A compact ccc non-separable space from a Hausdorff gap and Martin's Axiom

Murray Bell

Abstract. We answer a question of I. Juhasz by showing that MA $+\neg$ CH does not imply that every compact ccc space of countable π -character is separable. The space constructed has the additional property that it does not map continuously onto I^{ω_1} .

Keywords: ccc, non-separable, Hausdorff gap, π -character

Classification: Primary 54D30, 54G20; Secondary 54A25, 54A35

1. Introduction

I. Juhasz [Ju71] has proven that $MA(\omega_1)$ implies that every first countable compact ccc space is separable. This has been extended by Shapirovskii [Sh72] by replacing first countable with countable tightness. In Juhasz [Ju77], the question is raised whether tightness can be replaced by π -character, i.e., whether $MA(\omega_1)$ implies that every compact ccc space of countable π -character is separable. We will show not. We present our space as a space whose points are certain ideals because this is the way that we found it; although the inclined reader should easily be able to identify the base set as a rather simple subset of $2^{\omega} \times \kappa$ (where κ is a certain regular cardinal $> \omega_1$) using a Hausdorff gap as a parameter.

2. General theory of total ideal spaces

Let $P = \bigcup_{A \subset \omega} 2^A$ and put $p \preceq q$ if q extends p. Then (P, \preceq) is a Dedekind complete partially ordered set. A subset F of P is **compatible** if $\bigcup F \in P$. We write $p \parallel q$ if $\{p,q\}$ is compatible and we write $p \perp q$ if $\{p,q\}$ is not compatible. A subset Q of P is **closed** in P if whenever F is a finite compatible subset of Q, then $\bigcup F \in Q$. For Q closed in P, a compatible and closed subset I of Q is called a **total ideal** of Q if

- (a) $\bigcup I$ has domain all of ω and
- (b) $p \in I$ and $q \in Q$ with $q \leq p$ implies $q \in I$.

Let Fin = $\{p \in P : \text{dom}(p) \text{ is finite}\}$. The parameter for these ideal spaces will be a closed subset Q of P with Fin $\subset Q$. For such a Q, put $X(Q) = \{I \subset Q : I \text{ is a total ideal of } Q\}$. It is seen that X(Q) is a closed subspace of 2^Q (where

The author gratefully acknowledges support from NSERC of Canada

590 M. Bell

 $2=\{0,1\}$ has the discrete topology, 2^Q has the product topology, and points of X(Q) are identified with their characteristic functions). For $B\subset Q$, put $B^+=\{I\in X(Q):B\subset I\}$ and $B^-=\{I\in X(Q):B\cap I=\varnothing\}$. If $B=\{q\}$, then we simply write q^+ and q^- . Then, since Q is closed, a base for X(Q) consists of the clopen sets $q^+\cap B^-$ where $q\in Q$ and B is a finite subset of $\{r\in Q:q\prec r\}$. We note the helpful facts that

- (a) $q^+ \subset r^+$ iff $r \leq q$,
- (b) $q^+ \cap r^+ \neq \emptyset$ iff $q \parallel r$ iff $[q^{-1}(1) \cup r^{-1}(1)] \cap [q^{-1}(0) \cup r^{-1}(0)] = \emptyset$,
- (c) $\lambda: X(Q) \longrightarrow 2^{\omega}$ given by $\lambda(I) = \bigcup I$ is a continuous surjection.

Put $Q = \{q^+ : q \in Q\}$ and for each $f \in 2^\omega$, let M_f be the maximal total ideal $\{q \in Q : q \leq f\}$.

Fact 2.1. Q is a T_0 -separating, binary π -base of X(Q). Hence, $\pi w(X(Q)) = cf(Q, \preceq) = \min\{|D| : D \subset Q \text{ and } \forall q \in Q : \exists d \in D : (q \preceq d)\}.$

This was proved in [Be88] and [Be89]. T_0 -separating and binary are straightforward. The fact that Q is a π -base is crucial. The reader will see a proof of this in Lemma 3.2 where we must prove a little bit more in order to achieve countable π -character.

Now we show two facts which delineate the kinds of Souslinean examples that we can get from these ideal spaces.

Fact 2.2. If X(Q) is σ -linked, then X(Q) is separable.

If X(Q) is σ -linked, then $Q = \bigcup_{n < \omega} Q_n$ where for each $n < \omega$, Q_n is linked. Since Q is binary, by choosing $I_n \in \bigcap Q_n$ for each $n < \omega$, we get that $\{I_n : n < \omega\}$ is dense in X(Q).

We refer the reader to Todorcevic [To89] for the definition of the Open Colouring Axiom OCA.

Fact 2.3 (OCA). If X(Q) is ccc, then X(Q) is separable.

For each $q \in Q$ put $A_q = q^{-1}(1)$ and $B_q = q^{-1}(0)$. Then A_q and B_q are disjoint subsets of ω . For each $q \in Q$ let a_q , b_q be the characteristic functions of A_q , B_q respectively. Let $S = \{(a_q, b_q) : q \in Q\}$ have the subspace topology from $2^{\omega} \times 2^{\omega}$. Define a partition of $[S]^2$ by $\{(a_q, b_q), (a_r, b_r)\} \in K_0$ iff $q^+ \cap r^+ = \emptyset$ iff $(A_q \cup A_r) \cap (B_q \cup B_r) \neq \emptyset$. K_0 is open in $[S]^2$. Since X(Q) is ccc, there does not exist a K_0 -homogeneous subset of S which has cardinality ω_1 . Hence, by OCA, $Q = \bigcup_{n < \omega} Q_n$ where for every n and for every q,r in Q_n , $q^+ \cap r^+ \neq \emptyset$,

i.e., $\{q^+: q \in Q_n\}$ is linked. We get that \mathcal{Q} is σ -linked, hence Fact 2.2 implies that X(Q) is separable.

Remarks: We have learned that Fact 2.3 follows from a more general result Theorem 10.3^* in Todorcevic and Farah [TF95]. We see from Fact 2.3, that if we want a ccc but not separable space X(Q), then we must be in a model of set theory contradicting OCA. We did this in [Be89] under CH producing a first

countable Corson compact space which was ccc but did not have Property K. We also point out that interesting separable spaces X(Q) of uncountable π -weight can be achieved in every model of set theory. In [Be88], for each regular cardinal κ for which there exists a κ -chain of clopen sets in $\beta\omega\setminus\omega$, we produced a separable space X(Q) of π -weight κ that did not continuously map onto I^{ω_1} . So Problem 2 in Shapirovskii [Sh93] has a negative answer. Referring to the last comment in this paper, it seems that the "last word" in a large part of the theory of compact spaces has not yet been spoken.

3. The Hausdorff gap space

Our example will use a (κ, κ) Hausdorff gap where $\omega_1 < \kappa = cf(\kappa) \le \mathfrak{c}$. Let $(A_{\alpha}, B_{\alpha})_{\alpha < \kappa}$ be such that

Q1: $A_0 = \emptyset = B_0$ and $A_\alpha \cup B_\alpha \subset \omega$

Q2: $\alpha < \beta \Rightarrow (A_{\alpha} \subset^* A_{\beta} \text{ and } B_{\alpha} \subset^* B_{\beta}) \text{ (strict almost inclusion)}$

Q3: $A_{\alpha} \cap B_{\alpha} = \emptyset$

Q4: $\nexists A \subset \omega$ such that $\forall \alpha < \kappa(A_{\alpha} \subset^* A \text{ and } B_{\alpha} \subset^* \omega \setminus A)$.

Put $Q = \{ p \in P : \exists \alpha < \kappa \text{ with } \operatorname{dom}(p) = A_{\alpha} \cup B_{\alpha} \text{ and } p^{-1}(1) = A_{\alpha} \}$ and let X = X(Q). For each $q \in Q$ define $\delta(q) = \text{the unique } \alpha < \kappa \text{ with } \operatorname{dom}(q) = A_{\alpha} \cup B_{\alpha} \text{ and extend } \delta \text{ so that } \delta : X \longrightarrow \kappa \text{ by } \delta(I) = \sup \{ \delta(q) : q \in I \}.$ This definition of δ is well-defined because if $I \in X$, then by Q(q) : Q(q)

Lemma 3.1. X can be partitioned into $\mathfrak c$ many closed G_{δ} subspaces each of which is homeomorphic to an ordinal space $[0,\alpha]$ where $|\alpha|<\kappa$. Thus, X is G_{δ} -scattered (i.e., scattered in the G_{δ} topology) and so cannot map continuously onto I^{ω_1} .

PROOF: Q1–Q4 allows us to easily identify, for each $f \in 2^{\omega}$, the closed G_{δ} subspace $\lambda^{-1}(f)$. If $\delta(M_f)$ is an isolated ordinal or if $\delta(M_f)$ is a limit ordinal which is not attained (i.e., $\delta(M_f) \notin M_f$), then $\lambda^{-1}(f) \approx$ the ordinal space $[0, \delta(M_f)]$. If $\delta(M_f)$ is a limit ordinal which is attained, then $\lambda^{-1}(f) \approx [0, \delta(M_f) + 1]$. Thus, X is partitioned into \mathfrak{c} many closed G_{δ} ordinal subspaces and so every non-empty subspace of X contains a relative G_{δ} -point. By a result of Shapirovskii [Sh80], X cannot map continuously onto I^{ω_1} .

We now partition Q into horizontal sections. For each $\alpha < \kappa$ put $Q^{\alpha} = \{q \in Q : \delta(q) = \alpha\}$ and put $\mathcal{Q}^{\alpha} = \{q^+ : q \in Q^{\alpha}\}.$

Lemma 3.2. For each $\alpha < \kappa$, Q^{α} is a π -base for $\{q^+ \cap B^- : \delta(q) \leq \alpha\}$, i.e., for every q and finite B with $q^+ \cap B^- \neq \emptyset$ and $\delta(q) \leq \alpha$ there exists $r \in Q^{\alpha}$ with $r^+ \subset q^+ \cap B^-$.

PROOF: Assume $q^+ \cap B^- \neq \emptyset$ and let $\delta(q) \leq \alpha$. Choose $I \in q^+ \cap B^-$ and put $f = \lambda(I)$. Put $A = \{p \in B : p \nleq f\}$ and $C = \{p \in B : p \preceq f\}$. For each $p \in A$ choose $n_p \in \text{dom}(p)$ with $p(n_p) \neq f(n_p)$. Put $R = \text{dom}(q) \cup \{n_p : p \in A\}$

592 M. Bell

and put $r = f \upharpoonright R$. Since $B \cap I = \emptyset$, for each $p \in C$ and for each finite $H \subset \omega$ we have that $dom(p) \not\subset R \cup H$. This implies that we can choose, for each $p \in C$, an $m_p \in dom(p) \setminus R$ such that distinct p's yield distinct m_p 's. Let s have domain $\{m_p : p \in C\}$ and satisfy that for each $p \in C$, $s(m_p) \neq p(m_p)$. Then, $\delta(r \cup s) = \delta(r) = \delta(q) \leq \alpha$ and $\emptyset \neq (r \cup s)^+ \subset q^+ \cap B^-$.

Lemma 3.3. X is ccc.

PROOF: Assume not and choose an uncountable (meaning of cardinality ω_1 throughout this proof) $R \subset Q$ such that $r \neq s$ in $R \Rightarrow r \perp s$. Since $\delta: Q \longrightarrow \kappa$ is $\leq \omega$ -to-1, choose an uncountable $R' \subset R$ such that $\delta \upharpoonright R'$ is 1-1. Since there exist only countably many finite collections of finite subsets of ω , choose an uncountable $R'' \subset R'$ and finite $F, A, G, B, H, C \subset \omega$ such that $p \in R''$ and $\delta(p) = \alpha \Rightarrow \operatorname{dom}(p) = (A_{\alpha} \setminus F) \cup (B_{\alpha} \setminus G) \cup H \text{ and } p^{-1}(1) = (A_{\alpha} \setminus A) \cup B \cup C$ where F and A are disjoint subsets of A_{α} , G and B are disjoint subsets of B_{α} , and H and C are disjoint subsets of $\omega \setminus (A_{\alpha} \cup B_{\alpha})$. Let $E = \{\delta(p) : p \in R''\}$. Since R'' consists of pairwise incompatible elements, we see that for $\alpha \neq \beta$ in $E, (A_{\alpha} \cup A_{\beta}) \cap (B_{\alpha} \cup B_{\beta}) \neq \emptyset$. Since $cf(\kappa) > \omega_1$, choose $\gamma < \kappa$ such that $\gamma > \sup(E)$. Choose $n < \omega$ and an uncountable $K \subset E$ such that for each $\alpha \in K$, $A_{\alpha} \setminus n \subset A_{\gamma}$ and $B_{\alpha} \setminus n \subset B_{\gamma}$. Since $A_{\gamma} \cap B_{\gamma} = \emptyset$, for every $\alpha \neq \beta$ in K, $(A_{\alpha} \cup A_{\beta}) \cap (B_{\alpha} \cup B_{\beta}) \cap n \neq \emptyset$. So we have a finite partition $[K]^2 = \bigcup \{\{\alpha, \beta\} : i \in (A_\alpha \cup A_\beta) \cap (B_\alpha \cup B_\beta)\}$. By Ramsey's Theorem, get j < n and $\alpha < \beta < \eta$ in K such that $\{\alpha, \beta, \eta\}$ is homogeneous for j. This contradicts that $A_{\iota} \cap B_{\iota} = \emptyset$ for $\iota = \alpha, \beta, \eta$. Lemma 3.3 is proved.

Lemma 3.4. \mathcal{Q} is a point— $<\kappa$ collection, i.e., if $I \in X$, then $\{q^+ : I \in q^+\}$ has cardinality $<\kappa$. Consequently, X does not have Property K_{κ} (\mathcal{Q} is a collection of κ many clopen sets which does not have a linked subcollection of cardinality κ).

П

PROOF: If $I \in q^+$ for κ many q's, then $\lambda(I)^{-1}(1)$ would fill our Hausdorff gap $(A_{\alpha}, B_{\alpha})_{\alpha < \kappa}$ contradicting Q4.

The above lemma tells us that X is not separable and also that X is not the support of a measure algebra (as these all have Property K_{κ} for every regular κ).

Lemma 3.5. X has countable π -character.

PROOF: Let $I \in X$ and put $\alpha = \delta(I)$. Lemma 3.2 implies that for every neighbourhood $q^+ \cap B^-$ of I, there exists $r^+ \in \mathcal{Q}^{\alpha}$ such that $r^+ \subset q^+ \cap B^-$. Since $|\mathcal{Q}^{\alpha}| = \omega$, we are done.

So, we have shown

Theorem 3.6. If there exists a (κ, κ) Hausdorff gap where $\kappa = cf(\kappa) > \omega_1$, then there exists a compact, ccc, non-separable space X which has countable π -character, character = $\sup\{\lambda : \lambda < \kappa\}$, and which does not continuously map onto I^{ω_1} .

Corollary. MA(ω_1) does not imply any of the following:

- (a) Every compact ccc space of countable π -character is separable.
- (b) Every compact ccc space of tightness (or even character) $\leq \omega_1$ is separable.
- (c) Every compact ccc non-separable space continuously maps onto I^{ω_1} .

PROOF: We can apply the theorem because Kunen (cf. Baumgartner [Ba84]) has proved that Martin's Axiom is consistent with $\mathfrak{c} = \omega_2 + \text{there exists a } (\omega_2, \omega_2)$ Hausdorff gap.

The above (a) answers the question of Juhasz [Ju77] (this question was also repeated on page 209 in Fremlin [Fr84]). The above (b) is a different kind of example showing that the theorem of Shapirovskii [Sh72]:

 $\operatorname{MA}(\omega_1) \Rightarrow \operatorname{Every}$ compact ccc space of tightness $<\omega_1$ is separable cannot be improved in the tightness direction. It is quite different from the first published example (Bell [Be80]); that one was covered by Cantor cubes of uncountable weight. The above (c) is of interest because of the following: Let \mathbf{A} represent the axiom of Todorcevic "Every compact ccc non-separable space maps onto I^{ω_1} ". One use of axiom \mathbf{A} is that it resolves several problems in the literature. S. Todorcevic has shown that $\mathbf{A} \Rightarrow \operatorname{MA}(\omega_1)$. What we have shown is that $\operatorname{MA}(\omega_1) \Rightarrow \mathbf{A}$.

In conclusion, we mention that the question of whether every model of set theory contains an example of a compact ccc non-separable space with countable π -character remains open.

References

- [Ba84] Baumgartner J.E., Applications of the Proper Forcing Axiom, Handbook of Set-Theoretic Topology, editors K. Kunen and J. Vaughan, North-Holland, 1984, pp. 913–959.
- [Be80] Bell M., Compact ccc non-separable spaces of small weight, Topology Proceedings 5 (1980), 11–25.
- [Be88] Bell M, G_{κ} subspaces of hyadic spaces, Proc. Amer. Math. Soc. **104**, No. 2 (1988), 635–640.
- [Be89] Bell M., Spaces of Ideals of Partial Functions, Set Theory and its Applications, Lecture Notes in Mathematics 1401, Springer-Verlag, 1989, pp. 1–4.
- [Fr84] Fremlin D.H., Consequences of Martin's Axiom, Cambridge Tracts in Mathematics 84, Cambridge University Press, 1984.
- [Ju71] Juhasz I., Cardinal Functions in Topology, Mathematical Centre Tracts 34, Mathematisch Centrum, Amsterdam, 1971.
- [Ju77] Juhasz I., Consistency Results in Topology, Handbook of Mathematical Logic, editor J. Barwise, North-Holland, 1977, pp. 503-522.
- [Sh72] Shapirovskii B., On separability and metrizability of spaces with Souslin condition, Soviet Math. Dokl. 13 (1972), 1633–1637.
- [Sh80] Shapirovskii B., Maps onto Tikhonov cubes, Russ. Math. Surv. 35.3 (1980), 145–156.
- [Sh93] Shapirovskii B. (presented by P.Nyikos and J.Vaughan), The Equivalence of Sequential Compactness and Pseudoradialness in the Class of Compact T₂ Spaces, Assuming CH,

594 M. Bell

Papers on General Topology and Applications, Annals of the New York Academy of Sciences **704**, 1993, pp. 322–327.

[To89] Todorcevic S., Partition Problems in Topology, Contemporary Mathematics 84, American Mathematical Society, Providence, Rhode Island, 1989.

[TF95] Todorcevic S., Farah I., Some Applications of the Method of Forcing, Yenisey Publ. Co., Moscow, 1995.

Department of Mathematics, University of Manitoba, Fort Garry Campus, Winnipeg R3T 2N2, Canada

E-mail: mbell@cc.umanitoba.ca

(Received January 19, 1996)