On a problem of Gulevich on nonexpansive maps in uniformly convex Banach spaces

Sehie Park

Abstract. Let X be a uniformly convex Banach space, $D \subset X$, $f : D \to X$ a nonexpansive map, and K a closed bounded subset such that $\overline{co} K \subset D$. If (1) $f|_K$ is weakly inward and K is star-shaped or (2) $f|_K$ satisfies the Leray-Schauder boundary condition, then f has a fixed point in $\overline{co} K$. This is closely related to a problem of Gulevich [Gu]. Some of our main results are generalizations of theorems due to Kirk and Ray [KR] and others.

Keywords: uniformly convex, Banach space, Hilbert space, contraction, nonexpansive map, weakly inward map, demi-closed, Rothe condition, Leray-Schauder condition, (KR)-bounded, Opial's condition

Classification: Primary 47H10; Secondary 54H25

The well-known theorem of Browder-Göhde-Kirk assures existence of a fixed point for nonexpansive maps $f: K \to K$ where K is a *bounded* closed convex subset of a uniformly convex Banach space X. In [KR], Kirk and Ray showed that f can be replaced by a weakly inward nonexpansive map $f: K \to X$ while the boundedness of K can be replaced by that of the geometric estimator

$$G(x, fx) = \{z \in K : ||z - x|| \ge ||z - fx||\}$$

for some $x \in K$ or more general sets. Note that any fixed point of f is contained in G(x, fx).

On the other hand, Gulevich [Gu] considered the situation as follows: H is a Hilbert space, K is a nonempty bounded closed (not necessarily convex) subset of H, and $f: D \subset H \to H$ is a nonexpansive map, where $\overline{\operatorname{co}} K \subset D$. Gulevich's basic theorem [Gu, Theorem 1] states that f has a fixed point in $\overline{\operatorname{co}} K$ if f satisfies the Rothe condition $f(\operatorname{Bd} K) \subset K$. He also raised as a problem whether H can be replaced by a uniformly convex Banach space.

In the present paper, we obtain some fixed point theorems on nonexpansive maps defined on closed (not necessarily bounded or convex) subsets of a Banach space. Our results are closely related to Gulevich's theorem and extend some known results of Kirk and Ray [KR], Goebel and Kuczumow [Go], and Browder [B1], [B2]. Moreover, we adopt more general boundary conditions on those nonexpansive maps. In fact, the weakly inwardness or the so-called Leray-Schauder condition is used in our results instead of the Rothe condition used in [Gu]. Recall that $f: K \to X$ is a *contraction* if there exists a $k \in [0, 1)$ such that

$$||fx - fy|| \le k||x - y||$$
 for all $x, y \in K$;

and a *nonexpansive map* if

$$||fx - fy|| \le ||x - y|| \quad \text{for all} \quad x, y \in K.$$

We say that f is weakly inward if $fx \in \overline{I}_K(x)$ for any $x \in \text{Bd } K$ (equivalently, for any $x \in K$), where \overline{K} , Bd, and Int denote the closure, boundary, and interior, respectively, and

$$I_K(x) = \{ x + c(y - x) : y \in K, \ c \ge 1 \}.$$

Note that any map satisfying the Rothe condition is weakly inward.

We begin with the following:

Theorem 0. Let K be a closed subset of a Banach space X and $f : K \to X$ a contraction satisfying one of the following:

- (i) $f(\operatorname{Bd} K) \subset K$.
- (ii) f is weakly inward.
- (iii) $0 \in \text{Int } K$ and $fx \neq mx$ for all $x \in \text{Bd } K$ and m > 1.

Then f has a unique fixed point.

Note that Theorem 0(i) is a particular case of Assad and Kirk [AK, Theorem 1], Theorem 0(ii) is due to Martinez-Yanez [M, Theorem] or, in a more general form, to Zhang [Z, Theorem 3.3], and Theorem 0(iii) to Gatica and Kirk [GK, Theorem 2.1]. There are more general results than Theorem 0. However, Theorem 0 is sufficient for our purpose. Note also that (iii) can be replaced by the following:

(iii)' there exists a $w \in \operatorname{Int} K$ such that

$$fx - w \neq m(x - w)$$
 for all $x \in \operatorname{Bd} K$ and $m > 1$.

Moreover, (i) \Rightarrow (ii) and, whenever K is convex and $0 \in \text{Int } K$, we have (ii) \Rightarrow (iii).

A subset K of a vector space is said to be *star-shaped* if there exists a given point $x_0 \in K$ such that $tx_0 + (1 - t)x \in K$ for any $t \in (0, 1)$ and $x \in K$, where x_0 is called a *center* of K.

For the K and f in Theorem 0, we say that K is (KR)-bounded or bounded in the sense of Kirk-Ray [KR] if, for some bounded set $A \subset K$, the set

$$G(A) = \bigcap_{u \in A} G(u, fu)$$

is either empty or bounded.

The following is a generalization of the almost fixed point property of bounded closed subsets of a Banach space for nonexpansive maps.

Theorem 1. Let X be a Banach space, K a closed subset of X, and $f : K \to X$ a nonexpansive map such that K is (KR)-bounded and one of the following holds:

- (i) K is star-shaped and $f(\operatorname{Bd} K) \subset K$.
- (ii) K is star-shaped and f is weakly inward.
- (iii) $0 \in \text{Int } K$ and $fx \neq mx$ for all $x \in \text{Bd } K$ and m > 1.

Then there exists a bounded sequence $\{x_n\}$ in K such that $||x_n - fx_n|| \to 0$ as $n \to \infty$.

PROOF: For cases (i) and (ii) we may without loss of generality assume that 0 is the center. For $\alpha \in (0, 1)$, define $f_{\alpha} : K \to X$ by $f_{\alpha}x = \alpha fx$ for $x \in K$. Then clearly f_{α} is a contraction. We show that one of (i)–(iii) in Theorem 0 holds for f_{α} :

(i) Since K is star-shaped at center 0, we have $\alpha K \subset K$. Since $f(\operatorname{Bd} K) \subset K$, for $x \in \operatorname{Bd} K$, we have $f_{\alpha}x = \alpha fx \in \alpha K \subset K$. Therefore, $f_{\alpha}(\operatorname{Bd} K) \subset K$.

(ii) From $fx \in \overline{I}_K(x)$, we have $f_{\alpha}x = \alpha fx \in \alpha \overline{I}_K(x) \subset \overline{I}_K(x)$ since $I_K(x)$ is a star-shaped set with center 0. See Zhang [Z, Theorem 1.2]. Note that (i) \Rightarrow (ii).

(iii) Suppose that $f_{\alpha}x = mx$ for some $x \in \operatorname{Bd} K$ and m > 1, then $fx = \alpha^{-1}f_{\alpha}x = (\alpha^{-1}m)x$ and $\alpha^{-1}m > 1$, which contradicts our assumption.

Therefore, by Theorem 0, f_{α} has a fixed point $x_{\alpha} \in K$. Suppose that the set $\{x_{\alpha} : \alpha \in (0,1)\}$ is not bounded. Then it is possible to choose $\alpha \in (0,1)$ so that

$$\sup_{u \in A} \|fu\| \le \inf_{u \in A} \|x_{\alpha} - u\|$$

and in addition, if $G(A) \neq \emptyset$, then α may also be chosen so that

 $||x_{\alpha}|| > \sup\{||x|| : x \in G(A)\}.$

Therefore, for each $u \in A$,

$$||x_{\alpha} - fu|| = ||\alpha fx_{\alpha} - fu|| \le \alpha ||fx_{\alpha} - fu|| + (1 - \alpha)||fu||$$

$$\le \alpha ||x_{\alpha} - u|| + (1 - \alpha)||x_{\alpha} - u|| = ||x_{\alpha} - u||.$$

This implies $x_{\alpha} \in G(A)$, which is a contradiction. Thus $M = \sup\{||x_{\alpha}|| : \alpha \in (0,1)\} < \infty$ and we have

$$||x_{\alpha} - fx_{\alpha}|| = (\alpha^{-1} - 1)||x_{\alpha}|| \le (\alpha^{-1} - 1)M,$$

yielding $||x_{\alpha} - fx_{\alpha}|| \to 0$ as $\alpha \to 1$. This completes our proof.

Note that Kirk and Ray [KR, Theorem 2.3] obtained Theorem 1(ii) for the case K is convex. In the second half of the proof of Theorem 1, we followed that of [KR, Theorem 2.3]. Note that Theorem 1(i) generalizes Dotson [D, Theorem 1].

 \Box

A Banach space X is said to satisfy *Opial's condition* if, whenever a sequence $\{x_n\}$ converges weakly to $x_0 \in X$, then

 $\liminf_{n \to \infty} \|x_n - x\| > \liminf_{n \to \infty} \|x_n - x_0\|$

for all $x \in X$, $x \neq x_0$. Opial [O] showed that if C is a weakly compact subset of a Banach space X satisfying this condition and $f: C \to X$ is nonexpansive, then I - f is demi-closed ([B2], [Gö]); that is, if $\{x_n\} \subset C$ satisfies $x_n \to x$ weakly while $(I - f)x_n \to y$ strongly, then (I - f)x = y, where I is the identity map on C.

Examples of spaces satisfying Opial's condition are Hilbert spaces, l^p $(1 \le p < \infty)$, and uniformly convex Banach spaces with weakly continuous duality maps.

From Theorem 1, we have the following:

Theorem 2. Let X be a Banach space, K a weakly compact subset of X, and $f: K \to X$ a nonexpansive map satisfying one of (i)–(iii) in Theorem 1.

- (a) If I f is demi-closed on K, then f has a fixed point.
- (b) If X satisfies Opial's condition, then f has a fixed point.

PROOF: Since K is closed and bounded, f satisfies all the requirements of Theorem 1. Hence, there exists a sequence $\{x_n\}$ in K such that $||x_n - fx_n|| \to 0$ as $n \to \infty$. Since K is weakly compact, we may assume that $x_n \to x$ weakly to some $x \in K$. Since $x_n - fx_n \to 0$ strongly, $x_n - fx_n = (I - f)x_n$, and I - f is demi-closed, we conclude that (I - f)x = 0 and hence x = fx. This completes our proof.

Note that Zhang [Z, Theorem 3.8 and Corollaries 3.10, 3.11] obtained the multi-valued version of Theorem 2(ii), with different proof, and that Theorem 2(i) generalizes Dotson [D, Theorem 2]. Note also that if K is compact, then f has a fixed point in Theorem 2 without assuming the demi-closedness of I - f.

From Theorem 1, we also have the following:

Theorem 3. Let X be a uniformly convex Banach space, D a subset of X, and $f: D \to X$ a nonexpansive map. Let K be a closed (KR)-bounded subset of X such that $\overline{\operatorname{co}} K \subset D$ and one of (i)–(iii) of Theorem 1 holds for $f|_K$. Then f has a fixed point in $\overline{\operatorname{co}} K$.

PROOF: Since $f|_K$ satisfies all the requirements of Theorem 1, there exists a bounded sequence $\{x_n\}$ in K such that $||x_n - fx_n|| \to 0$. Since $\{x_n\}$ is contained in a bounded closed convex subset $L \subset \overline{\operatorname{co}} K$ and L is weakly compact, we may assume $x_n \to x_0$ weakly to some $x_0 \in L$. Since I - f is demi-closed on L ([B2], [Gö]) and $(I - f)x_n \to 0$ strongly, we conclude that (I - f)x = 0, and hence x = fx. This completes our proof.

If we can eliminate the star-shapedness in (i), then Theorem 3(i) will be the required affirmative answer to Gulevich's problem. Moreover, Gulevich [Gu] noted that, for case (i) of Theorem 3 in a Hilbert space H, f has a fixed point in K.

In case $0 \in \text{Int } K$, Theorem 3(iii) generalizes [Gu, Theorem 1].

Note that the set $A \subset K$ for the (KR)-boundedness can be chosen so that $A \subset D$ and $f(A) \subset K$. See the proof of Theorem 1. Therefore, Theorem 3 generalizes Ray [R, Lemma 1].

For $D = K = \overline{\operatorname{co}} K$, Theorem 3 reduces to the following:

Theorem 4. Let X be a uniformly convex Banach space, K a closed convex subset, and $f: K \to X$ a nonexpansive map such that K is (KR)-bounded and one of (i)–(iii) in Theorem 0 holds. Then f has a fixed point.

Note that Theorem 4(i) and (ii) are due to Kirk and Ray [KR, Theorem 2.3], which extends Goebel and Kuczumow [Go, Theorem 6]. Also note that Theorem 4(iii) extends Browder [B2, Theorem 1] for nonexpansive maps. For a Hilbert space X and a closed ball in X, Theorem 4(i) is due to Browder [B1, Theorem 2], which was used to show existence of periodic solutions for nonlinear equations of evolution.

Recently Canetti, Marino, and Pietramala [CMP] obtained multi-valued versions of Theorem 4(ii) and, under the stronger assumption of convexity, some other results similar to Theorems 1–3 for case (ii).

Finally, we note that the so-called Rothe condition (i) was first adopted by Knaster, Kuratowski, and Mazurkiewicz [KKM]. Also, the origin of the so-called Leray-Schauder condition (iii) seems to be Schaefer [S], and the following are well-known examples of that condition:

- (A) $||fx x||^2 \ge ||fx||^2 ||x||^2$ for $x \in \operatorname{Bd} K$.
- (K) Re $\langle fx, x \rangle = ||x||^2$ for $x \in \text{Bd} K$, $x \neq 0$, in a Hilbert space H.

Or more generally,

(P) $(fx, Jx) \leq (x, Jx)$ for $x \in \operatorname{Bd} K$, $0 \in \operatorname{Int} K$, where J is any duality map of X into 2^{X^*} .

Condition (A) is due to Altman [A], (K) to Krasnosel'skii [K] and Shinbrot [Sh], and (P) to Petryshyn [P].

Acknowledgement. This work was supported in part by KOSEF-951-0102-006-2.

References

- [A] Altman M., A fixed point theorem for completely continuous operators in Banach spaces, Bull. Acad. Polon. Sci. 3 (1955), 409–413.
- [AK] Assad N.A., Kirk W.A., Fixed point theorems for set-valued mappings of contractive type, Pac. J. Math. 43 (1972), 553–562.
- [B1] Browder F.E., Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. USA 53 (1965), 1100–1103.
- [B2] Browder F.E., Semicontractions and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660–665.
- [CMP] Canetti A., Marino G., Pietramala P., Fixed point theorems for multivalued mappings in Banach spaces, Nonlinear Anal. TMA 17 (1991), 11–20.

S. Park

- [D] Dotson W.G., Fixed point theorems for non-expansive mappings on star-shaped subsets of Banach spaces, J. London Math. Soc. (2) 4 (1972), 408–410.
- [GK] Gatica J.A., Kirk W.A., Fixed point theorems for contraction mappings with applications to nonexpansive and pseudo-contractive mappings, Rocky Mount. J. Math. 4 (1974), 69–79.
- [Go] Goebel K., Kuczumow T., A contribution to the theory of nonexpansive mappings, Bull. Calcutta Math. Soc. 70 (1978), 355–357.
- [Gö] Göhde D., Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258.
- [Gu] Gulevich N.M., Existence of fixed points of nonexpansive mappings satisfying the Rothe condition, J. Soviet Math. 26 (1984), 1607–1611.
- [KR] Kirk W.A., Ray W.O., Fixed-point theorems for mappings defined on unbounded sets in Banach spaces, Studia Math. 64 (1979), 127–138.
- [KKM] Knaster B., Kuratowski C., Mazurkiewicz S., Ein Beweis des Fixpunktsatzes f
 ür ndimensionale Simplexe, Fund. Math. 14 (1929), 132–137.
- [K] Krasnosel'skii M.A., New existence theorems for solutions of nonlinear integral equations, Dokl. Akad. Nauk SSSR 88 (1953), 949–952.
- [M] Martinez-Yanez C., A remark on weakly inward contractions, Nonlinear Anal. TMA 16 (1991), 847–848.
- [O] Opial Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.
- [P] Petryshyn W.V., A new fixed point theorem and its application, Bull. Amer. Math. Soc. 78 (1972), 225–229.
- [R] Ray W.O., Zeros of accretive operators defined on unbounded sets, Houston J. Math. 5 (1979), 133–139.
- [S] Schaefer H.H., Neue Existenzsätze in der Theorie nichtlinearer Integralgleichungen, Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Natur. Kl. 101 (1955), no.7, 40pp.
- [Sh] Shinbrot M., A fixed point theorem and some applications, Arch. Rational Mech. Anal. 17 (1964), 255–271.
- [Z] Zhang S., Star-shaped sets and fixed points of multivalued mappings, Math. Japonica 36 (1991), 327–334.

DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL 151–742, KOREA *E-mail*: shpark@math.snu.ac.kr

(Received May 14, 1995)