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A compact ccc non-separable space from
a Hausdorff gap and Martin’s Axiom

MURRAY BELL

Abstract. We answer a question of I. Juhasz by showing that MA +— CH does not
imply that every compact ccc space of countable m-character is separable. The space
constructed has the additional property that it does not map continuously onto I«1.
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1. Introduction

I. Juhasz [Ju71] has proven that MA (w1) implies that every first countable
compact ccc space is separable. This has been extended by Shapirovskii [Sh72] by
replacing first countable with countable tightness. In Juhasz [Ju77], the question
is raised whether tightness can be replaced by w-character, i.e., whether MA (w1)
implies that every compact ccc space of countable m-character is separable. We
will show not. We present our space as a space whose points are certain ideals
because this is the way that we found it; although the inclined reader should
easily be able to identify the base set as a rather simple subset of 2* x k (where
Kk is a certain regular cardinal > wy) using a Hausdorff gap as a parameter.

2. General theory of total ideal spaces

Let P = |J 24 and put p < ¢ if ¢ extends p. Then (P, =) is a Dedekind
ACw
complete partially ordered set. A subset F' of P is compatible if | JF € P. We

write p || ¢ if {p, q} is compatible and we write p L ¢ if {p, ¢} is not compatible.
A subset Q of P is closed in P if whenever F' is a finite compatible subset of @,
then | J F' € Q. For @Q closed in P, a compatible and closed subset I of @ is called
a total ideal of Q if

(a) JI has domain all of w and

(b) pe I and g € Q with ¢ < p implies q € I.
Let Fin = {p € P : dom(p) is finite}. The parameter for these ideal spaces will
be a closed subset @ of P with Fin C Q. For such a Q, put X(Q)={/C Q: 1
is a total ideal of Q}. Tt is seen that X(Q) is a closed subspace of 29 (where
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2 = {0,1} has the discrete topology, 29 has the product topology, and points
of X(Q) are identified with their characteristic functions). For B C @, put
Bt={IeX(Q):BCI}and B~ ={I € X(Q): BNI = a}. If B={q}, then
we simply write ¢ and ¢~. Then, since Q is closed, a base for X (Q) consists of
the clopen sets g™ N B~ where ¢ € Q and B is a finite subset of {r € Q : ¢ < r}.
We note the helpful facts that

(a) ¢t Ccrtiff r <gq,

(b) ¢t nrt #£oiffq | riff g 1) Ur ' W)IN g O) UrTH(0)] = 2,

(¢) A: X(Q) — 2% given by A\(I) = [ is a continuous surjection.

Put Q = {¢* : ¢ € Q} and for each f € 2¥, let M be the maximal total ideal
{e€eQ:q=f}

Fact 2.1. Q is a Ty-separating, binary m-base of X (Q). Hence, nw(X(Q)) =
cef(Q,2)=min{|D|: DC Q andVqe Q:3de D: (¢ <d)}.

This was proved in [Be88| and [Be89]. Ty-separating and binary are straight-
forward. The fact that Q is a m-base is crucial. The reader will see a proof of this
in Lemma 3.2 where we must prove a little bit more in order to achieve countable
m-character.

Now we show two facts which delineate the kinds of Souslinean examples that
we can get from these ideal spaces.

Fact 2.2. If X(Q) is o-linked, then X (Q) is separable.
If X(Q) is o-linked, then Q = |J Qp where for each n < w, Q, is linked.

n<w
Since Q is binary, by choosing I, € () Qy, for each n < w, we get that {I, : n < w}
is dense in X (@Q).
We refer the reader to Todorcevic [To89] for the definition of the Open Colour-
ing Axiom OCA.

Fact 2.3 (OCA). If X(Q) is ccc, then X(Q) is separable.

For each ¢ € Q put 44 = ¢ (1) and By = ¢ 1(0). Then Aq and By are
disjoint subsets of w. For each ¢ € @) let a4, bg be the characteristic functions of
Aq, By respectively. Let S = {(aq,bq) : ¢ € Q} have the subspace topology from
2¢ x 2¥. Define a partition of [S]? by {(aq,by), (ar,by)} € Ko iff ¢t Nt = &
iff (A; U A;) N (ByUBy) # @. Ko is open in [S]2. Since X(Q) is ccc, there
does not exist a Kg-homogeneous subset of S which has cardinality w;. Hence,
by OCA, Q@ = |J Qn where for every n and for every q,r in Qn, g7 Nrt # &,

n<w
ie., {¢7 : ¢ € Qpn} is linked. We get that Q is o-linked, hence Fact 2.2 implies
that X (Q) is separable.

Remarks: We have learned that Fact 2.3 follows from a more general result
Theorem 10.3* in Todorcevic and Farah [TF95]. We see from Fact 2.3, that if
we want a ccc but not separable space X (Q), then we must be in a model of
set theory contradicting OCA. We did this in [Be89] under CH producing a first
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countable Corson compact space which was ccc but did not have Property K. We
also point out that interesting separable spaces X (Q) of uncountable 7m-weight can
be achieved in every model of set theory. In [Be88], for each regular cardinal
for which there exists a k-chain of clopen sets in Sw \ w, we produced a separable
space X (Q) of m-weight x that did not continuously map onto I“!. So Problem 2
in Shapirovskii [Sh93] has a negative answer. Referring to the last comment in
this paper, it seems that the “last word” in a large part of the theory of compact
spaces has not yet been spoken.

3. The Hausdorff gap space

Our example will use a (k, k) Hausdorff gap where w1 < k = ¢f(k) < ¢. Let
(Aa, Ba)a<rk be such that
Ql: Agy=9=Bgand A, UBy Cw
Q2: a < 3= (Aa C* Ag and B, C* Bg) (strict almost inclusion)
Q3: AuNBy =9
Q4: P A C w such that Vo < k(Aq C* A and By C* w )\ A).
Put Q = {p € P : 3a < s with dom(p) =* Ay U B, and p~1(1) =* Ay}
and let X = X(Q). For each ¢ € Q define 6(¢) = the unique o < x with
dom(q) =* AqUBq and extend ¢ so that § : X — « by 6(I) = sup{d(q) : ¢ € I'}.
This definition of § is well-defined because if I € X, then by Q4, 3a < k such
that either A, ¢* M(I)71(1) or By ¢* M(I)71(0), hence if 6(q) > a, then ¢ ¢ I.

Lemma 3.1. X can be partitioned into ¢ many closed G§ subspaces each of
which is homeomorphic to an ordinal space [0,«] where |« < k. Thus, X is
Gg-scattered (i.e., scattered in the G topology) and so cannot map continuously
onto ¥,

ProOF: Q1-Q4 allows us to easily identify, for each f € 2%, the closed G sub-
space A"L(f). If d(My) is an isolated ordinal or if 6(My) is a limit ordinal which
is not attained (i.e., 6(My) ¢ My), then A"L(f) ~ the ordinal space [0,0(My)].
If §(My) is a limit ordinal which is attained, then ML) = o, 6(My)+1]. Thus,
X is partitioned into ¢ many closed G ordinal subspaces and so every non-empty
subspace of X contains a relative Gg-point. By a result of Shapirovskii [Sh80], X
cannot map continuously onto 1. ([

We now partition @ into horizontal sections. For each o < k put Q% = {q €
Q :(q) = a} and put Q% = {q* : ¢ € Q%}.
Lemma 3.2. For each a < k, Q% is a m-base for {g™ N B~ : §(q) < a}, i.e., for
every q and finite B with ¢t N B~ # @ and §(q) < « there exists r € Q® with
rt cqgtnNB-.
PROOF: Assume ¢q7 N B~ # @ and let §(q) < a. Choose I € ¢* N B~ and put
f=XI). P A={peB:p£Lfland C ={pe B:p= f} For each
p € A choose ny € dom(p) with p(np) # f(np). Put R =dom(q) U{np : p € A}
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and put r = f [ R. Since BN I = &, for each p € C and for each finite
H C w we have that dom(p) ¢ RU H. This implies that we can choose, for each
p € C, an mp € dom(p) \ R such that distinct p’s yield distinct m,’s. Let s have
domain {my, : p € C'} and satisfy that for each p € C, s(mp) # p(mp). Then,
S(rus)=68(r)=0(q) <aand @ # (rus)™ CqtNB~. O

Lemma 3.3. X is ccc.

PROOF: Assume not and choose an uncountable (meaning of cardinality w;
throughout this proof) R C @ such that r Z#sin R=1r L s. Since § : Q — &
is < w-to-1, choose an uncountable R C R such that § | R’ is 1-1. Since
there exist only countably many finite collections of finite subsets of w, choose
an uncountable R” C R’ and finite F, A,G, B, H,C C w such that p € R” and
5(p) = a = dom(p) = (Aa \ F) U (Bs \ G) U H and p~1(1) = (44 \A)UBUC
where F' and A are disjoint subsets of Ay, G and B are disjoint subsets of By,
and H and C are disjoint subsets of w \ (Aq U By). Let E = {§(p) : p € R"}.
Since R consists of pairwise incompatible elements, we see that for a # 3 in
E, (Ao U Ag) N (Ba U Bg) # @. Since cf(x) > w1, choose v < & such that
v > sup(F). Choose n < w and an uncountable K C E such that for each
a € K, Ao \n C Ay and By, \n C By. Since A, N By = @, for every
a # B in K, (Aq U Ag) N (Ba UBg)Nn # @. So we have a finite partition
(K2 = U{{a,8} :i € (Aq U Ag) N (Ba U Bg)}. By Ramsey’s Theorem, get
1EN

j<nanda < <nin K such that {«, 3,7} is homogeneous for j. This contra-
dicts that A, N B, = & for . = «, §, n. Lemma 3.3 is proved.

O

Lemma 3.4. Q is a point—< r collection, i.e., if I € X, then {q" : I € q*} has
cardinality < k. Consequently, X does not have Property Ky, (Q is a collection of
k many clopen sets which does not have a linked subcollection of cardinality k).

PROOF: If I € ¢* for x many ¢’s, then A\(I)~1(1) would fill our Hausdorff gap
(Aw, Ba)a<r contradicting Q4. O

The above lemma tells us that X is not separable and also that X is not the
support of a measure algebra (as these all have Property K, for every regular ).

Lemma 3.5. X has countable w-character.

PRrROOF: Let I € X and put = 6(I). Lemma 3.2 implies that for every neigh-
bourhood ¢t N B~ of I, there exists 7™ € Q% such that »+ C ¢* N B~. Since
|Q%| = w, we are done. O

So, we have shown

Theorem 3.6. If there exists a (k,k) Hausdorff gap where k = cf{k) > wq,
then there exists a compact, ccc, non-separable space X which has countable -
character, character = sup{\ : A < k}, and which does not continuously map
onto I¥!.
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Corollary. MA (w1) does not imply any of the following:

(a) Every compact ccc space of countable m-character is separable.
(b) Every compact ccc space of tightness (or even character) < wj
is separable.
(¢) Every compact ccc non-separable space continuously maps onto I*!.

PROOF: We can apply the theorem because Kunen (cf. Baumgartner [Ba84]) has
proved that Martin’s Axiom is consistent with ¢ = wg + there exists a (w2, ws)
Hausdorff gap. O

The above (a) answers the question of Juhasz [Ju77] (this question was also
repeated on page 209 in Fremlin [Fr84]). The above (b) is a different kind of
example showing that the theorem of Shapirovskii [Sh72]:

MA (w1) = Every compact ccc space of tightness < w; is separable

cannot be improved in the tightness direction. It is quite different from the
first published example (Bell [Be80]); that one was covered by Cantor cubes of
uncountable weight. The above (c) is of interest because of the following: Let
A represent the axiom of Todorcevic “Every compact ccc non-separable space
maps onto [“1”. One use of axiom A is that it resolves several problems in the
literature. S. Todorcevic has shown that A = MA (w;). What we have shown is
that MA (w1) # A.

In conclusion, we mention that the question of whether every model of set
theory contains an example of a compact ccc non-separable space with countable
m-character remains open.
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