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On finite powers of countably compact groups

Artur Hideyuki Tomita

Abstract. We will show that underMAcountable for each k ∈ N there exists a group whose
k-th power is countably compact but whose 2k-th power is not countably compact. In
particular, for each k ∈ N there exists l ∈ [k,2k) and a group whose l-th power is
countably compact but the l+ 1-st power is not countably compact.

Keywords: countable compactness, MAcountable, topological groups, finite powers

Classification: 54D20, 54H11, 54B10, 54A35, 22A05

1. Introduction

In 1966, Comfort and Ross [4] proved that the product of pseudocompact
groups is pseudocompact. This motivated the question whether the same would
be true for countably compact groups, as every countably compact space is pseu-
docompact and normal pseudocompact spaces are countably compact. We recall
that there are countably compact spaces whose square is not even pseudocompact.
The first counterexample was obtained by van Douwen [5] in 1980. He showed

under MA the existence of two countably compact groups whose product is not
countably compact. He also showed that the existence of an initially ω1-compact
group whose square is countably compact is independent of c = ℵ2. In 1991, Hart
and van Mill showed under MAcountable the existence of a countably compact
group whose square is not countably compact.
It is still open whether there exists in ZFC, a family of countably compact

groups whose product is not countably compact. We recall (see [2]) that the
product of a family of spaces is countably compact if and only if the product
of any subfamily of size at most 2c is countably compact. In particular a group
has every power countably compact if and only if the 2c-th power is countably
compact.
This motivated the following question in [2]: For which cardinals κ < 2c (not

necessarily infinite) there exists a group G such that for each λ < κ, Gλ is count-

ably compact but Gκ is not countably compact?

In [9], we showed that there exists underMA(σ-centered), a countably compact
free abelian group whose square is not countably compact. This construction used
ideas from [5] and [8]. We also showed that there is no free abelian group whose
ω-th power is countably compact.

This work has been partially supported by the Conselho Nacional de Pesquisa of Brazil –
CNPq
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In [10], we showed that under MAcountable there exists a group whose square
is countably compact but whose cube is not countably compact. We also showed
under MAcountable that for each k ∈ N there exists a family {Hn : n ∈ ω } of
groups such that for each subset F of ω of size k, the group

∏
n∈F Hn is countably

compact but for each subset F of ω of size k + 1, the group
∏

n∈F Hn is not
countably compact. We used the idea from Hart and van Mill [7] of constructing
a group which was generated by a countable group and an ω-bounded group but
unlike theirs, which was generated by an ω-independent family, we use the group
of all functions in 2c whose support is bounded in c.
This work is closely related to some results in my Ph.D thesis but were obtained

few months after my graduation. I would like to thank my supervisor, Prof. Steve
Watson, for his guidance and encouragement through my years at York University.

2. Countable compactness and finite product of groups

During this section we will fix k ∈ N. Our goal is to show the following:

Example 2.1 (MAcountable). There exists a countable subgroup E of 2c such
that the group H generated by E and G = { x ∈ 2c : supp x is bounded in c } is

such that Hk is countably compact but H2
k
is not countably compact.

Note that for k = 1 we have a group as Hart and van Mill’s [7], that is, a count-
ably compact group whose square is not countably compact under MAcountable.
One can ask why there exists such a gap between the power we know it is

countably compact and the power we know it is not countably compact. To
explain that we go back to our construction (see [10]) of a family {Hn : n ∈ ω}
of groups whose product of k many distinct elements of this family is countably
compact but the product of k + 1 many distinct ones is not. Each Hn was
generated by a countable group En and G (the same G defined above). To prove
the countable compactness we concluded it was sufficient to prove that certain
sequences in

∏
n∈F En had an accumulation point, where F was a subset of ω of

size at most k. Those sequences were shown to have an accumulation point with
the help of dense subsets of our partial order and the fact that we did not ask
the En’s to be the same were essential to have the density of the sets associated
to those sequences. Since all the sequences we had to guarantee an accumulation
point were from a product of at most k groups, we could produce for each product
of k + 1 many groups a sequence witnessing that this product is not countably
compact.
Here, we do want the same countable group, so the sequences which we will

have to guarantee an accumulation point with the help of a partial order will be in
some El, where l ≤ 2k −1. Thus a power we could find a closed discrete sequence
was the 2k-th one. Doing a more careful examination of the sequences which
suffices to guarantee an accumulation point to obtain the countable compactness
of Hk, it is very likely that we can obtain a smaller interval than [k, 2k). For
instance, for k = 2 we had obtained a group whose square is countably compact
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but whose cube is not ([10]). For k = 3, the Example 2.1 tells us there exists H
such that H3 is countably compact but H8 is not. A more careful examination
could give us a group H whose cube is countably compact but the fifth power is
not.

The construction is divided in a few lemmas. First we will show which are
the sequences that will suffice to guarantee an accumulation point. We follow up
with the sketch of how the inductive construction of the set of generators for the
countable group E is done. We will then give some definitions and enumerations
needed to define precisely the inductive construction. Finally we will define the
partial order and the dense sets.

Lemma 2.1. For each sequence {{F i
n}i∈k : n ∈ ω }, where F i

n ∈ [ω ]<ω there

exists a sequence {{Sj
n}j∈2k−1 : n ∈ ω } and {Ai : i ∈ k } satisfying the following

properties:

(1) for each j ∈ 2k−1 and for each n ∈ ω the set S
j
n is a finite subset of ω and

for each n ∈ ω the set {Sj
n : j ∈ 2k − 1} is a family of pairwise disjoint

sets;

(2) for each i ∈ k the set Ai is a finite subset of 2
k − 1 and for each n ∈ ω we

have F i
n =

⋃
j∈Ai

S
j
n.

Proof: The proof is easy and is left to the reader �

Lemma 2.2. Let G be an ω-bounded subgroup of 2c. Let E be a countable
subgroup of 2c and let {xm : m ∈ ω} be a set of generators for E. Suppose

that every sequence {{
∑

m∈Ei
n

xm}i∈l : n ∈ ω } has an accumulation point in Gl,

where {{Ei
n}i∈l : n ∈ ω } is a sequence satisfying the following properties:

(a) the natural number l belongs to the interval [1, 2k);

(b) for each j ∈ l and for each n ∈ ω the set Ej
n is a finite subset of ω and for

each n ∈ ω the set {Ej
n : j ∈ l} is a family of pairwise disjoint sets;

(c) for each j ∈ l and for each n, m ∈ ω distinct we have Ej
n 6= Ej

m.

Then the group H = E +G has the k-th power countably compact.

Proof: Let {{hi
n}i∈k : n ∈ ω } be an arbitrary sequence in Hk. For each i ∈ k

and for each n ∈ ω let ei
n ∈ E and gi

n ∈ G be such that hi
n = ei

n + gi
n. Since X

generates E, for each i ∈ k and for each n ∈ ω, there exists F i
n ∈ [ω ]<ω such that

ei
n =

∑
m∈F i

n
xm.

Applying Lemma 2.1, there exist a family {{Sj
n}j∈2k−1 : n ∈ ω } and a family

{Ai : i ∈ k} satisfying the properties (1) and (2) from Lemma 2.1.
It is easy to see that by 2k − 1 many refinements of ω, one can find an infinite

subset N of ω such that for each j ∈ 2k − 1 the sequence ~Sj = {Sj
n : n ∈ N} is

either constant or its elements are pairwise distinct. Let J = {j ∈ 2k − 1 : ~Sj is

not constant}. The sequence {{Sj
n}j∈J : n ∈ N} satisfies the conditions (a)-(c),
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therefore, the sequence {{
∑

m∈S
j
n

xm}j∈J : n ∈ N} has an accumulation point

in GJ . Thus, the sequence {{
∑

m∈S
j
n

xm}j∈2k−1 : n ∈ N} has an accumulation

point {gj}j∈2k−1 in H2
k−1. Let p be a free ultrafilter on N such that {gj}j∈2k−1

is a p-limit of {{
∑

m∈S
j
n

xm}j∈2k−1 : n ∈ N}.

Then, clearly for each i ∈ k the sequence {ei
n : n ∈ N} = {

∑
m∈F i

n
xm : n ∈

N} = {
∑

j∈Ai
(
∑

m∈S
j
n

xm) : n ∈ N} has
∑

j∈Ai
gj ∈ H as p-limit. Therefore

{{ei
n}i∈k : n ∈ N} has a p-limit in Hk. Since Gk is ω-bounded, the sequence

{{gi
n}i∈k : n ∈ N} has a p-limit. Thus {{hi

n}i∈k : n ∈ N} = {{ei
n}i∈k+{g

i
n}i∈k :

n ∈ N} has a p-limit, since the sum of the p-limits of sequences is the p-limit of
the sum of sequences. Therefore {{hi

n}i∈k : n ∈ N} has an accumulation point

in Hk and we are done. �

Let us see now how we obtain a sequence in H2
k
which does not have an

accumulation point in H2
k
:

Lemma 2.3. Let l be a positive integer. Let E be a countable subgroup of 2c

and let {xn : n ∈ ω} be a subset of E. Let G be the subgroup of all the elements
in 2c whose support is bounded in c and let H be the subgroup generated by

E and G. Suppose that for each l-uple {ei}i∈l in El there exist c many β’s in

c such that {n ∈ ω : ∀ i ∈ l ei(β) = xln+i(β)} is finite. Then the sequence

{{xln+i}i∈l : n ∈ ω} does not have an accumulation point in H l.

Proof: A similar proof appeared in [10], where l was 3. In this work we will be

interested in l = 2k. For completeness sake we will give the proof.
Let {hi}i∈l be any element of H

l. It is sufficient to show that there exists β ∈ c

such that {n ∈ ω : ∀ i ∈ l hi(β) = xln+i(β)} is finite, since {{y
i}i∈l ∈ H l : ∀ i ∈

l hi(β) = yi(β)} is an open neighbourhood of {hi}i∈l.

Since H = E + G, for each i in l there exists ei ∈ E and gi ∈ G such that
hi = ei + gi. Since

⋃
{supp gi : i ∈ l} is bounded in c, by hypothesis there exists

β > sup
⋃
{supp gi : i ∈ l} such that {n ∈ ω : ∀ i ∈ l ei(β) = xln+i(β)} is finite.

We are done, since for each i ∈ l we have hi(β) = ei(β) + gi(β) = ei(β). �

Instead of constructing the countable group directly, we will construct a set of
generators X = {xn : n ∈ ω} for E. The construction of X is by induction and
at each stage γ + 1 ∈ [ω, c ) we will define, for each n ∈ ω, the value of xn at γ.
To be more precise, for each n ∈ ω, we will construct a family {xα,n : ω ≤ α ≤ c}
such that xα,n ∈ 2α and for each α < β, xα,n = xβ,n ↾ α. We then define xn to
be xc,n. Let us see now what are the properties we want the family {xα,n : n ∈
ω, ω ≤ α ≤ c} to satisfy during the inductive construction.
First, note that we can code every element of El, l ∈ ω, using a sequence in

([ω]<ω)l and the restriction of such function will have the same coding. More
precisely, if ei

n ∈ E, then there exists F i
n ∈ [ω]<ω such that

∑
m∈F i

n
xm = ei

n

and for each γ ≤ c, we have
∑

m∈F i
n

xm ↾ γ = ei
n ↾ γ. We will deal a lot with
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restrictions of functions so it is reasonable to introduce the following

Definition 2.1. Let {xα,n : ω ≤ α, n ∈ ω} be a family defined as above, then
for each F ∈ [ω ]<ω and for each γ < c, we define σγ(F ) =

∑
m∈F xγ,m.

To obtain the countable compactness of the k-th power, it suffices to obtain
accumulation points for the sequences in the hypothesis of Lemma 2.2. As we
mentioned above at stage γ, we only know the restriction of each xn to γ so we
only know the sequence restricted to γ.

What will make possible to guarantee an accumulation point for a sequence
{{ei

n}i∈l : n ∈ ω} by induction is the fact that {gi}i∈l is an accumulation point

for {{ei
n}i∈l : n ∈ ω} if and only if for each γ < c we have that {gi ↾ γ}i∈l is an

accumulation point for {{ei
n ↾ γ}i∈l : n ∈ ω}. In fact, what we said above holds

for any limit ordinal, that is, if α is a limit ordinal smaller or equal to c then we
have that {gi ↾ α}i∈l is an accumulation point for {{ei

n ↾ α}i∈l : n ∈ ω} if and
only if for each γ < α we have that {gi ↾ γ + 1}i∈l is an accumulation point for

{{ei
n ↾ γ + 1}i∈l : n ∈ ω}.

Therefore we have only to worry about making sure the restriction of the
sequence coded has the restriction of the fixed function as an accumulation point
in the successor ordinals. We will use a dense set from a partial order to guarantee
an accumulation point for the sequences at these stages.

In order to apply MAcountable, we must have less than c many dense sets at a
time, but the number of sequences that need our attention to have an accumula-
tion point is c. For that we use ideas which appeared in van Douwen [5]: we list
the code of all sequences we have to worry about in length c and at each stage
γ we only worry about the sequences which are indexed by an ordinal smaller
than γ. Once it comes the time to worry about the sequence we fix, as in Hart
and van Mill [7], an accumulation point for it (the accumulation point for the
sequence can be completely defined at this point, though the whole sequence will
only be known at the end of the construction. We recall that in van Douwen’s
construction he would fix the coding of the accumulation point, not the accu-
mulation point). From that stage on, we have to keep the promise about the
restriction of the accumulation point fixed being actually an accumulation point
for the sequence associated to the coding in that stage.

Let us discuss now how to make by induction the 2k-th power not countably
compact. It suffices to enumerate every 2k-uple {F j}j∈2k of finite subsets of ω

such that each of them appears c many times in the enumeration. Then at stage
γ+1 we pick the {F j}j∈2k whose index is γ in the fixed the enumeration and we

will make the set {n ∈ ω : ∀ j ∈ 2k xγ+1,2kn+j(γ) = σγ+1(F
j)(γ)} finite. Clearly

E generated by {xc,n : n ∈ ω} satisfies the conditions in Lemma 2.3 for l = 2k.

Let us resume now what we have concluded so far. Before, we will fix the two
enumerations we mentioned above.
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Fixing two enumerations

Let {~Sα : ω ≤ α < c} be an enumeration of all sequences satisfying conditions

(a)-(c) from Lemma 2.2. For each α ∈ [ω, c) the sequence ~Sα will also be denoted

by {{Sj
α,n}j∈lα : n ∈ ω}.

Let {{gi
α}i<2k : ω ≤ α < c} be an enumeration of ([ω ]<ω)2

k
such that each

element appears c many times.

Lemma 2.4. Suppose that {xα,n : ω ≤ α ≤ c, n ∈ ω} and {{hi
α}i∈lα : ω ≤ α <

c} are such that the following are satisfied:

(1) for each α ≤ c and n ∈ ω, the function xα,n is an element of 2
α and for

each α < β ≤ c we have xα,n ⊆ xβ,n;

(2) for each α < c and for each i < lα, the function hi
α is a function in 2

c whose

support is bounded in c and for each β such that ω ≤ β < α < c the lβ-uple

{hi
β ↾ α}i∈lβ is an accumulation point of {{σα(S

j
β,n
)}j∈lβ : n ∈ ω};

(3) for each α ∈ [ω, c) the set {n ∈ ω : ∀ j ∈ 2k xα+1,2kn+j(α) =

σα+1(g
j
α)(α)} is finite.

Then the group generated by {xc,n : n ∈ ω} and G = {x ∈ 2c : supp x is

bounded in c} is such that the k-th power is countably compact but the 2k-th
power is not countably compact.

Therefore, we will be done with our construction if we show the following:

Lemma 2.5 (MAcountable). There exist a family {xα,n : ω ≤ α ≤ c, n ∈ ω} and

a family {{hi
α}i∈lα : ω ≤ α < c} satisfying the hypothesis of Lemma 2.4.

Proof: The construction of the xα,n’s is by induction on α.
At stage ω, for each n ∈ ω let xω,n be any element of 2

ω.
At stage α limit and bigger than ω, let xα,n =

⋃
ω≤β<α xβ,n.

Clearly in both cases the conditions (1)–(3) are satisfied.
At stage α = γ + 1:
First, let {yi}i∈lγ ∈ (2γ)lγ be an accumulation point of the sequence

{{σγ(S
i
γ,n)}i∈lγ : n ∈ ω}. Note that such accumulation point exists, since the

sequence {{σγ(S
i
γ,n)}i∈lγ : n ∈ ω} is contained in the compact space (2γ)lγ .

Now, define {hi
γ}i∈lγ ∈ (2c)lγ so that for each i ∈ lγ , we have hi

γ = yi ∪ 0 ↾ [ γ, c).
We will be done in this case if we construct a function φ as follows:

Lemma 2.6. Suppose that there exists a function φ : ω −→ 2 such that for each
β ≤ γ and for each F ∈ [ γ ]<ω the set {n ∈ ω : {σγ(S

i
β,n) ↾ F}i∈lβ = {hi

β ↾

F}i∈lβ and ∀ i ∈ lβ hi
β(γ) =

∑
m∈Si

β,n
φ(m)} is infinite. Furthermore suppose

that {n ∈ ω : ∀ i ∈ 2k φ(2kn+ i) =
∑

m∈gi
γ

φ(m)} is finite.

Then xγ+1,n = xγ,n ∪ {〈γ, φ(n)〉} will satisfy the inductive conditions.
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The proof of Lemma 2.6 is just a rewriting of the conditions (1)–(3) for the
successor case and it is left for the reader. We will construct φ later, as we still
need to define a partial order and some dense sets. �

Before we give the precise definition of the partial order and the dense sets we
will use, let us give a rough idea.
To construct φ, we will use finite approximations, that is, the elements of

the partial order will be a function from a finite subset of ω into 2. To keep the
promise about the accumulation points, it will be sufficient to use some dense sets.
The ordering we give will guarantee that the set {n ∈ ω : ∀ i ∈ 2k φ(2kn + i) =∑

m∈gi
γ

φ(m)} is finite. For a technical reason, we will already fix the values which

φ will have at
⋃

i∈2k gi
γ .

Let r be a function from 2kn̄ into 2, where 2kn̄ ⊇
⋃

i∈2k gi
γ .

Definition 2.2. Let P be the set of all functions p from 2kn into 2, where n ∈ ω,
such that p ⊇ r.
Given p ∈ P, we denote by Kp the element of ω such that 2

kKp = dom p. Then
the ordering is defined as follows:

p < q if and only if p ⊇ q and for each n ∈ [Kq, Kp) there exists i ∈ 2k such

that p(2kn+ i) 6=
∑

m∈gi
γ

r(m).

Before starting the discussion about the dense sets we will use, we fix the
following notation:

Definition 2.3. For each β ≤ γ and for each F ∈ [ γ ]<ω let S(β, F ) be the set
of all n’s in ω such that {σγ(S

i
β,n) ↾ F}i∈lβ = {hi

β ↾ F}i∈lβ . Note that S(β, F )

is exactly the set of indexes of the elements of the sequence which are inside the
open neighbourhood {{xi}i∈lβ ∈ 2γ : ∀ i ∈ lβ xi ↾ F = hi

β ↾ F} of {hi
β}i∈lβ .

Let {S(β, F, m) : m ∈ ω} be a partition of S(β, F ) into infinite many pieces of
infinite size.

From Lemma 2.6, we will be done if we show that for each F ∈ [ γ ]<ω and for

each β ≤ γ the set {n ∈ S(β, F ) : ∀ i ∈ lβ hi
β(γ) =

∑
m∈Si

β,n
φ(m)} is infinite.

For this, it is enough to show that for each m ∈ ω the set {n ∈ S(β, F, m) : ∀ i ∈
lβ hi

β(γ) =
∑

m∈Si
β,n

φ(m)} is not empty.

Let S = {S(β, F, m) : β ≤ γ, F ∈ [κ ]<ω and m ∈ ω}. We are now ready to
define the dense sets associated to the accumulation points for the sequences:

Definition 2.4. For each S = S(β, F, m) ∈ S and for each ~v ∈ 2lβ , we define
E(S,~v) = {p ∈ P : ∃n ∈ S such that p ⊇

⋃
i∈lβ

Si
β,n and

∀ i ∈ lβ
∑

m∈Si
β,n

p(m) = ~v(i)}.

Besides these dense sets, we will need some other dense sets to make sure that
the domain of φ is ω:
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Definition 2.5. For each n ∈ ω let Dn = {p ∈ P : n ∈ dom p}.

We are close to finish our construction now:

Lemma 2.7. Suppose that the filter G meets each E(S,~v), where S = S(β, F, m)

∈ S and ~v ∈ 2lβ and also meets each Dn, where n ∈ ω. Then φ =
⋃

G satisfies

the conditions from Lemma 2.6.

Proof: Since G is a filter, each two members of G have a common extension in
G, therefore

⋃
G = φ is a function from a subset of ω into 2.

Let n be an element of ω. We want to show that n ∈ dom φ. By hypothesis,
there exists p ∈ G ∩ Dn, that is, n ∈ dom p ⊆ φ. Therefore, the domain of φ is ω.
We have seen that to show that for each β ≤ γ the sequence in 2γ+1 associated

to Sβ has {h
i
β ↾ γ + 1}i∈lβ as accumulation point, it suffices to show that for

each F ∈ [ γ ]<ω and for each m ∈ ω the set {n ∈ S(β, F, m) : ∀ i ∈ lβ hi
β(γ) =∑

m∈Si
β,n

φ(m)} is not empty. But this follows from the fact that G intercepts

E(S(β, F, m), { 〈i, hi
β(γ)〉 : i ∈ lβ}).

Finally, let us show that {n ∈ ω : ∀ i ∈ 2k φ(2kn + i) =
∑

m∈gi
γ

φ(m)} is

finite. Let q be any element of G. We claim that {n ∈ ω : ∀ i ∈ 2k φ(2kn+ i) =
∑

m∈gi
γ

φ(m)} is a subset of Kq, where dom q = 2kKq. In fact, let N ≥ Kq and

let s ∈ D2kN ∩ G 6= ∅. Since G is a filter, there exists p ∈ G which extends q

and s. Clearly N ∈ [Kq, Kp ). Since p ≤ q, we have that for some i < 2k we have

φ(2kN + i) = p(2kN + i) 6=
∑

m∈gi
γ

r(m) =
∑

m∈gi
γ

φ(m) and we are done. �

Suppose we have shown that the E(S,~v)’s and Dn’s are dense subsets. Clearly
we have less than cmany dense sets, therefore, we can applyMAcountable to obtain
a generic filter G which intercepts each of them. Therefore, we will be done with
our construction if we show that the sets are in fact dense.

Lemma 2.8. For each n ∈ ω the set Dn is dense.

Proof: Let n be an arbitrary element of ω. Fix q ∈ P and let Kq be such that

dom q = 2kKq. If n ∈ dom q we have nothing to do so assume that n /∈ dom q.

Let K ∈ ω such that 2kK > n. We will construct p ∈ P such that dom p = 2kK.
For each i ∈ lβ and for each m ∈ [Kq, K) define p(2km+ i) = 2 −

∑
m∈gi

γ
r(m).

Clearly p < q and we are done. �

Lemma 2.9. For each β ≤ γ, for each F ∈ [ γ ]<ω, for each m ∈ ω and for each

~v ∈ 2lβ , the set E(S(β, F, m), ~v) is dense.

Proof: Fix β, F, m and ~v. Let q be an arbitrary element of P and let Kq be such

that 2kKq = dom q. Since for each i < 2k the sets in {Si
β,n : n ∈ S(β, F, m)} are

pairwise distinct, there exists n ∈ S(β, F, m) such that for each i < 2k we have

Si
β,n \ dom q 6= ∅. Let K ∈ ω be such that 2kK ⊇

⋃
i∈lβ

Si
β,n.
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We will define p ∈ P such that dom p = 2kK. For each i ∈ lβ , let mi be an

element of Si
β,n \ dom q. Note that the mi’s are distinct, since {Si

β,n : i ∈ lβ} are

pairwise disjoint. For each t ∈ [Kq, K), let it ∈ 2
k be such that 2kt + it /∈ {mi :

i < lβ} (this is possible, since lβ < 2k).

For each t ∈ [Kq, K), let p(2kt+ it) be equal to 2−
∑

j∈g
it
γ

r(j). Note that no

matter how we define p(u) for u ∈ [ 2kKq, 2
kK) \ {2kt+ it : t ∈ [Kq, K)}, we will

have p < q.
For each u ∈ [ 2kKq, 2

kK) \ ({mi : i < lβ} ∪ {2kt + it : t ∈ [Kq, K)}), define
p(u) = 0.

For each i < lβ , we have already defined p(u) for each u ∈ Si
β,n \ {mi : i < lβ}.

Let p(mi) = a, where a is such that a+
∑

m∈Si
β,n

\{mi} p(m) = ~v(i). Then clearly

p ∈ E(S(β, F, m), ~v). We are done, since as noted above, p < q. �

3. Final remarks

It is known that a compact group contains a non-trivial convergent sequence.
Under MA(σ-centered), one could construct a group without non-trivial conver-
gent sequences whose every finite power is countably compact. I believe the
following is an open question:

Is there a p-compact group (for some free ultrafilter p over ω) without non-
trivial convergent sequences?

Salvador Garcia has told me the following is still an open question:
Is there a p-compact group and a q-compact group (for some free ultrafilters p

and q over ω) whose the product is not countably compact?
He has told me that under Shelah’s model without p-points, the product of

every p-compact space and a q-compact space is countably compact.
Under MA, he has shown that there exist a p-compact and a q-compact space

whose product is not countably compact.

It is also open whether there exists a group whose every finite power is countably
compact but which is not p-compact for any free ultrafilter p over ω.
However, one can show the following:

Theorem 3.1 (MAcountable). There exist two groups whose every finite power
is countably compact but whose product is not countably compact.

The proof would be a modification of what we have done in the previous section.
From this we conclude the following:

Corollary 3.1 (MAcountable). Either (i) there exists a group whose every finite
power is countably compact but it is not r-compact for any free ultrafilter r over
ω or (ii) there exist two free ultrafilters p and q over ω, a p-compact group and a
q-compact group whose product is not countably compact.
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