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A note on regular points for solutions of parabolic systems

Eugen Viszus

Abstract. A vector valued function u = u(x, t), solution of a quasilinear parabolic system
cannot be too close to a straight line without being regular.
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1. Introduction

The aim of this paper is to extend the result of [1] to nonlinear parabolic
systems of partial differential equations:

(1.1) uα
t − (aαβ

ij (z, u)uβ
xj
)xi = fα(z, u, ux), 1 ≤ α ≤ N

in a domain A = Ω × (0, T )⊂Rn+1, N > 1, n ≥ 2.
Here Ω is an open subset in Rn

x , z = (x, t), x∈Rn
x , t∈Rt denotes a generic

point in A, u(z) = (u1(z), ..., uN (z)) is a vector valued function defined in A and
ux = {uα

xi
}, i = 1, ..., n, α = 1, ..., N denotes the spatial gradient of u.

In the paper the summation convention is used.

We shall suppose that the coefficients a
αβ
ij are continuous in A×RN and

bounded

(1.2) |a
αβ
ij (z, u)| ≤ L

and satisfy the ellipticity condition

(1.3) a
αβ
ij (z, u)ξα

i ξ
β
j ≥ λ|ξ|2, ξ∈RnN , (z, u)∈A×RN

with a uniform constant λ > 0.

Finally we shall assume that f(z, u, p) is a Caratheodory function satisfying
the growth condition

(1.4) |f(z, u, p)| ≤ L(1 + |u|+ |p|).
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To define the concept of a weak solution to (1.1) let us denote byW
1,0
2 (A, RN )

the completion of C1(A, RN ) with respect to the norm:

|u|2,A = (

∫
A
|u|2 dz +

n∑
i=1

N∑
α=1

∫
A
|uα

xi
|2 dz)

1

2 .

Then a weak solution of (1.1) by definition is a function u∈W
1,0
2 (A, RN ) such

that for any smooth function ϕ∈C∞
0 (A, RN ) we have

(1.5) −

∫
A

uαϕα
t dz +

∫
A

a
αβ
ij (z, u)uβ

xj
ϕα

xi
dz =

∫
A

fα(z, u, ux)ϕ
α dz.

In above mentioned hypotheses we shall prove that the weak solution of (1.1)
cannot be too close to a straight line without being regular.

If z0 = (x0, t0) ∈ Rn+1 and R > 0 we define

B(x0, R) = {x∈Rn : |x − x0| < R},

Λ(t0, R) = {t∈R : |t − t0| < R2},

Q(z0, R) = B(x0, R)×Λ(t0, R).

If we introduce in Rn+1 the metric

δ(z1, z2) = max{|x1 − x2|, |t1 − t2|
1

2 },

then the set Q(z0, R) is an open ball of radius R, centered at z0. ByW
1, 1
2

2 (A, RN )

we mean the completion of C1(A, RN ) with respect to the norm

|||u||| 1
2
,2,A = {|u|22,A +

∫
Ω

dx

∫∫
(0,T )×(0,T )

|u(x, t)− u(x, s)|2

|t − s|2
dt ds}

1

2 .

The following proposition is well known:

Lemma 1.6. Let A = Ω×(0, T ) be bounded and convex. Then the natural

imbedding of W
1, 1
2

2 (A, RN ) into L2(A, RN ) is compact.

It is well known that for solutions to parabolic systems the partial regular-
ity is only possible to prove. More precisely, referring to the system (1.1) with
conditions (1.2), (1.3), (1.4) the following result may be proved (see [4], [2]):

Theorem 1.7. For every M0 > 0 there exist constants ε0, R0 such that if

u = u(z) is a weak solution of the system (1.1) in A and if for some z0∈A and

R < min{R0, δ(z0, ∂A)}

(1.8)

∫ ⋆

Q(z0,R)
|u|2 dz ≤ M2

0 ,
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(1.9) U(z0, R) =

∫ ⋆

Q(z0,R)
|u − uz0,R|

2 dz ≤ ε20,

then u is hölder continuous in a neighborhood of z0 (with respect to the metric δ

mentioned above, see [3]).

In (1.8), (1.9) we have used the notation
∫ ⋆ to indicate average

∫ ⋆

A
f dz =

1

meas(A)

∫
A

f dz

and we have denoted uz0,R =
∫ ⋆
Q(z0,R)

u dz. Roughly speaking, the theorem

asserts that if u = u(z) is sufficiently close to a constant vector in a sufficiently
small ball then it is regular near the center of the ball.
The situation is completely different in the case of parabolic equations (N = 1)
whose solutions are regular everywhere.
We have the following theorem: (see [5, Chapter III]).

Theorem 1.10. Let g∈W
1,0
2 (Q, R) be a weak solution of the equation

(1.11) gt − (bij(z)gxj)xi = 0

in the unit ball Q = Q(0, 1) of Rn+1 (with respect to the metric δ)
with bounded, measurable coefficients bij satisfying

(1.12) |bij(z)| ≤ L,

(1.13) bij(z)ξiξj ≥ λ|ξ|2, ξ∈Rn, z∈Q(0, 1).

Then there exist constants β and K, β = β(n, L, λ), K = K(n, L, λ) such that g

is β-hölder continuous in Q(0, 12 ) and

(1.14) ||g||
β,

β

2
,Q(0, 1

2
)
=

= sup
z∈Q(0, 1

2
)

|g(z)|+ sup
z1 6=z2z1,z2∈Q(0, 1

2
)

|g(z1)− g(z2)|

(δ(z1, z2))β
≤ K||g||L2(Q(0,1)).

The above theorem implies that if a solution u = u(z) of the system (1.1) lies
on a straight line

u(z) = νg(z) + π, π∈RN , ν∈SN−1 = {x : |x| = 1},

then u is regular, since in this case g satisfies an parabolic equation for which the
conclusion of Theorem 1.10 holds. On the other hand, we may state the following
regularity result:



560 E.Viszus

Theorem 1.15. For each M1 > 0 there exist constants ε1 and R1 such that if

u = u(z) is a weak solution of system (1.1) with conditions (1.2), (1.3), (1.4) and

if for some z0∈A, R < min{R1, δ(z0, ∂A)}, ν∈SN−1, π ∈ RN , |π| ≤ M1 we have

(1.16)

∫ ⋆

Q(z0,R)
|u|2 dz ≤ M2

1

and

(1.17)

∫ ⋆

Q(z0,R)
|u − π| dz −

∫ ⋆

Q(z0,R)
|(u − π, ν)| dz ≤ ε1,

then u is regular in a neighborhood of z0.

2. Proof of Theorem 1.15

We shall reduce to Theorem 1.7. For that let
M0 = 2

3

2M1(1 +K2|Q(0, 1)|)
1

2 and let ε0 = ε0(M0) and R0 = R0(M0) be the
constants in Theorem 1.7.

Let τ = min{12 , (
ε0
M0
)
1

β }, (K, β− constants from Theorem 1.10).

We shall prove that for every M1 > 0 there exist constants ε1 and R1 < R0(M0)
such that if u is a solution of (1.1) satisfying (1.16), (1.17), then

(2.1)

∫ ⋆

Q(z0,τR)
|u|2 dz ≤ M0

2

and

(2.2)

∫ ⋆

Q(z0,τR)
|u − uz0,τR|2 dz ≤ ε20,

from which the conclusion follows applying Theorem 1.7.
Suppose that our assertion is false. Then it would exist

(i) Sequences {zk}⊂A, {πk}⊂RN , {νk}⊂SN−1.

(ii) Two infinitesimal sequences {εk} and {Rk}.

(iii) A sequence {uk} of solutions of the system (1.1) such that

(2.3)

∫ ⋆

Q(zk,Rk)
|uk|

2 dz ≤ M2
1 ,

(2.4)

∫ ⋆

Q(zk,Rk)
|uk − πk| dz −

∫ ⋆

Q(zk,Rk)
|(u − πk, νk)| dz ≤ εk
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but either

(2.5)

∫ ⋆

Q(zk,τRk)
|uk|

2 dz > M2
0

or

(2.6)

∫ ⋆

Q(zk,τRk)
|uk − ukzk,τRk

|2 > ε20.

The functions vk(z) = uk(xk +Rkx, tk +R2kt) are solutions in Q = Q(0, 1) of the
system

−

∫
Q

vα
k (z)ϕ

α
t (z)dz +

∫
Q

a
αβ
ijk
(z, vk(z))v

β
k,xj
(z)ϕα

xi
(z) dz =

=

∫
Q

fα
k (z, vk(z), vk,x(z))ϕ

α(z)dz, ϕ ∈ C∞
0 (Q, RN ),

where

(2.7) a
αβ
ijk
(z, vk(z)) = a

αβ
ij (xk +Rkx, tk +R2kt, vk(z))

and

(2.8) fα
k (z, vk(z), p) = fα(xk +Rkx, tk +R2kt, vk(z), R

−1
k

p)R2k.

We have

(2.9)

∫ ⋆

Q
|vk|
2 dz ≤ M2

1 ,

(2.10)

∫ ⋆

Q
|vk − πk| −

∫ ⋆

Q
|(vk − πk, νk)| dz ≤ εk

but either

(2.11)

∫ ⋆

Q(0,τ)
|vk(z)|

2 dz > M2
0

or

(2.12)

∫ ⋆

Q(0,τ)
|vk(z)− (vk)0,τ |

2 dz > ε20.
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Let now k → ∞. Passing possibly to a subsequence we may suppose that zk→z0 ∈
A, νk→ν ∈ SN−1, πk→π and vk ⇀ v weakly in L2(Q, RN ).
On the other hand, from [4], [6], [5] it follows that

|||vk||| 1
2
,2,Q(0,̺) ≤ c(̺)||vk||L2(Q), 0 < ̺ < 1.

From this it follows that vk ⇀ v in the weak topology of W
1, 1
2

2,loc
(Q, RN ) and by

Lemma 1.6 in the strong topology of L2loc(Q, RN ).
Arguing as in [4] we conclude that v satisfies

(2.13)

∫
Q

a
αβ
ij (z0, v)v

β
xj

ϕα
xi

dz =

∫
Q

vαϕα
t dz

where
a
αβ
ij (z0, v(z)) = lim

k→∞
a
αβ
ijk
(z, vk(z)), ϕ ∈ C∞

0 (Q, RN ).

Passing to the limit in (2.9), (2.11), (2.12) we obtain

(2.14)

∫ ⋆

Q
|v|2 dz ≤ M2

1 ,

but either

(2.15)

∫ ⋆

Q(0,τ)
|v|2 dz ≥ M2

0

or

(2.16)

∫ ⋆

Q(0,τ)
|v(z)− v0,τ |

2 dz ≥ ε20.

For every ̺ < 1 we have:
∫ ⋆

Q(0,̺)
[|vk − πk| − |(vk − πk, νk)|] dz ≤

≤ ̺−(n+2)
∫ ⋆

Q
[|vk − πk| − |(vk − πk, νk)|] dz

and for k → ∞ we obtain:

(2.17)

∫
Q(0,̺)

[|v − π| − |(v − π, ν)|] dz = 0, ̺ < 1

so that v(z) lies on straight line

(2.18) v(z) = π + (v(z), ν)ν =: π + g(z)ν.
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From (2.18) and (2.13) we obtain

(2.19)

∫
Q

g(z)ϕt(z)dz =

∫
Q

Aij(z)gxj (z)ϕxi(z) dz, ϕ ∈ C∞
0 (Q),

where Aij(z) = a
αβ
ij (z0, v(z))ν

ανβ are bounded measurable coefficients satisfying

(1.12), (1.13).
From Theorem 1.10 it follows that

∫ ⋆

Q(0,τ)
|v|2 dz ≤ 2(M2

1 + sup
Q(0, 1

2
)

|g(z)|2) ≤ 2M2
1 (1 +K2|Q|) =

1

4
M2
0

and

∫ ⋆

Q(0,τ)
|v − v0,τ |

2 dz =

∫ ⋆

Q(0,τ)
|g − g0,τ |

2 dz ≤ K2|Q|M2
1 τ
2β ≤

1

4
ε20.

These two inequalities contradict (2.15), (2.16). The proof is complete. �
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