domains:

2.1 Proposition. A module M is slender if and only if $Hom_R(W, M) = 0$ and M is not complete.

2.2 Proposition. Let M be a module such that there exists a filtration I_i , $i < \omega$, of R satisfying the following conditions:

- (1) I_i is a r. s. \cup -compact ideal for every $i < \omega$.
- (2) If $i < \omega$ and $0 \neq u \in M$, then $I_i u \neq 0$.
- (3) $\bigcap I_i M = 0.$

Then the module M is slender if and only if it is not complete.

PROOF: The result is an immediate consequence of the following observation:

2.3 Observation. Let I_i , $i < \omega$, be a filtration of R_R such that all the right ideals I_i are r. s. \cup -compact. Put $\mathcal{E} = \{I_i V[i]; i < \omega\}$. Then \mathcal{E} is a separating filtration of V(+) and V(+) is \mathcal{E} -complete.

 \Box

Now, let $\varphi : V \to M$ be a (module) homomorphism. Put $\mathcal{G} = \varphi(\mathcal{E}) = \{I_i \varphi(V[i])\}$. Then \mathcal{G} is a filtration of M(+), φ is continuous and M(+) is \mathcal{G} -complete.

Assume $\bigcap \mathcal{G} = 0$. Then $Ker(\varphi)$ is \mathcal{E} -closed in V. If $Ker(\varphi)$ is \mathcal{E} -open, then $I_m\varphi(V[m]) = 0$ for some $m < \omega$. If $Ker(\varphi)$ is not \mathcal{E} -open, then \mathcal{G} is not discrete. Now, \mathcal{G} is a non-discrete separating filtration of M(+) and M(+) is \mathcal{G} -complete. In particular, if the right ideals I_i are two-sided, then M is a complete module.

2.4 Corollary. Suppose that there exists a separating filtration I_i , $i < \omega$, of R such that I_i is an r. s. \cup -compact ideal and $(0 : I_i)_r = 0$ for every $i < \omega$. Then the ring R is left slender if and only if it is not left complete.

2.5 Corollary. Let M be a module such that there exists a countable non-empty set \mathcal{M} of submodules of M satisfying the following properties:

- (1) $\bigcap \mathcal{M} = 0.$
- (2) (0: M/N) is r. s. \cup -compact for every $N \in \mathcal{M}$.
- (3) $(0: M/N) \in \mathcal{T}_R$ for every $N \in \mathcal{M}$.

Then M is slender if and only if Soct(M) = 0 and M is not complete.

2.6 Corollary. Suppose that R possesses a countable non-empty set \mathcal{M} of maximal left ideals such that $\bigcap \mathcal{M} = 0$, $(0: R/I) \in \mathcal{T}_R$ and (0: R/I) is r. s. \cup -compact for every $I \in \mathcal{M}$. Then R is left slender if and only if $Soct_l(R) = 0$ and R is not left complete.

3. Prime rings and slenderness

3.1 Theorem. Let R be a prime ring.

- (i) If every right ideal is an ideal and R is not right \cap -compact, then R is a domain and R is left slender if and only if R is not left complete.
- (ii) If the additive group R(+) is not complete, then R is slender if and only if R is not isomorphic to a (full) matrix ring over a division ring.
- (iii) If $card(R) \ge 2^{\omega}$ and the additive group R(+) is not complete, then R is slender.

PROOF: (i) Clearly, R is a right uniform domain, and hence there is a separating filtration $r_i R$, $i < \omega$, of non-zero principal right ideals and it remains to apply 2.4.

(ii) Let p denote the characteristic of R. If p > 0, then $card(R) < 2^{\omega}$ (since R(+) is not complete) and we can use [2, Theorem 4.1]. If p = 0 and R(+) is reduced, then R(+) is slender (see [6]) and consequently R is also slender. Assume finally that p = 0 and the divisible part Q(+) of R(+) is non-zero.

Obviously, Q is an ideal of R and the factor group R(+)/Q(+) is slender ([6]), and hence the factor module $_RR/Q$ is slender, too. Now, it remains to show that the module $_RQ$ is slender. However, since Q(+) is not complete, we have $card(Q) < 2^{\omega}$ and then we can proceed similarly as in the proof of [2, Theorem 4.1].

(iii) This assertion follows easily from (ii).

3.2 Proposition. Let R be a domain satisfying maximal condition on principal left ideals and such that R is not a division ring and that every right ideal of R is an ideal. Then R is left slender if and only if R is not left complete.

PROOF: Clearly, R is not right \cap -compact and the result follows from 3.1 (i). \Box

3.3 Proposition. Let R be an integral domain, not a field, satisfying at least one of the following conditions:

- (1) R is noetherian.
- (2) R is a unique factorization domain.
- (3) The quotient field of R is a countably generated R-module (see [3, Theorem 20]).
- (4) R is not \cap -compact.

Then R is slender if and only if it is not complete.

PROOF: The first two cases follow from 3.2, the condition (3) implies (4) and, when (4) is true, the result follows from 3.1 (i).

References

- Anderson F.W., Fuller K.R., Rings and Categories of Modules, 2nd edition, Springer, New York, 1992.
- [2] El Bashir R., Kepka T., On when small semiprime rings are slender, to appear.

- [3] Dimitrić R., Slender modules over domains, Commun. in Algebra 11 (1983), 1685–1700.
- [4] Eklof P., Mekler A., Almost Free Modules, North-Holland, New York, 1990.
- [5] Heinlein G., Vollreflexive Ringe und schlanke Moduln, Dissertation, Erlangen, 1971.
- [6] Nunkee R., Slender groups, Acta Sci. Math. Szeged 23 (1962), 67–73.

DEPARTMENT OF ALGEBRA, FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVERSITY, SOKOLOVSKÁ 83, 186 00 PRAHA 8, CZECH REPUBLIC

 $\label{eq:email:bashir@karlin.mff.cuni.cz} kepka@karlin.mff.cuni.cz$

(Received May 4, 1995)