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Homogeneous Einstein metrics on Stiefel manifolds

Andreas Arvanitoyeorgos

Abstract. A Stiefel manifold VkR
n is the set of orthonormal k-frames inRn, and it is dif-

feomorphic to the homogeneous space SO(n)/SO(n−k). We study SO(n)-invariant Ein-
stein metrics on this space. We determine when the standard metric on SO(n)/SO(n−k)
is Einstein, and we give an explicit solution to the Einstein equation for the space V2Rn.
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1. Introduction

Homogeneous geometry studies various geometric quantities (geodesics, Ein-
stein metrics, harmonic maps, Laplace transform, to name a few) on spaces of the
form G/H , where G is a compact Lie group and H a closed subgroup of G. Well
known classes of these spaces are the symmetric spaces and the generalized flag
manifolds. Their geometry has been studied quite extensively in various aspects.
However, little is known about more general homogeneous spaces such as Stiefel
manifolds VkR

n = SO(n)/SO(n − k) of orthonormal k-frames in Rn, or Aloff-
Wallach spaces SU(3)/ik,l(S

1) (where (k, l) = 1 and ik,l a certain embedding of

the circle S1 in SU(3)).
In the present paper we are interested in SO(n)-invariant Einstein metrics on

Stiefel manifolds. An Einstein metric is a Riemannian metric g with the property
Ric(g) = cg. Einstein metrics on Aloff-Wallach spaces have been studied by
M. Wang [10] and O. Kowalski, Z. Vlášek [8]. The existence of SO(n)-invariant
Einstein metrics on Stiefel manifolds is due to A. Sagle [9] and G. Jensen [5]. The
first author reduced the problem to an algebraic system of equations, and the
second used the method of Riemannian submersions. A special case is the unit
tangent bundle T1S

n = V2R
n of Sn, which follows from [6] (see also [1, 9.77]). In

our work we are interested in explicit solutions for the Einstein equation on the
Stiefel manifolds V2R

n.
The paper is organized as follows: In Section 2 we provide some preliminary

information about homogeneous spaces, and in Section 3 we examine when the
standard metric on VkR

n is Einstein. We give an elementary proof that this
happens if and only if VkR

n = Sn or SO(n) (this result can also be deduced
from [11]). In Section 4 we study a certain family of SO(n)-invariant metrics on
VkR

n and obtain a unique solution for the Einstein equation on V2R
n for that

particular family.
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2. Preliminaries

Let M = G/H be a compact, simply connected homogeneous space, where G
is a semisimple, compact and connected Lie group, and H is a closed subgroup
of G. Let g and h denote the Lie algebras of G and H respectively. We denote by
AdG : G → Aut(g) (respectively adg : g→ End(g)) the adjoint representation of
G (respectively g).
Since G is semisimple and compact the Killing form B(X, Y ) = tr ad(X) ad(Y )

of g is nondegenerate and negative definite on g, thus giving rise to an orthogonal
decomposition of g as the direct sum g = h⊕m. This sum is Ad(H)-invariant,
i.e. [m,h] ⊂ m. The tangent space ToM of M at the identity coset o = eH can
be identified with m by the map

X 7→ X∗(o) =
d

d t
(exp tX · o)

∣

∣

∣

∣

t=0
, X ∈m.

The restriction of −B onto the complementm induces a G-invariant Riemann-
ian metric gB on M which is called the standard metric on M . Let X, Y ∈ m,
and {Xi} be a B-orthonormal basis of m. According to [3, Corollary 3.33] or [7,
Theorem X.3.5(3)] the sectional curvature of (M, gB) is given by

B(R(X, Y )X, Y ) = B([X, Y ]h, [X, Y ]h) +
1

4
B([X, Y ]m, [X, Y ]m)

and the Ricci curvature by

(1) Ric(X, X) = −1
4
B(X, X) +

1

2

∑

i

B([X, Xi]h, [X, Xi]h).

Finally, we recall the isotropy representation χ of H in ToM . For any γ ∈
G, let Lγ denote the diffeomorphism of G/H given by left translation. The
isotropy representation χ of H on ToM is defined by χ(h) = (dLh)0. Using the
identification of m with ToM , this representation is identified with the adjoint
representation of H on m.

3. The standard metric on Stiefel manifolds

In this section we find the Stiefel manifolds VkR
n = SO(n)/SO(n − k), k ≥ 1

for which the standard homogeneous metric gB is Einstein. For k = 1, V1R
n = Sn

which is isotropy irreducible (i.e. the isotropy representation is irreducible), thus
gB is the unique (up to homothety) SO(n)-invariant Riemannian metric which is
Einstein [1, Theorem 7.44]. Hence assume that k ≥ 2.
If SO(n− k) is identified with the subgroup of SO(n) consisting of matrices of

the form
(

Ik O
O A

)
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with A ∈ SO(n − k), then m may be identified with the subspace of so(n)
consisting of matrices of the form

(

Dk A
−At On−k

)

,

where A is a k × (n − 1) real matrix and Dk = diag(0, . . . , 0).

Let Q(X, Y ) = −B(X,Y )
2(n−2)

= − trXY
2 and let Eab denote the n × n matrix with

1 at the (ab)-entry and 0 elsewhere. Then the set B = {eab = Eab − Eba : 1 ≤
a ≤ k, 1 ≤ a < b ≤ n} constitutes a Q-orthonormal basis of m (containing
k(2n−k−1)

2 = dimVkR
n elements). Equation (1) now becomes

(2) Ric(X, X) = −1
4
B(X, X) +

1

2

∑

eab∈B

Q([X, eab]h, [X, eab]h).

To compute the sum above we need the following lemmas.

Lemma 1. The multiplication table of the elements in B is given as follows:

[eab, ecd] =































0 a 6= c, d b 6= c, d

−eac a 6= c, d b = d

ead a 6= c, d b = c

−ebd a = c, b 6= c, d

ebc a = d, b 6= c, d.

Proof: The computation is straightforward. �

Let B1 = {eab : 1 ≤ a < b ≤ k}, B2 = {eab : 1 ≤ a ≤ k, k + 1 ≤ b ≤
n}, B3 = {eab : k + 1 ≤ a < b ≤ n}. Then B = B1 ∪ B2 and B1, B3 are
Q-orthonormal bases for o(k) and o(n − k) respectively. Furthermore, the set
B2 constitutes a Q-orthonormal basis for To(GrkR

n) the tangent space to the
Grassmanian GrkR

n = SO(n)/S(O(k)× O(n − k)) at the identity coset.

Lemma 2. The sets B1, B2, B3 defined above satisfy the following relations:
(a) [B1,B1] ⊂ B1,
(b) [B1,B2] ⊂ B2,
(c) [B2,B2] ⊂ B1 ⊕ B3.

Proof: Relation (a) follows from Lemma 1. For (b), the sets B1 ⊕ B3 and B2
constitute Q-orthonormal bases for so(k)⊕so(n−k) and To(GrkR

n) respectively.
Hence [B1,B2] ⊂ [B1 ⊕ B3,B2] ⊂ B2, since GrkR

n is a symmetric space. For the
same reason we obtain (c). �

Let I = {(i, j) : 1 ≤ i < j ≤ k}, II = {(i, j) : 1 ≤ i ≤ k, k + 1 ≤ j ≤ n}, and
X =

∑

eij∈B
Xijeij ∈m.
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Proposition 1. The Ricci curvature for gQ on VkR
n is given by:

Ric(X, X) =
1

2
(n − 2)

∑

(i,j)∈I

X2ij +
1

2
(2n − k − 3)

∑

(i,j)∈II

X2ij .

Hence the standard metric on VkR
n (k ≥ 2) is Einstein if and only if (n − 2) =

(2n − k − 3) or n − k = 1.

Combining Proposition 1 with the remarks at the beginning of this section we
obtain

Theorem 1. The standard metric on VkR
n (k ≥ 1) is Einstein if and only if

VkR
n = Sn or SO(n).

Proof of Proposition 1: Let X =
∑

eij∈B=B1∪B2
Xijeij . Then equation (2)

implies that

Ric(X, X) = −1
4
(n − 2) trX2 + 1

2

∑

eab∈B

Q([
∑

eij∈B

Xijeij , eab]h, [
∑

eij∈B

Xijeij , eab]h)

=
1

2
(n − 2)

∑

(i,j)∈I∪II

X2ij

+
1

2

∑

eab∈B1

Q(
∑

eij∈B1

Xij [eij , eab]h,
∑

eij∈B1

Xij [eij , eab]h)

+
1

2

∑

eab∈B1

Q(
∑

eij∈B2

Xij [eij , eab]h,
∑

eij∈B2

Xij [eij , eab]h)

+
1

2

∑

eab∈B2

Q(
∑

eij∈B1

Xij [eij , eab]h,
∑

eij∈B1

Xij [eij , eab]h)

+
1

2

∑

eab∈B2

Q(
∑

eij∈B2

Xij [eij , eab]h,
∑

eij∈B2

Xij [eij , eab]h).

By Lemma 2 (a), (b) the second, the third and the fourth sum are zero. A
calculation that uses Lemmas 1 and 2 (c) gives that the fifth sum is equal to
(n − k − 1)∑(i,j)∈II X2ij . Thus the Ricci curvature is given by

Ric(X, X) =
1

2
(n − 2)

∑

(i,j)∈I∪II

X2ij +
1

2
(n − k − 1)

∑

(i,j)∈II

X2ij

=
1

2
(n − 2)

∑

(i,j)∈I

X2ij +
1

2
(2n − k − 3)

∑

(i,j)∈II

X2ij .
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�

Alternatively, one may use representation theory to obtain another proof of
Theorem 1 as follows. For a homogeneous space G/H let χ = χo ⊕ χ1 ⊕ · · · ⊕ χs

be the decomposition of the isotropy representation ofH inm as a direct sum of a
trivial representation χo and Ad(H)-irreducible representations χi (i = 1, . . . , s).
Letm =mo⊕m1⊕· · ·⊕ms be the corresponding decomposition ofm. According
to [11, Corollary 1.3] if the metric gB is Einstein, then eitherH is trivial ormo = 0.
We compute the isotropy representation for the Stiefel manifolds VkR

n =
SO(n)/SO(n − k), k ≥ 1. Let λn denote the standard representation of SO(n)
(given by the natural action of SO(n) on Rn). If ∧2λn denote the second exterior
power of λn, then AdSO(n) = ∧2λn. The isotropy representation χ of SO(n−k) is

characterized by the property AdSO(n)

∣

∣

∣

SO(n−k)
= AdSO(n−k)⊕χ. We compute

AdSO(n)

∣

∣

∣

SO(n−k)
= ∧2λn

∣

∣

∣

SO(n−k)
= ∧2(λn−k⊕k) = ∧2λn−k⊕∧2k⊕(λn−k⊗k),

where k denotes the trivial k-dimensional representation. The subrepresentation
∧2λn−k is AdSO(n−k), thus χ = ∧2k ⊕ λn−k ⊕ · · · ⊕ λn−k (k summands). If we

further decompose ∧2k into a sum of
(k
2

)

1-dimensional subrepresentations, we
obtain

(3) χ = 1⊕ · · · ⊕ 1⊕ λn−k ⊕ · · · ⊕ λn−k.

Hence, in our case, if gB is Einstein, then either H is trivial (i.e. VkR
n = SO(n))

or mo = 0 in which case k = 1 hence χ = λn−1 (i.e. VkR
n = SO(n)/SO(n−1) =

Sn).

4. Homogeneous Einstein metrics on V2R
n

In this section we are interested in SO(n)-invariant Einstein metrics on the
Stiefel manifolds V2R

n = SO(n)/SO(n − 2).
Let M = G/H be a homogeneous space and

(4) m =m1 ⊕ · · · ⊕ms

the decomposition of m into Ad(H)-invariant subspaces. We consider the family
of Ad(H)-invariant diagonal metrics

(5) 〈 , 〉 = y1 Q|m1 ⊕ · · · ⊕ ys Q|ms
, yi > 0

where Q is the multiple of the Killing form used in Section 3. If the mi’s are
pairwise inequivalent representations, then any G-invariant metric on M is de-
termined by 〈 , 〉. Otherwise, each decomposition (4) of m will yield a family of
G-invariant metrics on M . We will see later on that we face this problem with
the Stiefel manifolds.
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Let {Xi} be a 〈 , 〉-orthonormal basis of m. According to [1, Corollary 7.38]
the Ricci curvature of M is given by

Ric(X, X) = −1
2

∑

i

|[X, Xi]m|2 − 1
2
B(X, X)

+
1

4

∑

i,j

〈[Xi, Xj ]m, X〉2 − 〈[Z, X ]m, X〉(6)

where Z =
∑

i,j〈Xi, [Xj , Xi]m〉Xj .
We now come to the Stiefel manifolds. As shown in Section 2, the isotropy

representation of VkR
n is decomposed as χ = 1 ⊕ · · · ⊕ 1 ⊕ λn−k ⊕ · · · ⊕ λn−k.

We observe that the first
k(k−1)
2 summands are equivalent to each other and the

same is true for the remaining k summands.
We restrict ourselves to V2R

n and we look for SO(n)-invariant Einstein metrics
of the form (5). The isotropy representation is decomposed as χ = 1 ⊕ λn−2 ⊕
λn−2, hence these metrics depend on three parameters y1, y2, y3, yi > 0. Let
{eij = Eij − Eji : 1 ≤ i ≤ 2, 1 ≤ i < j ≤ n} be the Q-orthonormal basis
described in Section 2 adapted to the decompositionm =m1⊕m2⊕m3, so that
m1 = span{e12}, m2 = span{e1j : 3 ≤ j ≤ n}, m3 = span{e2j : 3 ≤ j ≤ n}.
Then the set {Xij = eij/

√
yk : eij ∈ mk (k = 1, 2, 3)} constitutes a 〈 , 〉-

orthonormal basis of m.

Lemma 3. The elements Xij satisfy the following relations:

(7)

[X12, X1j ]m = −
√

y3
y1y2

X2j (j = 3, . . . , n)

[X12, X2j ]m =

√

y2
y1y3

X1j (j = 3, . . . , n)

[X1j , X2j ]m = −
√

y1
y2y3

X12 (j = 3, . . . , n)

Proof: It is straightforward from Lemma 1. �

Using the above lemma a calculation shows that the vector Z in (6) is zero,
thus the Ricci curvature of V2R

n is given by

Ric(X, X) = −1
2

∑

i=1,2
3≤j≤n

|[X, Xij ]m|2 − 1
2
(n − 2) trX2

+
1

2
[

n
∑

j=3

〈[X12, X1j ]m, X〉2 +
n

∑

j=3

〈[X12, X2j ]m, X〉2

+

n
∑

j=3

〈[X1j , X2j ]m, X〉2]
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or equivalently

(8)

Ric(X, X) = −1
2
[|[X, X12]m|2 +

n
∑

j=3

|[X, X1j ]m|2

+

n
∑

j=3

|[X, X2j ]m|2]− 1
2
(n − 2) trX2

+
1

2
[

y3
y1y2

n
∑

j=3

〈X2j , X〉2 + y2
y1y3

n
∑

j=3

〈X1j , X〉2

+ (n − 2) y1
y2y3

〈X12, X〉2].

Proposition 2. The Ricci curvature for the metric (5) on V2R
n is given by

Ric(X12, X12) =
n − 2
2
[

y1
y2y3

− y2
y1y3

− y3
y1y2

+
2

y1
]

Ric(X1j , X1j) = −1
2
[

y1
y2y3

− y2
y1y3

+
y3

y1y2
− 2(n − 2)

y2
]

Ric(X2j , X2j) = −1
2
[

y1
y2y3

+
y2

y1y3
− y3

y1y2
− 2(n − 2)

y3
]

Ric(X12, X1j) = Ric(X12, X2j) = Ric(X1j , X2k) = 0, (j, k = 3, . . . , n)

Proof: The first three equalities are obtained from equation (8) and relations (7)
by a straightforward calculation. For the remaining equalities we use polarization
and the first three equalities. �

Setting Ric(X12, X12) = Ric(X1j , X1j) = Ric(X2j , X2j) we obtain the follow-
ing

Proposition 3. The Einstein equation for V2R
n reduces to the following system

of algebraic equations:

(n − 1)y21 − (n − 1)y22 − (n − 3)y23 = 2(n − 2)y3(y1 − y2)

y22 − y23 = (n − 2)y1(y2 − y3)

The system of equations in Proposition 3 has only one solution, namely y2 =
y3 =

n−1
2(n−2)

y1. Indeed, if y2 6= y3, the second equation gives (by normalizing

y1 = 1) y2 = (n− 2)− y3, and by substituting to the first equation we obtain the
equation 4(n− 2)y23 − 4(n− 2)2y3+(n− 1)2(n− 3) = 0. The discriminant of this
quadratic is equal to −16(n− 2)(n2− 5n+5), which is negative for n ≥ 4. Hence
there is no solution in this case.
Furthermore, one can check that as long as the Q-orthonormal basis B of m

described in Section 2 is adapted to the decomposition m = m1 ⊕ m2 ⊕ m3
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so that m1 = span{e12}, m2 = span{eij : 1 ≤ i, j ≤ n, j 6= 2}, and m3 =
span{ekl : ekl 6= eij}, then the Einstein equation for V2R

n reduces to the same
algebraic system given in Proposition 3. (Simply use the expression (6) for the
Ricci tensor and Lemma 3, where the numbers under the square roots are modified
appropriately). Thus we have obtained

Theorem 2. The Stiefel manifolds V2R
n = SO(n)/SO(n − 2) admit (up to

scale) at least one SO(n)-invariant Einstein metric, explicitly given as y2 = y3 =
n−1
2(n−2)

y1. If the Q-orthonormal basis B is adapted to the decomposition (4) the
way described above, then this metric is unique.

As mentioned earlier there may be additional SO(n)-invariant Einstein metrics
on V2R

n for a different adaption of the basis {eij} to the decomposition (4) (in
fact there are (2n − 3)(n − 2)(2n − 5) such adaptions). Furthermore, the metric
we obtained is not necessarily the same as the one predicted by Sagle [9].
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