The sizes of relatively compact T_1 -spaces

Winfried Just¹

Abstract. The relativization of Gryzlov's theorem about the size of compact T_1 -spaces with countable pseudocharacter is false.

Keywords: relatively compact, relatively Lindelöf, T_1 -space, measurable cardinal Classification: 54A25, 54D20

Let X, Y be topological spaces such that $Y \subseteq X$. We say that Y is relatively compact (relatively Lindelöf) in X if for every open cover \mathcal{U} of X there exists a finite (countable) subfamily $\mathcal{V} \subseteq \mathcal{U}$ such that \mathcal{V} is a cover of Y. The notion of relative compactness was introduced (under a slightly different name) by D.V. Ranchin [R]. A.V Arhangel'skii showed that if Y is regular in X (i.e., for each closed subset B of X and each point $y \in X \setminus B$, there is an open neighborhood U of y in X such that $cl(U) \cap B = \emptyset$), X is first-countable at each point in Y, and Y is Lindelöf in X, then $|Y| \leq 2^{\aleph_0}$ (see Corollary 6 of [A] for a somewhat stronger result). Thus, Arhangel'skii's famous theorem on the size of first-countable regular Lindelöf spaces generalizes to the context of relative Lindelöfness.

In [G], A.A. Gryzlov proved that every compact T_1 -space of countable pseudocharacter has cardinality at most 2^{\aleph_0} . The question arises whether this theorem also generalizes to the context of relative compactness. Theorem 1 below shows that this is not the case.

1. Theorem. Suppose λ is smaller than the first measurable cardinal. Then there exist first-countable T_1 -spaces $Y \subset X$, such that $|Y| = \lambda$, $|X| = 2^{\lambda}$, and Y is compact in X.

PROOF: Let $\lambda \geq \aleph_0$ be as in the assumption. We let Y be λ itself with the discrete topology. Let Z be the set of all partitions $\overline{z} = (z_n)_{n \in \omega}$ of λ into countably many pairwise disjoint sets. The underlying set of the space X will be $Y \cup Z$. We define a topology on X as follows:

- the points in Y are isolated;
- the basic open neighborhoods of $\bar{z} \in Z$ are of the form $V_m^{\bar{z}} = \bigcup_{n \ge m} z_n \cup \{\bar{z}\}.$

Clearly, X and Y are first-countable T_1 -spaces. It remains to show that Y is relatively compact in X. The latter is equivalent to the following:

¹Partially supported by NSF grant DMS-9312363.

W. Just

2. Claim. For every function $f : Z \to \omega$ there exists a finite set $F \subset Z$ such that $|Y \setminus \bigcup_{\overline{z} \in F} \bigcup_{n \ge f(\overline{z})} z_n| < \aleph_0$.

PROOF: Suppose not and let f be a counterexample. For each $F \in [Z]^{<\aleph_0}$ define: $Y_F = Y \setminus \bigcup_{\bar{z} \in F} \bigcup_{n \ge f(\bar{z})} z_n$. Then the family $\{Y_F : F \in [Z]^{<\aleph_0}\}$ generates a filter \mathcal{F} of subsets of λ with the following properties:

- (1) \mathcal{F} contains no finite subset of λ ;
- (2) for every partition $\{z_n : n \in \omega\}$ of λ into countable many pairwise disjoint subsets there exists an $m \in \omega$ such that $\bigcup_{n \le m} z_n \in \mathcal{F}$.

The existence of such an \mathcal{F} leads to a contradiction, since it implies that λ is at least as big as the first measurable cardinal. To see the latter, consider the characteristic function of \mathcal{F} , i.e., the function $\chi_{\mathcal{F}} : \mathcal{P}(\lambda) \to \{0,1\}$ that takes the value $\chi_{\mathcal{F}}(a) = 1$ if and only if $a \in \mathcal{F}$. If we identify $\mathcal{P}(\lambda)$ and $^{\lambda}\{0,1\}$ with the product topology, then (1) implies that $\chi_{\mathcal{F}}$ is not continuous. On the other hand, if $\lim_{n\to\infty} a_n = a$ and $z_n = \{\xi \in \lambda : n = \min\{k \in \omega : \forall m \geq k (\xi \in a_m \leftrightarrow \xi \in a)\}\}$, then $\{z_n : n \in \omega\}$ is a partition of λ . Applying (2) to this partition, we can see that $\chi_{\mathcal{F}}$ is sequentially continuous. Now a result of Antonovskii and Chudnovskii [AC, Theorem 1.3] implies that λ is as least as big as the first measurable cardinal.

In Theorem 1, the assumption that λ is smaller than the first measurable cardinal cannot be dropped, since the following relativized version of a well-known classical result holds:

3. Proposition. Suppose X is a T_1 -space and $\psi(x, X) < \kappa$ for every $x \in X$. If Y is relatively Lindelöf in X, then $|Y| < \kappa$.

PROOF: Suppose X, Y form a counterexample. Let $\mu : \mathcal{P}(\kappa) \to \{0,1\}$ be a κ -additive measure that vanishes on singletons, and assume without loss of generality that $\kappa \subseteq Y$. For each $x \in X$, choose $\{U_{\xi}^x : \xi < \lambda_x < \kappa\}$ such that U_{ξ}^x is an open neighborhood of x and $\bigcap_{\xi < \lambda_x} U_{\xi}^x = \{x\}$. By κ -additivity of μ , we can pick for every $x \in X$ a ξ_x such that $\mu(\kappa \cap U_{\xi_x}^x) = 0$. Now let $\mathcal{U} = \{U_{\xi_x}^x : x \in X\}$. Then \mathcal{U} is an open cover of X, but if $\mathcal{V} = [\mathcal{U}]^{<\kappa}$, then $\mu(\bigcup \mathcal{V} \cap \kappa) = 0$, hence \mathcal{V} does not cover Y.

References

- [A] Arhangel'skii A.V., A generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolinae 36.2 (1995), 303–325.
- [AC]Antonovskii M.Y., Chudnovskii D.V., Some questions of general topology and Tikhonov semifields II, Russian Math. Surveys 31.3 (1976), 69–128.
- [G] Gryzlov A.A., Two theorems on the cardinality of topological spaces, Soviet Math. Dokl. 21.2 (1980), 506–509.
- [R] Ranchin D.V., On compactness modulo an ideal, Soviet Math. Dokl. 13.1 (1972), 193–197.

DEPARTMENT OF MATHEMATICS, OHIO UNIVERSITY, ATHENS, OH 45701, USA

(Received January 23, 1996)