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A family of 4-designs on 26 points

Dragan M. Acketa, Vojislav Mudrinski

Abstract. Using the Kramer-Mesner method, 4-(26, 6, λ) designs with PSL(2, 25) as a
group of automorphisms and with λ in the set {30, 51, 60, 81, 90, 111} are constructed.
The search uses specific partitioning of columns of the orbit incidence matrix, related
to so-called “quasi-designs”. Actions of groups PSL(2, 25), PGL(2, 25) and twisted
PGL(2, 25) are being compared. It is shown that there exist 4-(26, 6, λ) designs with
PGL(2, 25), respectively twisted PGL(2, 25) as a group of automorphisms and with λ in
the set {51, 60, 81, 90, 111}. With λ in the set {60, 81}, there exist designs which possess

all three considered groups as groups of automorphisms. An overview of t-(q + 1, k, λ)
designs with PSL(2, q) as group of automorphisms and with (t, k) ∈ {(4, 5), (4, 6), (5, 6)}
is included.

Keywords: block designs, orbits, projective linear group, projective special linear group,
twisted projective linear group, Kramer-Mesner method

Classification: 05B30

The paper is organized as follows: Introductory notions and constructions are
described in Section 1. New designs as the main result of the paper, are presented
in Section 2. An exhaustive analysis of derived designs respecting the three groups
of automorphisms is included in Section 3. A partition of columns of orbit inci-
dence matrices on the basis of so-called quasi-designs is introduced in Section 4;
this partition can be viewed as an addition to the Kramer-Mesner method and
has played an essential role in deriving the results. Finally, an overview of some
related results can be found in Section 5.

Using notions of the reduced orbit (see 1.4) and of the quasi-design (cf. Sec-
tion 4) we were able to implement the Kramer-Mesner method efficiently enough
to make — with respect to the group PSL(2, q) — an exhaustive search for all
prime odd powers q up to q = 47. Table 7 summarizes results of the research
performed.

1. Basic facts related to the constructions

An n-set is a set of cardinality n. Given a group G acting upon a ground-set,
an n-G-orbit is an orbit of n-subsets of the ground-set, arising from action of G.
If G is known, an n-G-orbit will be called just an n-orbit. A t-(v, k, λ) design ([5])
is an incidence structure on the v-ground-set, which consists of some k-subsets
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(called blocks) of the ground-set, without repetitions, satisfying the property that
each t-subset of the ground-set is contained in exactly λ blocks.
A natural idea for design constructions would be using the action of highly

homogeneous projective linear groups upon the projective line; it is well known
([5]) that the sets within an h-G-orbit of an h-homogeneous group G are blocks
of an h-design with G as a group of automorphisms.
A computer aided construction begins with considering action of the linear

group GL(2, q) upon the vector space V (2, q) over the field GF (q). This action is
implemented as a multiplication of a 2-dimensional row vector from V (2, q) with
a 2×2 matrix from GL(2, q). Next step is to introduce projectivity in this action;
this requires replacement of matrices by their representatives of homotethy classes
and transition from vectors to their corresponding points on the projective line.

1.1 The Kramer-Mesner method.

The well-known Kramer-Mesner method [15] for constructing t-(v, k, λ) designs
with a prescribed group of automorphisms, further denoted G, works as follows:

Let λij ([5, p. 185]) denote the number of elements of the j-th k-G-orbit, that
contain a fixed arbitrary element of the i-th t-G-orbit, t < k. This notion is well-
defined, since each t-set of a t-G-orbit is contained in the same number of k-sets
on a k-G-orbit.
The matrix (λij) will be denoted here as Λ(G; t, k); the same matrix was de-

noted as A(G;H ; t, k) in [15] and as At,k in [16]; it can be called the orbit incidence
matrix for t-orbits and k-orbits by action of G. If n(G, i) denotes the number
of i-G-orbits, then the size of Λ(G; t, k) is n(G, t) × n(G, k). The row sums in

Λ(G; t, k) are uniform and are equal to λmax =
(v−t
k−t

)

.

The key idea of the method is to find a proper subset S (if exists) of the
columns of Λ(G; t, k) with uniform row sums λ. Blocks of the required design
are exactly all those k-subsets of the v-ground-set that belong to the k-G-orbits
corresponding to columns of S. In other words, a t-(v, k, λ) design with G as a
group of automorphisms can be recognized as a proper submatrix D of Λ that
consists of whole columns and also has uniform row sums λ in all t rows. One can
easily conclude by using complementary submatrices that it suffices to search λ
for λ ≤ 12 · λmax.
If G is an h-homogeneous group, then n(G, h) = 1 and each k-G-orbit (k > h)

corresponds to an h-(v, k, λ) design. The Kramer-Mesner method allows blocks
of t-(v, k, λ) design to be obtained as k-sets belonging to the union of several
k-G-orbits, instead to a single one. Such an approach opens the possibility for
obtaining t-designs with groups of automorphisms G, that have a degree of ho-
mogenicity smaller than t.
The essential about the Kramer-Mesner method is that it gives designs with a

prescribed group as a group of automorphisms. This follows from the facts that
orbits are preserved under action of a group and that the family of design blocks
is composed of whole orbits. Note, however, that the prescribed group need not
be the full automorphism group (see, e.g., [16]).
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The following observations should be made:

(1) Columns have to be chosen in such a way that every row has a non-zero
entry in at least one of the chosen columns.

(2) Kramer-Mesner method gives all designs with a prescribed group of
automorphisms.

(3) Therefore, if H ≤ G and we know all H-designs, we have a set from which
we can choose all G-designs.

1.2 Construction of groups PSL(2, 25), PGL(2, 25) and TW (2, 25).

It is well known that the mappings x −→ ax+b
cx+d

, where a, b, c, d ∈ GF (q) and

ad− bc 6= 0, constitute the projective linear group PGL(2, q).
The special projective linear group PSL(2, q) is a subgroup of index 2 of

PGL(2, q) and contains all the mappings of PGL(2, q) satisfying that ad− bc is a
square. It can be proved by multiplying the coefficients a, b, c, d by suitable factors
that the group PSL(2, q) can be equally defined to contain all the mappings of
PGL(2, q) that satisfy that ad−bc = 1 (these definitions lead to the same group).
The twisted projective linear group TW (2, q2) (denoted “twisted PGL(2, q2)”

in [5, p. 171]) can merely be defined for odd prime powers of the form q2 (i.e.,
which are also squares). A “square” (resp. “non-square”) will further be the ab-
breviation for a mapping of PGL(2, q) with the square (non-square) determinant.

The group TW (2, q2) contains all mappings of the form x −→ ax+b
cx+d

, where ad−bc

is a non-zero square and all mappings of the form x −→ axq+b
cxq+d , where ad− bc is

a non-square. Thus the group TW (2, q2) also contains the group PSL(2, q2) as a
subgroup of index 2. The “non-square part” of this group is made of compositions
of conjugacy x −→ xq (a special automorphism of GF (q2)) with the projective
linear transformation.

The Kramer-Mesner method is applied here to the case t = 4, k = 6. Three
groups G will be considered: PSL(2, 25), PGL(2, 25) and TW (2, 25). Their
common ground-set (projective line) is {0, 1, . . . , 24} ∪ {∞}, so v = 26. When
applying the matrices of a projective linear group, points on the projective line are
represented by their homogeneous coordinates as row vectors; that is, x = (x, 1)
for x ∈ {0, 1, . . . , 24} and ∞ = (1, 0).

1.3 Homogenicity of groups PGL(2, q), TW (2, q2) and PSL(2, q).

Four statements from [11, Beispiel 1.18 c, p. 151, Hilfsatz 6.11, p. 182] and
[12, Remark 6.17 b, p. 377, Example 1.3 c, p. 163] can be combined to make the
following one:

Proposition 1. Group PGL(2, q) acts 3-transitively on the ground-set Ω(q) =
{0, 1, . . . , q−1}∪{∞}, while PSL(2, q) acts 2-transitively for all odd prime powers
q and 3-homogeneously for q ≡ 3 (mod 4). Group TW (2, q2) acts 3-transitively
on the ground-set Ω(q) = {0, 1, . . . , q2 − 1} ∪ {∞} for all odd prime powers q.
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The same four statements can be found in [5, Lemma 6.6., p. .169, Exercise 6.11,
p. 171, Proposition 6.12, p. 171 and Observation 6.13, p. 171].

1.4 Reduced orbits.

Given an h-homogeneous group G (h < t < k), the matrix Λ(G; t, k) can be
computed by using only those t-subsets of the ground-set which contain a fixed
h-subset FS(h). In the case of projective linear groups G acting on Ω(q), one can
take FS(h) to be {∞} ∪ {0, . . . , h− 2}.

When constructing k-G-orbits, it suffices to consider only those
(q+1−h

k−h

)

k-subsets of Ω(q), which are supersets of FS(h); we call these k-subsets “special”.
“Special” k-subsets are proportionally distributed among k-G-orbits; the number
of “special” k-subsets within a k-G-orbit is obtained by multiplying the total

number of its k-subsets by
(q+1−h

k−h

)

/
(q+1

k

)

; the result of this multiplication must
be an integer. “Special” k-subsets within a k-G-orbit constitute a reduced k-G-
orbit. An analogous reduction is applied to t-G-orbits.
Reduced k-G-orbits are constructed by applying elements of G to their repre-

sentative k-subsets; the image k-subsets are recorded iff they are “special”.
Reduced t-G-orbits and reduced k-G-orbits are sufficient for construction of

the matrix Λ(G; t, k), since the set-inclusion preserves “speciality”; that is, all
k-supersets of a “special” t-subset are “special” k-subsets.
Table 1 includes some data related to the groups considered in this paper and

their reduced orbits. Besides the names of groups and necessary parameters, the
table contains the total number of “special” subsets, as well as the reduction
factors (the quotients of binomial coefficients cited above) obtained when the
transition from all subsets to “special” is performed.

Group h number of “special” subsets reduction factor

PSL(2, 25) k = 6 2 10626 65/3
PSL(2, 25) t = 4 2 276 325/6

PGL(2, 25) and TW (2, 25) k = 6 3 1771 130
PGL(2, 25) and TW (2, 25) t = 4 3 23 650

Table 1.

Thus
(24
4

)

= 10626 “special” 6-subsets in the 2-homogeneous case constitute

only 365 of all
(26
6

)

6-subsets of the 26-ground-set.
Note that transition from the 2-homogeneous PSL(2, 25) to the other two

3-homogeneous groups increases the reduction factor by factor 6 in the case of 6-
subsets and by factor 12 in the case of 4-subsets. This increase of reduction factor
is useful for constructions of reduced orbits. However, it turns out that the main
computational advantage of using PGL(2, 25) and TW (2, 25), in comparison with
when using PSL(2, 25), is due to the smaller number of orbits.
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2. Designs

The main result of this paper reads:

Theorem 1. There exist 4-(26, 6, λ) designs with PSL(2, 25) as a group of au-
tomorphisms and with each λ in the set {30, 51, 60, 81, 90, 111}.

Proof: The proof will be given by exhibiting six 4-(26, 6, λ) designs with
PSL(2, 25) as a group of automorphisms and with the six values of λ above,
accompanied with data necessary to document the constructed designs. These
data include:

(a) data for identification of 4- and 6-orbits under action of PSL(2, 25);
(Tables 2, 3)

(b) matrix Λ(PSL(2, 25); 4, 6); (Table 4)
(c) column combinations (sets of columns) of Λ(PSL(2, 25); 4, 6)
corresponding to the designs.

Throughout this section, “n-orbits” will be an abbreviation for n-G-orbits,
where G = PSL(2, 25). It turns out that there are 7 4-orbits and 45 6-orbits.
In accordance with discussion in Subsection 1.4, 2-homogenicity of the group
PSL(2, 25) ([5]) enables the representatives of all 4-orbits and 6-orbits to be
“special” supersets of a fixed 2-set, say {0,∞}.

In order to enable identification of 4-orbits and 6-orbits, associated with rows
and columns of the matrices, the following data will be given in Tables 2 and 3:

— the ordinal number of an orbit, which is associated to the corresponding
row (column) of the matrix Λ(PSL(2, 25); 4, 6);

— the elements of the lexicographically the first “special” representative,
apart from the compulsory elements 0 and ∞;

— the number of “special” subsets within the orbit.

Example. The denotations 2 1 5 72 in Table 2 and 10 1 2 5 13 60

in Table 3 mean that the 2nd 4-orbit contains the representative {0, 1, 5,∞} and
the total of 72 “special” 4-subsets, while the 10th 6-orbit contains the represen-
tative {0, 1, 2, 5, 13,∞} and the total of 60 “special” 6-subsets.

1 1 2 18 2 1 5 72 3 1 6 72 4 1 7 72
5 1 8 12 6 5 10 18 7 5 17 12

Table 2. Data describing 4-orbits of PSL(2, 25)
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1 1 2 3 4 3 2 1 2 3 5 360 3 1 2 5 6 360
4 1 2 5 7 360 5 1 2 5 8 360 6 1 2 5 9 360
7 1 2 5 10 360 8 1 2 5 11 360 9 1 2 5 12 360
10 1 2 5 13 60 11 1 2 5 15 360 12 1 2 5 16 180
13 1 2 5 17 360 14 1 2 5 18 180 15 1 2 5 19 180
16 1 2 5 20 180 17 1 2 5 21 360 18 1 2 5 22 180
19 1 2 5 23 180 20 1 2 5 24 360 21 1 2 6 8 180
22 1 2 6 9 180 23 1 2 6 10 360 24 1 2 6 11 90
25 1 2 6 12 360 26 1 2 6 16 180 27 1 2 6 21 180
28 1 2 6 23 180 29 1 2 10 12 90 30 1 2 10 15 90
31 1 5 7 10 360 32 1 5 7 11 360 33 1 5 7 12 120
34 1 5 7 19 180 35 1 5 8 12 360 36 1 5 9 10 360
37 1 5 9 17 180 38 1 5 10 11 90 39 1 5 10 15 360
40 1 5 11 15 360 41 1 5 11 17 180 42 1 5 15 18 180
43 1 5 15 22 60 44 1 6 7 15 120 45 5 10 15 20 3

Table 3. Data describing 6-orbits of PSL(2, 25)

The existence of a 4-(26, 6, λ) design will be proved in each particular case by
exhibiting a proper subset P of the column-set (a combination of columns) of
matrix Λ(PSL(2, 25); 4, 6), which satisfies that the sum of elements of any row
within the columns of P is equal to λ.
Let C denote the set of ordinal numbers of those columns of Λ(PSL(2, 25); 4, 6)

that constitute required proper subsets P . Six possible sets C are listed below,
for λ in the set {30, 51, 60, 81, 90, 111}:

λ = 30 : C = {4, 14, 21, 24, 28, 30, 37, 44};

λ = 51 : C = {1, 9, 10, 16, 18, 23, 24, 26, 28, 29, 30, 33, 37, 38, 43, 44, 45};

λ = 60 : C = {4, 7, 12, 14, 16, 23, 25, 26, 28, 33, 34, 44};

λ = 81 : C = {1, 3, 10, 11, 12, 14, 15, 19, 21, 25, 26, 28, 29, 36, 38, 40, 41, 42, 43, 45};

λ = 90 : C = {5, 7, 8, 9, 11, 18, 19, 20, 23, 24, 26, 27, 30, 31, 32};

λ = 111 : C = {1, 3, 4, 6, 10, 11, 12, 13, 14, 20, 21, 22, 24, 27, 28, 29, 30, 37, 38,

39, 40, 41, 42, 43, 44, 45}.

�

The existence of the constructed six new 4-designs implies the existence of the
accompanying 3-(26, 6, λ) designs with λ ∈ {230, 391, 460, 621, 690, 851} and 2-
(26, 6, λ) designs with λ ∈ {1380, 2346, 2760, 3726, 4140, 5106}. According to data
contained in [6], it turns out that these twelve designs are also new.
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1 1 0 0 0 0 0 0
2 40 6 6 6 12 0 0
3 16 8 8 8 12 0 0
4 8 8 8 10 0 8 0
5 8 8 8 6 12 8 12
6 8 10 4 10 24 0 0
7 8 6 12 8 0 8 0
8 8 8 8 6 12 8 12
9 8 8 8 10 0 8 0
10 4 1 1 2 0 0 0
11 8 12 6 8 0 8 0
12 8 5 2 5 6 0 0
13 8 10 10 6 0 0 12
14 4 3 3 4 0 8 12
15 4 5 2 6 0 4 0
16 4 2 2 6 0 4 18
17 8 4 10 10 24 0 0
18 4 2 5 6 0 4 0
19 8 2 5 5 6 0 0
20 16 8 8 8 12 0 0
21 4 6 3 3 12 0 0
22 4 3 6 3 12 0 0
23 8 10 10 2 12 8 12

24 4 2 2 1 6 2 0
25 8 10 10 2 12 8 12
26 4 2 2 6 18 4 0
27 4 2 2 5 12 4 12
28 8 3 3 4 12 4 0
29 4 3 3 0 3 0 0
30 2 2 2 1 0 4 6
31 0 8 8 8 0 16 12
32 0 10 4 10 0 8 24
33 0 6 0 4 0 0 0
34 0 5 2 5 0 8 6
35 0 10 10 6 12 8 0
36 0 8 8 8 0 16 12
37 0 6 3 3 0 4 12
38 0 3 3 0 0 4 3
39 0 6 6 6 0 40 12
40 0 4 10 10 0 8 24
41 0 3 6 3 0 4 12
42 0 2 5 5 0 8 6
43 0 1 1 2 0 4 0
44 0 0 6 4 0 0 0
45 0 0 0 0 0 1 0

Table 4. 7× 45 matrix Λ(PSL(2, 25); 4, 6)

(columns 1, . . . , 45 are listed as row vectors)

We have checked that the matrices Λ(PSL(2, 25); 4, 5) and Λ(PSL(2, 25); 5, 6)
have no proper submatrices with uniform row sums. Consequently, one cannot
obtain 4-(26, 5, λ) or 5-(26, 6, λ) designs with G = PSL(2, 25) as group of auto-
morphisms by using the Kramer-Mesner method.
A more detailed classification of the constructed designs w.r.t. the three groups

of automorphisms they might possess will be given in Section 3.

3. About orbits and designs arising from three groups

Actions of groups PGL(2, 25), PSL(2, 25) and TW (2, 25) will be compared
in this section. Some general considerations that are concerned with inclusion
relationships of the orbits of groups PSL(2, q), PGL(2, q) and TW (2, q2) will be
primarily established in subsection 3.1. These relationships will be further applied
in subsection 3.2 to the cases q = 25, q = 25 and q2 = 25, respectively.

When considering existence and uniqueness of designs, one can use the following
hierarchy:
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parameter level — designs determined up to the parameters

This term is most generally known. The existence question for designs corre-
sponding to the quadruples t-(v, k, λ) is by far the most interesting one.

isomorphism level — designs determined up to an isomorphism

This term is related to the design enumeration problem, which has been solved
with a very small number of the known design parameters.

column combination level —
This term is a speciality of the Kramer-Mesner method. Each design obtained
with this method corresponds to a column combination with uniform row sums
λ within the orbit incidence matrix.
Parameters of a design that corresponds to a column combination are immedi-
ately known. However, the isomorphism question for some two designs with the
same parameters, that correspond to some two distinct column combinations,
remains a hard one.

In this section we shall obtain some results pertaining to the column combi-
nation method. For example, Table 6 contains a number of constructed designs
with each one belonging to the considered three groups of automorphisms.

3.1 Relationships among the orbits.

By a PSL-orbit (resp. PGL-orbit) we shall mean a k-orbit under action of
PSL(2, q) (resp. PGL(2, q)) and by a TW-orbit we shall mean a k-orbit under
action of TW (2, q2) for an odd prime power q.
By a PSL-design (resp. PGL-design) we shall understand a set of PSL-orbits

(PGL-orbits) that corresponds to a t-(q+1, k, λ) design (blocks of the design are
exactly all the k-subsets that belong to the union of orbits of the set) and by a TW-
design we shall understand a set of TW-orbits corresponding to a t-(q2 + 1, k, λ)
design.

Remark. The relationships established for PSL- and PGL-orbits, also for PSL-
and PGL-designs are valid for any prime power q. However, whenever TW-orbits
and TW-designs take part in a discussion, it is restricted to odd prime powers q2;
groups PGL(2, q2) and PSL(2, q2) have to be considered in these cases.

A general lemma for orbits of any size will first be proved:

Lemma 1. If H is a subgroup of index k of a group G, then a G-orbit includes
at most k H-orbits.

Proof: Let G act upon Ω and choose α ∈ Ω. If g, h ∈ G map α to different
H-orbits, then Hg 6= Hh. Hence the number of H-orbits within a G-orbit cannot
exceed the number of right cosets of H in G. �

The group PSL(2, q) is a subgroup of index 2 for PGL(2, q) of prime power q
and the group PSL(2, q2) is a subgroup of index 2 for the group TW (2, q2), for
each odd prime power q. By using Lemma 1, these two facts immediately imply
the following:
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Lemma 2. Each PGL-orbit, also each TW-orbit, consists of either one or two

PSL-orbits.

We cite three useful statements that follow from general properties of Kramer-
Mesner method:

Statement 1. Each PGL-design, also each TW-design, is a PSL-design.

Statement 2. All designs that have PGL(2, q) or TW (2, q2) as a group of auto-
morphisms can be obtained by applying the Kramer-Mesner method to the group
PSL(2, q), respectively PSL(2, q2).

Statement 3. The application of the Kramer-Mesner method to the group
PSL(2, q) produces 3-designs for all prime powers q.

Let PSL(X), PGL(X) and TW (X) respectively denote the PSL-orbit, PGL-
orbit and TW-orbit determined by a set X . Further, let S(X) and N(X) respec-
tively denote the set of all images of set X under (bilinear) squares, respectively
non-squares and let Xq denote the conjugacy image of set X . Then obviously
PSL(X) = S(X); PGL(X) = S(X) ∪N(X) and TW (X) = S(X) ∪N(Xq).
The next lemma is essential for a classification of possible relationships of the

three groups:

Lemma 3. Both N(X) and N(Xq) are PSL-orbits.

Proof: The proof will be given for N(X) within PGL(X), the proof for N(Xq)
within TW (X) being analogous; observe that q should be replaced by odd q2 in
the second case.

S(X)∪N(X) is the PGL-orbit of X . If there are a square s and a non-square
n with s(X) = n(X), then S(X) = PSL(2, q)s(X) = PSL(2, q)n(X) = N(X). If
S(X)∩N(X) is empty, then PGL(2, q)X\PSL(2, q)X = (S(X)∪N(X))\S(X) =
N(X) is the second PSL-orbit contained in the PGL-orbit of X . �

Corollary 1. If a k-subset Y belongs to PGL(X) and PGL(X) = PSL(X), then
exactly one half of mappings from PGL(X), which map X onto Y , are squares;
non-squares constitute the other half.

Corollary 2. If a PGL-orbit consists of two PSL-orbits, then these two orbits

have the same cardinality.

We are now able to prove the following

Lemma 4. Given an odd prime power q and a k-subsetX of the ground-set, there
exist five possible relationships for the orbits PSL(X), PGL(X) and TW (X):
(a) PSL(X) = PGL(X) = TW (X); (b) PSL(X) = PGL(X) 6= TW (X);

(c) PSL(X) = TW (X) 6= PGL(X); (d) PSL(X) 6= PGL(X) = TW (X);

(e) PSL(X) = PGL(X) ∩ TW (X) and both sets

PGL(X)\PSL(X) and TW (X)\PSL(X) are non-empty.

Proof: There exist five possible relationships among the PSL-orbits PSL(X),
N(X) and N(Xq): they can be all equal, two equal and third different (three
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possibilities), all three pairwise different. The cases (a)–(e) follow from the rela-
tionships:

(S(X) = N(X) = N(Xq)) (Case (a)), (S(X) = N(X) 6= N(Xq)) (Case (b)),

(S(X) = N(Xq) 6= N(X)) (Case (c)), (S(X) 6= N(X) = N(Xq)) (Case (d)),

(S(X) 6= N(X)) and (S(X) 6= N(Xq)) and (N(X) 6= N(Xq)) (Case (e)); in
this case PGL(X)\PSL(X) = N(X) and TW (X)\PSL(X) = N(Xq) are the
further two PSL-orbits. �

3.2 6-orbits over GF (25) and related 4-(26, 6, λ) designs.

The meanings of denotations “PSL-orbits”, “PGL-orbits” and “TW-orbits”
in this subsection will be restricted to 6-orbits (under action) of PSL(2, 25),
PGL(2, 25) and TW (2, 25), respectively. The 45 6-orbits of PSL(2, 25) are in-
cluded into 28 6-orbits of PGL(2, 25) and 23 6-orbits of TW (2, 25). Table 5
contains data about the inclusion relationships of 6-orbits of these three groups.
The 6-orbits under action of PSL(2, 25), PGL(2, 25) and TW (2, 25) are nu-

merated by natural numbers 1, 2, . . . , 45; 1, 2, . . . , 28 and 1, 2, . . . , 23, respectively.
When comparing different kinds of orbits, it is suitable to use denotations

PSL/n/, PGL/n/ and TW/n/ for single orbits, as well as PSL/n1, n2/ and
PGL/n1, n2/ for unions of two orbits where n, n1, n2 are the associated natural
numbers. Using the orbit inclusion map given in Table 5, one can recognize that
four of the Cases (a)–(e) of Lemma 4 are present with q2 = 25; there exist four
different inclusion relationships among 6-orbits of groups PSL(2, 25), PGL(2, 25)
and TW (2, 25).

PSL | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

PGL | 1 2 3 4 5 6 7 8 4 9 10 11 12 13 14 15 16 17 18 19 20 21 22

TW | 1 2 3 4 5 6 7 5 4 8 7 9 10 11 12 13 14 12 15 16 17 18 19

PSL | 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

PGL | 23 24 15 25 13 26 23 3 6 27 11 12 19 20 26 2 16 21 18 9 28 1

TW | 20 19 13 21 11 22 20 16 14 23 15 10 3 18 22 2 6 17 9 8 23 1

Table 5. Inclusion map of orbits of the three groups

A detailed list of orbit relationships is given in the sequel; denotations of cases
are in accordance with Lemma 4:

(a) PSL-orbit = PGL-orbit = TW-orbit

PSL/27/ = PGL/25/ = TW/21/;

(b) TW-orbit = two PGL-orbits that coincide with PSL-orbits

TW/5/ = PGL/5, 8/ = PSL/5, 8/; TW/7/ = PGL/7, 10/ = PSL/7, 11/;
TW/12/ = PGL/14, 17/ = PSL/15, 18/;



A family of 4-designs on 26 points 853

TW/19/ = PGL/22, 24/ = PSL/23, 25/;
TW/23/ = PGL/27, 28/ = PSL/33, 44/;

(d) PGL-orbit = TW-orbit = two PSL-orbits

PGL/1/ = TW/1/ = PSL/1, 45/; PGL/2/ = TW/2/ = PSL/2, 39/;
PGL/4/ = TW/4/ = PSL/4, 9/; PGL/9/ = TW/8/ = PSL/10, 43/;
PGL/12/ = TW/10/ = PSL/13, 35/; PGL/13/ = TW/11/ = PSL/14, 28/;
PGL/15/ = TW/13/ = PSL/16, 26/; PGL/23/ = TW/20/ = PSL/24, 30/;
PGL/26/ = TW/22/ = PSL/29, 38/;

(e) Two PGL-orbits = four PSL-orbits = two TW-orbits

PGL/3/ = PSL/3, 31/; PGL/19/ = PSL/20, 36/;
TW/3/ = PSL/3, 36/; TW/16/ = PSL/20, 31/;

PGL/6/ = PSL/6, 32/; PGL/16/ = PSL/17, 40/;
TW/6/ = PSL/6, 40/; TW/14/ = PSL/17, 32/;

PGL/20/ = PSL/21, 37/; PGL/21/ = PSL/22, 41/;
TW/17/ = PSL/21, 41/; TW/18/ = PSL/22, 37/;

PGL/11/ = PSL/12, 34/; PGL/18/ = PSL/19, 42/;
TW/9/ = PSL/12, 42/; TW/15/ = PSL/19, 34/;

Remark. The case (c) from Lemma 4.2 cannot be found with q2 = 25.
As a consequence of these inclusion relationships for the orbits, one can derive

three propositions given in the sequel. Proposition 2 gives the conditions for a
TW-design to be a PGL-design, Proposition 3 gives the conditions for a PGL-
design to be a TW-design, whilst Proposition 4 gives the conditions for a PSL-
design to be either a TW-design, or a PGL-design, or both.

Proposition 2. If TW-orbits determining a 4-(26, 6, λ) TW-design do not in-
clude exactly one of the two orbits in some of the 2-subsets {3, 16}, {6, 14},
{9, 15} and {17, 18} of TW-orbits, then this design is also a PGL-design.

Proof: The cited 2-subsets of orbits of TW (2, 25) correspond to the above stated
Case (e). The union of two orbits in each one of these 2-subsets is equal to the
union of some 2-subsets of orbits of PGL(2, 25); however, none of the TW-orbits
in the 2-subset is itself a PGL-orbit. On the other hand, TW-orbits in Cases (a),
(b) and (d) are also PGL-orbits. �

Proposition 3. If PGL-orbits determining a 4-(26, 6, λ) PGL-design do not in-
clude exactly one of the two orbits in some of the 2-subsets

{5, 8}, {7, 10}, {14, 17}, {22, 24}, {27, 28}, {3, 19}, {6, 16}, {11, 18} and {20, 21}
of PGL-orbits, then this design is also a TW-design.

Proof: The first five cited 2-subsets of orbits of PGL(2, 25) correspond to
Case (c), while the last four correspond to Case (d). None of the PGL-orbits
in any of these 2-subsets is itself a TW-orbit. �
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These two propositions imply that there exist only two column combinations
(for λ = 60 and λ = 81) that correspond to both PGL- and TW-designs.
The third statement in this series reads:

Proposition 4. If PSL-orbits determining a 4-(26, 6, λ) PSL-design include ex-
actly one of the two orbits in some of the following 2-subsets of PSL-orbits:

I. {1, 45}, {2, 39}, {4, 9}, {10, 43}, {13, 35}, {14, 28}, {16, 26}, {24, 30} and
{29, 38};

II. {5, 8}, {7, 11}, {15, 18}, {23, 25}, {33, 44}, {3, 36}, {20, 31}, {6, 40}, {17, 32},
{21, 41}, {22, 37}, {12, 42} and {19, 34};

III. {3, 31}, {20, 36}, {6, 32}, {17, 40}, {21, 37}, {22, 41}, {12, 34} and {19, 42};

then

I. the design is neither a PGL-design, nor a TW-design

II. the design is not a TW-design

III. the design is not a PGL-design.

Proof: Follows from 2-subsets of PSL-orbits mentioned in Cases: (d) (part I),
(b) and (e) (part II), (e) (part III). �

Table 6 summarizes the results of our design enumeration:

λ TW ∩ PGL TW\PGL PGL\TW only PSL total # of
designs designs designs designs designs

30 0 0 0 16 16
51 0 8 4 344 356
60 1 0 28 696 725
81 1 4 54 6024 6083
90 0 22 48 5016 5086
111 0 4 90 10074 10168

Table 6. Number of found 4-(26, 6, λ) designs with
specific groups as groups of automorphisms

Each one of the PSL-designs listed in Section 2 is neither a PGL- nor a TW-
design; in particular, the same holds for all designs with λ = 30 that we have
found.
Each one of non-zero numbers of designs in Table 6 will be illustrated by an

example. In order to prove that the exhibited designs do not belong to some
of the considered classes of designs, a critical pair of orbits is exhibited in each
particular case; with only one of two orbits within a pair being used by a design.
According to Proposition 4/I, six PSL-designs listed in Section 2 are neither

PGL-designs, nor TW-designs. It suffices to consider the 2-subsets (4, 9) and
(16, 26) of this statement. These six PSL-designs include the PSL-orbits numer-
ated by 4, 9, 4, 26, 9, 4, but do not include the PSL-orbits numerated by 9, 4, 9,
16, 4, 9, respectively.
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Let PGL[x1, . . . , xk] denote a PGL-design composed of PGL-orbits numerated
by x1, . . . , xk. The analogous denotation is used for TW-designs and PSL-designs.
However, when PSL-designs are considered, round brackets containing one or
two PSL-orbits are also used; PSL-orbit(s) within a round bracket corresponds
(correspond) to a single TW-orbit, respectively single PGL-orbit.

Designs that are both TW-designs and PGL-designs

PSL-orbits are being combined in two different ways in order to show that each
one of the considered two PSL-designs is both a TW-design and a PGL-design.

λ = 60:
TW[3,5,11,16,23] = PSL[(3,36)(5,8)(14,28)(20,31)(33,44)]
PGL[3,5,8,13,19,27,28] = PSL[(3,31)(5)(8)(14,28)(20,36)(33)(44)];

λ = 81:
TW[1,5,7,8,10,11,12,13,21,22] =

PSL[(1,45)(5,8)(7,11)(10,43)(13,35)(14,28)(15,18)(16,26)(27)(29,38)]
PGL[1,5,7,8,9,10,12,13,14,15,17,25,26] =

PSL[(1,45)(5)(7)(8)(10,43)(11)(13,35)(14,28)(15)(16,26)(18)(27)(29,38)].

TW-designs that are not PGL-designs

Two arguments, based on Proposition 2, respectively on Proposition 4/III, are
provided in order to explain why each one of the four exhibited TW-designs is
not a PGL-design.

λ = 51; TW[1,12,15,16,17,20,21,22] =
PSL[(1,45)(15,18)(19,34)(20,31)(21,41)(24,30)(27)(29,38)]
TW/16/ without TW/3/; PSL/31/ without PSL/3/;

λ = 81; TW[1,3,5,8,9,12,16,18,21,22] =
PSL[(1,45)(3,36)(5,8)(10,43)(12,42)(15,18)(20,31)(22,37)(27)(29,38)]
TW/18/ without TW/17/; PSL/22/ without PSL/41/;

λ = 90; TW[4,8,9,11,13,16,17,19,20,23] =
PSL[(4,9)(10,43)(12,42)(14,28)(16,26)(20,31)(21,41)(23,25)(24,30)(33,44)]
TW/17/ without TW/18/; PSL/41/ without PSL/22/;

λ = 111; TW[1,3,4,5,9,12,13,15,19,20,21,22,23] =
PSL[(1,45)(3,36)(4,9)(5,8)(12,42)(15,18)(16,26)(19,34)(23,25)(24,30)(27)

(29,38)(33,44)]
TW/3/ without TW/16/; PSL/3/ without PSL/31/.

PGL-designs that are not TW-designs

Two arguments, based on Proposition 3, respectively on Proposition 4/II, are
provided in order to explain why each one of the five exhibited PGL-designs is
not a TW-design.
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λ = 51: PGL[1,14,17,18,19,20,23,25,26] =
PSL[(1,45)(15)(18)(19,42)(20,36)(21,37)(24,30)(27)(29,38)]
PGL/19/ without PGL/3/; PSL/20/ without PSL/31/;

λ = 60: PGL[3,5,9,13,19,20,28] =
PSL[(3,31)(5)(10,43)(14,28)(20,36)(21,37)(44)]
PGL/5/ without PGL/8/; PSL/5/ without PSL/8/;

λ = 81: PGL[1,3,7,10,13,14,15,17,21,24,25,26,27] =
PSL[(1,45)(3,31)(7)(11)(14,28)(15)(16,26)(18)(22,41)(25)(27)(29,38)(33)]
PGL/24/ without PGL/22/; PSL/25/ without PSL/23/;

λ = 90: PGL[4,9,13,15,18,19,20,22,23,24,27,28] =
PSL[(4,9)(10,43)(14,28)(16,26)(19,42),(20,36)(21,37)(23)(24,30)(25)(33)(44)]
PGL/19/ without PGL/3/; PSL/20/ without PSL/31/;

λ = 111: PGL[1,4,7,9,11,13,14,15,17,18,20,21,22,23,24,25,26,27] =
PSL[(1,45)(4,9)(7)(10,43)(12,34)(14,28)(15)(16,26)(18)(19,42)
(21,37)(22,41)(23)(24,30)(25)(27)(29,38)(33)]
PGL/7/ without PGL/10/; PSL/7/ without PSL/11/.

Open problem 1. Does there exist a k-PGL(2, q2)-orbit for some odd prime
power q and some natural number k, that includes two k-TW (2, q2)-orbits ? It
would correspond to Case (c) of Lemma 4, the only one of the five cases that does
not exist with q = 5 and k = 6.

Open problem 2. Test isomorphism of the constructed designs within the class
of designs with a fixed λ (it is hoped that Table 6 could be of use with such a
testing).

4. An addition to the Kramer-Mesner method

This section describes a method for the partitioning of the column-set of
Λ(PSL(2, 25); 4, 6), based on the notion of so-called “quasi-designs”. This method
has played an essential role in making the computational time (necessary for full
search) feasible. After the application of this method, we are sure about the
following fact:

• The only new λ-value that can be obtained with 4-(26, 6, λ) designs by us-
ing the Kramer-Mesner method, after the groups PGL(2, 25) and TW (2, 25)
are replaced by PSL(2, 25) — is λ = 30.

If the number of k-G-orbits for some group G and some k is equal to 30,
then a brute-force search over 229 column combinations, based on Gray code,
would last about a week using PC-386; with complementation, it is allowed to
exclude one column from the search. Thirty columns seem to be an approximate
upper bound for a reasonable brute-force search. Since n(PGL(2, 25), 6) = 28 and
n(TW (2, 25), 6) = 23, a brute force search for submatrices D has been applied.
However, the 7×45 matrix Λ = Λ(PSL(2, 25); 4, 6) has been treated by a specific
approach, going to be described. Columns of this matrix Λ will be shortly denoted
by numbers 1, . . . , 45.
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Note that the necessary condition for design existence ([5]):

“λ ·
(

v−i
t−i

)

·
(

k−i
t−i

)−1
must be an integer for 0 ≤ i < t ”, — implies that λ must be

divisible by 3; the same conclusion can be easily derived from 7th row of Λ.
The first observation is that any of considered designs must use either both

columns in pairs (1,45), (29,38) and (24,30), or none; the first two pairs are used
for λ odd and the last one for λ ≡ 2, 3 (mod 4). This gives possibility to reduce
the number of columns in Λ to 42. In what follows, Λ will denote the 7 × 42
matrix with columns denoted as before, with exception that the columns 30, 38
and 45 are excluded, while the columns 1, 24 and 29 are replaced by sums of two
columns in the corresponding pairs: 1←− 1+45; 24←− 24+30; 29←− 29+38.
It can be noticed that the pairs of 1st and 6th 4-orbit, as well as of 5th and

7th 4-orbit play outstanding roles in the matrix Λ; these two pairs of 4-orbits of
PSL(2, 25) arise by fusion of two 4-orbits of PGL(2, 25). A useful partitioning of
columns of Λ is based on this notice. Some special notions are introduced for this
purpose:
A general column c = (c1, . . . , c7) of Λ is said to have (1 = 6; 5 = 7)-property

if (c1 = c6) and (c5 = c7). Similarly, a set S of columns of Λ is said to have

(1 = 6; 5 = 7)-property if (s1 = s6) and (s5 = s7), where si
def
=

∑

c∈S ci.
Let B denote the submatrix of Λ consisted of all those (whole) columns that

satisfy (1=6; 5=7)-property and let A denote the complementary submatrix of Λ.
It can be easily checked that the columns of B are 4, 5, 7, 8, 9, 11, 15, 18, 23, 25,
27, 33, 44, 1, 24, 29 (the last three being sums of two original columns), while A
contains the remaining 26 columns of Λ. A quasi-design of Λ is defined to be a
subset of columns of A that has (1=6; 5=7)-property.
The following lemma claims that a necessary condition for the combination of

columns of Λ corresponding to a design — is to include a quasi-design of Λ:

Lemma 5. LetD be a combination of columns of Λ corresponding to a 4-(26, 6, λ)
design. Then D ∩A is a quasi-design of Λ.

Proof: Sums sD∩A(i) of entries in rows of D ∩ A are obtained by substracting
the sums of the corresponding rows of D ∩ B from λmax = 231. The conclusion
follows from the fact that each column of D ∩B has (1=6; 5=7)-property. �

This lemma enables the search for designsD to be broken into two independent
stages. A brute-force search for quasi-designs D ∩A of Λ is primarily performed
over 225 combinations of columns of submatrix A (one column may be excluded
again). It turns out that there are only 175072 quasi-designs of Λ among all these
combinations.
Next reduction is achieved by partitioning quasi-designs D of Λ with respect

to the difference dif = sD∩A(5)− sD∩A(6). Since all entries in A are even, these
differences are also even; their range is [−40,+62]. The condition of uniform row
sums within D implies that the difference sD∩B(5)− sD∩B(6) has to be equal to
−dif . Therefore, the 216 combinations of columns of submatrix B are also parti-
tioned w.r.t. differences of sums of entries in 5th and 6th row. The combinations
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with odd differences (one half of the total number) are immediately discarded.
The range of even differences is [−42,+24]. It turns out that partitioning w.r.t.
differences dif (resp. −dif) reduces the total number of candidates for D from
175072 · 32768 = 5.736.759.296 to only 209.195.552.
Each candidate for D has uniform row sums λ on 1st, 5th, 6th and 7th row.

Three successive tests are used to check whether the sums in the remaining three
rows are also equal to λ; if this is the case, then a 4-(26, 6, λ) design is recorded.
Using this approach, we obtained that there exist 22434 combinations of

columns of Λ(PSL(2, 25); 4, 6) that correspond to 4-(26, 6, λ) designs. A more
detailed classification of these combinations respecting the three groups of auto-
morphisms was given in Table 6, Section 3.

5. An overview of related results

Using the Kramer-Mesner method, we have found some new t-(q + 1, k, λ)
designs with PSL(2, q) as a group of automorphisms and have reconstructed some
old ones. Here is the list of these values:

q t k λmax found λ values ≤ λmax/2
11 5 6 7 1, 2
17 4 5 14 4
19 4 6 120 60
23 5 6 19 1, 2, 3, 4, 5, 6, 7, 8, 9
25 4 6 231 30, 51, 60, 81, 90, 111
27 5 6 23 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
31 5 6 27 6, 12
32 4 5 29 4, 5, 9
37 4 5 34 6, 10, 12, 16
47 4 5 44 8, 12, 16, 20

Table 7. Some data on design parameters related to action of PSL(2, q)

The designs with q = 11 and q = 23 are related to the well-known Steiner
systems 5-(12, 6, 1) and 5-(24, 6, 1) ([5]). The first one of these Steiner systems is,
as stated in [10, Theorem 2.26], the uniquely determined Steiner system with the
automorphism group isomorphic to the famous Mathieu 5-transitive group M12.
The design with q = 17 is due to Alltop and was described in [5, Example 8.5,
pp. 186-187]. The designs with q = 19 and q = 27 were constructed in [14] and
[17], respectively. The designs with q = 32, described in [2], are related [13] to
the 4-homogeneous group PGamaL(2, 32); moreover, the 4-(33, 5, 5) design is the
first member of an infinite class of 4-designs ([8]).
The designs with q ∈ {31, 37} were justified in multiple communications to be

new results of our investigations ([3], [11]). The designs with q = 47 ([7]) might
be related to the Steiner system 5-(48, 6, 1) ([8]).
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It was stated in [13] that no 4-designs on 38 points were known. A 4-(38, 5, 16)
design with PGL(2, 37) as a group of automorphisms was described in [1]; later
on, we realized that the 2-homogeneous group PSL(2, 37) gives 4-(38, 5, λ) designs
with three new values of λ.
When q = 25 is considered, the extensive table of known design parameters in

[6] claims that the question of existence of 4-(26, 6, 3s) designs is open for 1 ≤ s ≤
38; this paper solves this question to affirmative for s ∈ {10, 17, 20, 27, 30, 37}.
Moreover, data from the same table for [6] say that the only up-to-date known

4-(26, k, λ) design was with k = 13 and λ = 84700; this design is a consequence
of the 5-(24, 11, 4620) design found in [9].

Results of our computer search can be summarized to the following:

Proposition 5. Design parameters listed in Table 7 are the only ones that can
be derived by the Kramer-Mesner method from Λ(PSL(2, q); t, k) matrices in the
class of

(a) 4-(q + 1, 5, λ) designs
− arising from PSL(2, q) for q ≤ 37 and q ∈ {43, 47},
− arising from PGL(2, q) for q ∈ {41, 49},

(b) 4-(q + 1, 6, λ) designs and 5-(q + 1, 6, λ) designs
− arising from PSL(2, q) and q ≤ 31.

where q denotes a prime power.

Open problem 3. Find some t-(q+1, k, λ) designs arising from PSL(2, q) with
larger values of k and/or larger values of q.
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