The G_{δ} -topology and incompactness of ω^{α}

ISAAC GORELIC

Abstract. We establish a relation between covering properties (e.g. Lindelöf degree) of two standard topological spaces (Lemmas 4 and 5). Some cardinal inequalities follow as easy corollaries.

Keywords: Lindelöf degree, G_{δ} topology, cardinal functions Classification: 54D20, 45B10

The present note is a contribution into the study of the Lindelöf degree in powers of topological spaces. It answers a question of W.A.R. Weiss.

In what follows, $\kappa^* \subset \beta \kappa$ is the space of all free ultrafilters over a discrete set of κ points, $\mu \kappa \subset \beta \kappa$ is the space of all *uniform* ultrafilters over κ , ω^{α} denotes the α -th power of the discrete set of integers, $(\mu \kappa, G_{\delta})$ is $\mu \kappa$ with the finer G_{δ} topology. L(X) denotes the Lindelöf degree of X, and $e(X) := \sup\{A \subset X : A \text{ is}$ closed and discrete} — its *extent*.

Kenneth Kunen ([1]) proves $L(\mu(2^{\kappa})^+, G_{\delta}) \geq \kappa^+$, for the same κ 's as in our Corollary 6. Our Corollary 6 gives here

$$L(\mu(2^{\kappa})^+, G_{\delta}) \ge (2^{\kappa})^+.$$

J. Mycielski proved ([2]), by inductive "stepping up", that, for α less than the 1^{st} weakly inaccessible cardinal,

$$e(\omega^{\alpha}) = \alpha$$

Our Corollary 9 is a weaker statement for a larger class of cardinals. This Corollary was obtained first by Loś [3] in 1959 using group-theoretic methods. See also Juhàsz [4].

Stevo Todorcevič ([5]) proves, assuming the combinatorial statement \Box_{κ} ,

$$L(\omega^{\kappa}) = \kappa.$$

1. If $\mathcal{A} = \{A_n : n < \omega\}$ is a countable disjoint partition of the cardinal κ , then

$$\mu \kappa = \left(\bigcup_{n < \omega} S_n^{\mathcal{A}}\right) \dot{\cup} \left(\tilde{S}^{\mathcal{A}}\right), \text{ where}$$
$$S_n^{\mathcal{A}} = \left\{ u \in \mu \kappa : A_n \in u \right\} \text{ and}$$
$$\tilde{S}^{\mathcal{A}} = \left\{ u \in \mu \kappa : \left\{\bigcup_{n \ge i} A_n : i < \omega\right\} \subset u \right\}$$

Note that $\tilde{S}^{\mathcal{A}}$ is a G_{δ} set in $\mu \kappa$.

2. We say that a cover of κ^* or of $\mu\kappa$ is a *proper* G_{δ} -cover if every set in it is of the form $\tilde{S}^{\mathcal{A}}$ for some countable partition \mathcal{A} of κ .

3. Lemma. If κ is a regular cardinal and $\mu\kappa$ has a proper G_{δ} -cover of size α , then ω^{α} has a subset of size κ without a CAP (complete accumulation point).

PROOF: Suppose $\mu \kappa = \bigcup \{ \tilde{S}^{\mathcal{A}^{\gamma}} : \gamma < \alpha \}$ for some collection $\mathcal{C} = \{ \mathcal{A}^{\gamma} : \gamma < \alpha \}$ of countable partitions $\mathcal{A}^{\gamma} = \{ A_n^{\gamma} : n < \omega \}$ of κ . For every point $p \in \kappa$ define its history in $\mathcal{C} \ \bar{p} : \alpha \longrightarrow \omega$ by setting $\bar{p}(\gamma) := n$ such that $p \in A_n^{\gamma}$. Let $P = \{ \bar{p} : p < \kappa \} \subset \omega^{\alpha}$.

Claim 1. $|P| = \kappa$, moreover, for every $p \in \kappa$, $K_p := \{q \in \kappa : \bar{q} = \bar{p}\}$ has size $|K_p| < \kappa$. Indeed, if not, then no $v \ni K_p$ is covered:

$$\forall \gamma < \alpha \ v \notin \tilde{S}^{A^{\gamma}},$$

because

$$v \in S^{A^{\gamma}}_{\bar{p}(\gamma)}$$

And $|P| = \kappa$ follows from the regularity of κ .

Claim 2. *P* has no CAP in ω^{α} . If not, let $\varphi \in \omega^{\alpha}$ be a CAP of *P*. Then for every finite $F \subset \alpha$

$$|\{p<\kappa:\bar{p}\restriction F=\varphi\restriction F\}|=\kappa,$$

by Claim 1.

Therefore, the family $\mathcal{F} := \{A_{\varphi(\gamma)}^{\gamma} : \gamma < \alpha\}$ has the uniform finite intersection property (i.e. $\forall \mathcal{F}_0 \in [\mathcal{F}]^{<\aleph_0} \mid \cap \mathcal{F}_0 \mid = \kappa$). [By $\bar{p} \upharpoonright F = \varphi \upharpoonright F \longleftrightarrow p \in \bigcap_{\gamma \in F} A_{\varphi(\gamma)}^{\gamma}$].

Pick a $u \in \mu \kappa$ extending \mathcal{F} .

Then $u \notin \bigcup_{\gamma < \alpha} \tilde{S}^{A^{\gamma}} = \mu \kappa$. Contradiction. Hence $P \subset \omega^{\alpha}$ has no CAP in ω^{α} , so it is as required.

4. Lemma. If κ^* has a proper G_{δ} -cover of size α , then ω^{α} has a closed discrete subset of size κ .

PROOF: Here we, similarly, study the family P of the histories of points $p \in \kappa$ in the family of partitions of κ defining our proper G_{δ} -cover, in this case of κ^* . Only finitely many points $p \in \kappa$ may have the same history, so $|P| = \kappa$, and, arguing as in Claim 2 of the previous lemma, $P \subset \omega^{\alpha}$ has no limit points in ω^{α} whatsoever.

5. Theorem. If κ is a regular not Ulam measurable cardinal, then

$$L(\omega^{L(\mu\kappa,G_{\delta})}) \geq \kappa.$$

6. Corollary. $L(\mu\kappa, G_{\delta}) \geq \kappa$, for the same κ 's.

PROOF OF THEOREM 5 AND COROLLARY 6: Since every ultrafilter over κ is countably incomplete, there is a proper G_{δ} cover of $\mu\kappa$, and so $L(\mu\kappa, G_{\delta}) = \alpha \Rightarrow$ there is a proper G_{δ} -cover of size $\alpha \Rightarrow$ (By Lemma 3) ω^{α} has a subset of size κ without a CAP \Rightarrow

(a)
$$L(\omega^{\alpha}) \geq \kappa$$
, and

(b) $\alpha \ge \kappa$ (because $\alpha \ge L(\omega^{\alpha})$).

7. Corollary. $L(\omega^{2^{\kappa}}) \geq \kappa$, for the same κ 's as in Theorem 5.

PROOF: $(\mu\kappa, G_{\delta})$ has a base of size $(2^{\kappa})^{\omega} = 2^{\kappa}$. Hence $L(\mu\kappa, G_{\delta}) \leq 2^{\kappa}$ and so $L(\omega^{2^{\kappa}}) \geq L(\omega^{L(\mu\kappa, G_{\delta})}) \geq \kappa$.

8. Theorem. . If κ is not Ulam measurable, then

$$L(\kappa^*, G_{\delta}) \ge L(\omega^{L(\kappa^*, G_{\delta})}) \ge e(\omega^{L(\kappa^*, G_{\delta})}) \ge \kappa.$$

PROOF: Immediate from Lemma 4.

9. Corollary. If $\kappa < 1^{st}$ measurable cardinal, then

$$e(\omega^{2^{\kappa}}) \ge \kappa,$$

i.e. $\omega^{2^{\kappa}}$ has a closed discrete subspace of size κ .

PROOF: Same as of Corollary 7.

10. Corollary. Let λ be a strong limit cardinal \leq the 1st measurable cardinal. Then the set $\{e(\omega^{\alpha}) : \alpha < \lambda\}$ is cofinal in λ . Hence, if $cf(\lambda) > \omega$, the set $\{\alpha < \lambda : e(\omega^{\alpha}) = \alpha\}$ is closed and unbounded in λ .

Remark. Murray Bell observed that the converses of Lemmas 3 and 4 are also true.

Acknowledgement. The author is very grateful to Professor William Weiss for many useful discussions.

I. Gorelic

References

- [1] Kunen K., Box products of ordered spaces, Topology and its applications 20 (1985).
- [2] Mycielski J., $\alpha\text{-incompactness of }N^{\alpha},$ Bull. Acad. Pol., vol. XII, no. 8, 1964.
- [3] Loś J., Linear equations and pure subgroups, Bull. Acad. Polon. Sci. 7 (1959).
- [4] Juhàsz I., On closed discrete subspaces of product spaces, Bull. Acad. Pol., vol. XVII, no. 4, 1969.
- [5] Todorcevič S., *Incompactness of* \mathbb{N}^{θ} , Handwritten notes, 1990.

UNIVERSITY OF TORONTO, CANADA

(Received July 19, 1995)