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Vector-valued sequence space BMC(X) and its properties

Qing-Ying Bu

Abstract. In this paper, a vector topology is introduced in the vector-valued sequence
space BMC (X) and convergence of sequences and sequentially compact sets in BMC (X)
are characterized.
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1. Introduction

When A. Pietsch [4] gave characterizations for nuclearity of locally convex
spaces in terms of vector-valued sequence spaces, he introduced a vector-valued
sequence space ℓ1(X) with values in a locally convex space X . And when Li
Ronglu and Bu Qing-Ying [2] gave characterizations for a locally convex space
which contains no copy of c0, they introduced a vector-valued sequence space
BMC (X) with values in a locally convex space X . In fact, ℓ1(X) = BMC (X),
the space consisting of bounded multiplier convergent series inX . From [4], [2] it is
obviously seen that the space BMC (X) plays an important role in characterizing
the structure of spaces in locally convex space theory. It will be seen in [1] that
the space BMC (X) also plays an important role in establishing Orlicz-Pettis type
theorem for compact operators on locally convex spaces.
In Section 2 of this paper, we introduce a vector topology in the space BMC (X)

with values in a topological vector space X and characterize convergence of se-
quences in BMC (X) and completeness of BMC (X). In Section 3 we consider
the space BMC (X) with values in a locally convex space X and characterize
sequentially compact subsets of BMC (X) in different ways.

2. Convergence of sequences in BMC (X)

In this section, Let X be a separated topological vector space and UX denote
a local base of closed balanced neighbourhoods of 0 in X (see [5]). For a Banach
space E, let B(E) denote its closed unit ball. Let

BMC (X) =
{
x = {xi} ∈ XN : series

∑

i

tixi

converges for each {ti} ∈ ℓ∞

}
.
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Then BMC (X) is a sequence space with values in X . For a subset A of X , let

Ã =
{
x ∈ BMC (X) :

∑

i≥1

tixi ∈ A for each {ti} ∈ B(ℓ∞)
}

and
ŨX =

{
Ũ : U ∈ UX

}
.

Proposition 2.1. There is a unique vector topology for BMC (X) for which ŨX

is a local base of neighbourhoods of 0. This vector topology will be denoted by τ .

Proof: By Corollary 3 of [2], for each {xi} ∈ BMC (X) the set {
∑

i≥1 tixi :

{ti} ∈ B(ℓ∞)} is compact set in X and hence, is bounded. So it follows that Ũ

absorbs each x in BMC (X) for each U ∈ UX . In addition, it is easy to see that Ũ
is balanced for each U ∈ UX . And for U, V ∈ UX such that U + U ⊂ V it is easy

to prove that Ũ + Ũ ⊂ Ṽ . Thus we have proved ŨX is an additive filterbase of
balanced absorbing subsets of BMC (X). Now, the proof follows from Theorem 5
of [5, p. 45]. �

For a net {xα} in BMC (X), it is easy to see that

(1) τ − lim
α

xα = 0⇐⇒ lim
α

∑

i≥1

tix
α
i = 0

uniformly for all {ti} ∈ B(ℓ∞). Let

Pk : BMC (X) −→ X, Pk(x) = xk;

Ik : X −→ BMC (X), Ik(x) = (0, . . . , 0,
(k)
x , 0, 0, . . . ).

Then Pk and Ik are continuous linear maps, k = 1, 2, . . . .

Lemma 2.2 ([3]). Let xij ∈ X for i, j ∈ N. Suppose

(I) limi xij = xj exists for each j ∈ N and

(II) for each increasing sequence {mj} of N there is a subsequence {nj} of
{mj} such that {

∑
j≥1 xinj

}∞i=1 is Cauchy.

Then limi xii = 0.

Theorem 2.3. For x (n), x ∈ BMC (X), n = 1, 2, . . . , the following statements
are equivalent:

(i) τ - limn x (n) = x.

(ii) limn
∑

i≥1 tix
(n)
i =

∑
i≥1 tixi for each {ti} ∈ ℓ∞.

(iii) limn x
(n)
i = xi for i ∈ N. And for each {ti} ∈ ℓ∞, limk

∑
i>k tix

(n)
i = 0

uniformly for all n ∈ N.

(iv) limn x
(n)
i = xi for i ∈ N. And limk

∑
i>k tix

(n)
i = 0 uniformly for all

n ∈ N and all {ti} ∈ B(ℓ∞).
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Proof: (i) ⇒ (iv). By (i), limn x
(n)
i = xi obviously for i ∈ N. Let U, V ∈ UX

such that V + V ⊂ U . By (i), there is n0 ∈ N such that for n ≥ n0,

∑

i≥1

ti(x
(n)
i − xi) ∈ V, {ti} ∈ B(ℓ∞).

By Example 1 of [2], there is k0 ∈ N such that for k ≥ k0 and n = 1, 2, . . . , n0,

(2)
∑

i>k

tix
(n)
i ∈ U,

∑

i>k

tixi ∈ V, {ti} ∈ B(ℓ∞).

So for k ≥ k0 and n > n0,

(3)
∑

i>k

tix
(n)
i =

∑

i>k

ti(x
(n)
i − xi) +

∑

i>k

tixi ∈ V + V ⊂ U, {ti} ∈ B(ℓ∞).

Thus (iv) follows from (2) and (3).

(iv) ⇒ (iii). Obviously.

(iii) ⇒ (ii). Let {ti} ∈ ℓ∞, U, V ∈ UX such that V + V + V ⊂ U . By (iii),
there is k0 ∈ N such that

∑

i>k0

tix
(n)
i ∈ V,

∑

i>k0

tixi ∈ V, n = 1, 2, . . .

and there is n0 ∈ N such that for n > n0,

k0∑

i=1

ti(x
(n)
i − xi) ∈ V.

So for n > n0,

∑

i≥1

ti(x
(n)
i − xi) =

k0∑

i=1

ti(x
(n)
i − xi) +

∑

i>k0

tix
(n)
i −

∑

i>k0

tixi ∈ V + V + V ⊂ U.

(ii) follows.

(ii) ⇒ (i). By (ii), limn x
(n)
i = xi obviously for i ∈ N. If τ - limn x (n) 6= x, then

there would exist U ∈ UX , an increasing subsequence {nk} and {t
(k)
i } ∈ B(ℓ∞),

k = 1, 2, . . . such that

∑

i≥1

t
(k)
i (x

(nk)
i − xi) /∈ U, k = 1, 2, . . . .
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For convenience, we can suppose that

∑

i≥1

t
(n)
i (x

(n)
i − xi) /∈ U, n = 1, 2, . . . .

Let V, W ∈ UX such that V + V ⊂ W and W +W ⊂ U . Pick m1 ∈ N such

that
∑

i>m1
t
(1)
i (x

(1)
i − xi) ∈ V . Then

m1∑

i=1

t
(1)
i (x

(1)
i − xi) /∈ V.

Set n1 = 1. Since limn x
(n)
i = xi for i ∈ N, there is n2 ∈ N with n2 > n1 such that∑m1

i=1 si(x
(n2)
i − xi) ∈ W for all {si} ∈ B(ℓ∞). It follows that

∑m1
i=1 t

(n2)
i (x

(n2)
i −

xi) ∈ W . So
∑

i>m1
t
(n2)
i (x

(n2)
i − xi) /∈ W . Pick m2 ∈ N with m2 > m1 such

that
∑

i>m2
t
(n2)
i (x

(n2)
i − xi) ∈ V . Then

m2∑

i=m1+1

t
(n2)
i (x

(n2)
i − xi) /∈ V.

Proceeding in this manner we produce increasing sequences {nk} and {mk} such
that

(4)

mk+1∑

i=mk+1

t
(nk+1)
i (x

(nk+1)
i − xi) /∈ V, k = 0, 1, 2, . . . ,

here set m0 = 0. Let

ykj =

mj+1∑

i=mj+1

t
(nj+1)
i (x

(nk+1)
i − xi).

Then limk ykj = 0 for j ∈ N. Set ti = t
(nj+1)
i for mj < i ≤ mj+1, j = 0, 1, 2, . . . ,

and ti = 0 elsewhere. Then {ti} ∈ ℓ∞ and
∑

j≥0 ykj =
∑

i≥1 ti(x
(nk+1)
i −xi). By

(ii), limk

∑
j≥0 ykj = 0. So it follows from Lemma 2.2 that limk ykk = 0. This

contradicts (4) and (i) follows.
The proof of Theorem 2.3 is complete. �

Proposition 2.4. BMC (X) is complete (or sequentially complete) space if and
only if X is complete (or sequentially complete) space.

Proof: If BMC (X) is complete space, then it is easy to prove thatX is complete.
Conversely, if X is complete space, we will prove that BMC (X) is complete space.
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Let {xα} be Cauchy net in BMC (X) and U, V ∈ UX such that V +V +V ⊂ U .

Then for Ṽ ∈ ŨX there is α0 such that for α, β ≥ α0, x α − xβ ∈ Ṽ , i.e. for
α, β ≥ α0,

(5)
∑

i≥1

ti(x
α
i − xβ

i ) ∈ V, {ti} ∈ B(ℓ∞).

By the continuity of Pi, {x
α
i } is Cauchy net in X and hence, there is xi ∈ X such

that

(6) lim
α

xα
i = xi, i = 1, 2, . . . .

From (5) it follows that for α, β ≥ α0 and each n ∈ N,

n∑

i=1

ti(x
α
i − x

β
i ) ∈ V, {ti} ∈ B(ℓ∞).

So by (6) for α ≥ α0 and n ∈ N,

n∑

i=1

ti(x
α
i − xi) ∈ V, {ti} ∈ B(ℓ∞).

Because of Example 1 of [2], there is n0 ∈ N such that for n > n0,

∑

i>n

tix
α0
i ∈ V, {ti} ∈ B(ℓ∞).

Thus for n > n0 and α ≥ α0,

n∑

i=1

tixi −
∑

i≥1

tix
α
i =

n∑

i=1

ti(xi − xα
i )−

∑

i>n

ti(x
α
i − xα0

i )−

−
∑

i>n

tix
α0
i ∈ V + V + V ⊂ U, {ti} ∈ B(ℓ∞).

It follows that the series
∑

i
tixi converges for each {ti} ∈ ℓ∞, i.e. x = {xi} ∈

BMC (X) and for α > α0,

∑

i≥1

tixi −
∑

i≥1

tix
α
i ∈ U, {ti} ∈ B(ℓ∞).

So τ - limα xα = x and we have proved that BMC (X) is complete. The proof is
complete. �
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3. Compact sets in BMC (X)

In this section, let X be a locally convex space and X ′ its dual space. Then
(X, X ′) forms a dual pair. Let UX denote a local base of barrelled neighbourhoods
of 0 in X . The gauge of U ∈ UX will be denoted by pU and the polar of U will
be denoted by U0 (see [5]). It is easy to see that

(7) pU (x) = sup{|f(x)| : f ∈ U0}, x ∈ X.

For each U ∈ UX and each x = {xi} ∈ BMC (X), let

(8) εU (x) = sup
{

pU

(∑

i≥1

tixi

)
: {ti} ∈ B(ℓ∞)

}
.

Then εU (·) is a seminorm on BMC (X) and the topology generated by the family
of seminorms {εU (·) : U ∈ UX} on BMC (X) is just the original topology τ .

Proposition 3.1. For each U ∈ UX and each x ∈ BMC (X),

(9) εU (x) = sup
{∑

i≥1

|f(xi)| : f ∈ U0
}

.

The proof follows from (7) and (8).

For t = {ti} ∈ ℓ∞, let

ϕt : BMC (X) −→ X, ϕt(x) =
∑

i≥1

tixi.

Then for each U ∈ UX , pU (ϕt(x)) ≤ εU (x). So ϕt is a continuous linear map.
By Example 1 of [2], it is known that each {xi} ∈ BMC (X) has the following

property:

(∗) τ - lim
n

∑

i>n

Ii(xi) = 0.

In order to consider a subset of BMC (X), we give

Definition 3.2. A subset A of BMC (X) is called uniformly convergent if
τ - limn

∑
i>n Ii(xi) = 0 uniformly for all {xi} ∈ A; A is called σ(X, X ′)-uniformly

convergent if for each f ∈ X ′, limn
∑

i>n |f(xi)| = 0 uniformly for all {xi} ∈ A.

Theorem 3.3. Let X be a sequentially complete space and A a subset of
BMC (X). Then A is relatively sequentially compact if and only if

(a) A is uniformly convergent and
(b) for each i ∈ N, Pi(A) is relatively sequentially compact subset of X .
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Proof: If A is relatively sequentially compact, then (b) holds obviously. Next
we will prove that (a) holds.
Suppose that (a) does not hold. Then there is U ∈ UX such that

lim
n
sup

{
εU

( ∑

i>n

Ii(xi)
)
: x = {xi} ∈ A

}
6= 0,

i.e.

lim
n
sup

{
pU

( ∑

i>n

tixi

)
: {ti} ∈ B(ℓ∞), x = {xi} ∈ A

}
6= 0.

So there are ε0 > 0, increasing subsequence {nk} of N, {t
(k)
i } ∈ B(ℓ∞) and

x (k) ∈ A such that

(10) pU

( ∑

i>nk

t
(k)
i x

(k)
i

)
≥ ε0, k = 1, 2, . . . .

Since A is relatively sequentially compact, there are a subsequence {x (kj)}∞1 of

{x (k)}∞1 and x ∈ BMC (X) such that τ - limj x (kj) = x. By Theorem 2.3,

lim
m
sup

{
pU

( ∑

i>m

tix
(kj)
i

)
: {ti} ∈ B(ℓ∞), j ∈ N

}
= 0.

So there is nkj
such that

pU

( ∑

i>nkj

t
(kj)
i x

(kj)
i

)
< ε0.

This contradicts (10). Thus we have proved that (a) holds.

Conversely, if the conditions (a) and (b) hold, we will prove that A is relatively

sequentially compact. Let {x (n)}∞1 ⊂ A. By (b), using the diagonal method

we can find a subsequence {nk} of N such that limk x
(nk)
i exists for i ∈ N. For

convenience, we can suppose that nk = k, i.e.

(11) lim
n

x
(n)
i exists, i = 1, 2, . . . .

By (a) for each U ∈ UX and ε > 0, there is k0 ∈ N such that

εU

( ∑

i>k0

Ii(xi)
)

< ε/4 for {xi} ∈ A.
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And furthermore, by (11) there is n0 ∈ N such that for n, m > n0,

pU

(
x
(n)
i − x

(m)
i

)
< ε/2k0, i = 1, 2, . . . , k0.

Thus for n, m > n0,

εU

(
x (n) − x (m)

)
≤

k0∑

i=1

pU

(
x
(n)
i − x

(m)
i

)
+ εU

( ∑

i>k0

Ii(x
(n)
i )

)

+ εU

( ∑

i>k0

Ii(x
(m)
i )

)
< ε.

So {x (n)}∞1 is a Cauchy sequence of BMC (X) and hence, τ - limn x (n) exists in
BMC (X) by Proposition 2.4. Thus we have proved that A is relatively sequen-
tially compact. The proof is complete.

�

Lemma 3.4. For each t = {ti} ∈ ℓ∞, ϕt is c.c.t. – σ(X, X ′) continuous on
each σ(X, X ′)-uniformly convergent subset of BMC (X), where c.c.t. denotes the
coordinatewise convergence topology on BMC (X).

Proof: Let A be an σ(X, X ′)-uniformly convergent subset of BMC (X) and {xα}
be a net of A such that limα xα

i = 0 for i ∈ N. Thus for ε > 0 and f ∈ X ′, there
is n0 ∈ N such that

∑

i>n0

|f(xi)| < ε/2, for x = {xi} ∈ A.

And hence, there is α0 such that for α > α0,

|f(xα
i )| < ε/2n0, i = 1, 2, . . . , n0.

So for α > α0,

|f(ϕt(x
α))| ≤

n0∑

i=1

|f(xα
i )|+

∑

i>n0

|f(xα
i )| < ε.

Thus we have proved that σ(X, X ′)− limα ϕt(x
α) = 0. The proof is complete.

�

Theorem 3.5. Let X be a sequentially complete space which contains no copy
of c0. Then a subset A of BMC (X) is relatively sequentially compact if and only
if

(c) A is σ(X, X ′)-uniformly convergent and
(d) for each t ∈ ℓ∞, ϕt(A) is relatively sequentially compact subset of X .



Vector-valued sequence space BMC(X) and its properties 215

Proof: If A is relatively sequentially compact, then by the continuity of ϕt and
Theorem 3.3, the conditions (c) and (d) hold.
Conversely, if the conditions (c) and (d) hold, we will prove that A is relatively

sequentially compact. Let {x (n)}∞1 ⊂ A. By use of the proof of Theorem 3.3, we
can suppose that

(12) lim
n

x
(n)
i = x

(0)
i ∈ X, i = 1, 2, . . . .

Next we will prove that x (0) = {x
(0)
i } ∈ BMC (X).

For f ∈ X ′, by (c) there is k0 ∈ N such that
∑

i>k0
|f(xi)| ≤ 1 for each x ∈ A.

Since (d) implies (b),
⋃k0

i=1 Pi(A) is a relatively sequentially compact subset of X
and hence bounded. So there is a constant c > 0 such that

|f(Pi(x))| = |f(xi)| ≤ c, x = {xi} ∈ A, i = 1, 2, . . . , k0.

Thus ∑

i≥1

|f(xi)| ≤ k0c+ 1, x = {xi} ∈ A.

Now for a fixed m ∈ N, by (12) there is an n0 ∈ N such that

|f(x
(n0)
i − x

(0)
i )| < 1/m, i = 1, 2, . . . , m.

So m∑

i=1

|f(x
(0)
i )| ≤

m∑

i=1

|f(x
(n0)
i − x

(0)
i )|+

m∑

i=1

|f(x
(n0)
i )| ≤ k0c+ 2.

Since m ∈ N is arbitrary, we have
∑

i≥1 |f(x
(0)
i )| ≤ k0c+ 2 < ∞. Therefore, the

series
∑

i x
(0)
i is a weakly unconditionally Cauchy series in X . It follows from

Theorem 4 of [2] that the series
∑

i x
(0)
i is unconditionally convergent and hence

bounded multiplier convergent. Thus we have proved that x (0) ∈ BMC (X).

Now let D = A∪{x (0)}. For each t = {ti} ∈ ℓ∞, since Lemma 3.4 implies that

ϕt is c.c.t. – σ(X, X ′) continuous onD, by (12) we have σ(X, X ′)−limn ϕt(x
(n)) =

ϕt(x
(0)). By use of the condition (d), we have limn ϕt(x

(n)) = ϕt(x
(0)), i.e.

limn
∑

i≥1 tix
(n)
i =

∑
i≥1 tix

(0)
i . It follows from Theorem 2.3 that τ - limx (n) =

x (0). So we have proved that A is relatively sequentially compact. The proof is
complete. �

Remark 3.6. Condition (d) in Theorem 3.5 cannot be replaced by condition (b)

in Theorem 3.3. For example, let X = ℓp (1 < p < ∞), ei = (0, . . . , 0,
(i)
1 , 0, 0, . . . )

and A = {(0, . . . , 0, en, 0, 0, . . . )}∞1 . Then A ⊂ BMC (X) and it is easy to prove
that A satisfies the conditions (b) and (c) but does not satisfy (a) and (d), and
so is not relatively sequentially compact.
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