On the cardinality of functionally Hausdorff spaces

Alessandro Fedeli

Abstract. In this paper two new cardinal functions are introduced and investigated. In particular the following two theorems are proved:

(i) If X is a functionally Hausdorff space then $|X| \leq 2^{f_s(X)\psi_\tau(X)}$;

(ii) Let X be a functionally Hausdorff space with $fs(X) \leq \kappa$. Then there is a subset S of X such that $|S| \leq 2^{\kappa}$ and $X = \bigcup \{cl_{\tau\theta}(A) : A \in [S]^{\leq \kappa}\}.$

Keywords: cardinal functions, τ -pseudocharacter, functional spread Classification: 54A25

A space X is said to be functionally Hausdorff if whenever $x \neq y$ in X there is a continuous real valued function f defined on X such that f(x) = 0 and f(y) = 1.

In the last years many results involving cardinal functions related to s (spread) have been obtained by several authors (see e.g. [8], [9], [10], [12]).

In this paper we give a result on the bound of the cardinality of functionally Hausdorff spaces using two new cardinal functions fs and ψ_{τ} related to s and ψ respectively. Moreover we prove, for functionally Hausdorff spaces, a variant of a well-known result on spread due to Shapirovskii ([11, Theorem 3], [4, Theorem 5.1]).

We refer the reader to [1], [4] and [7] for notations and definitions not explicitly given. $\chi(X)$, s(X) and $\psi(X)$ denote respectively the character, the spread and the pseudocharacter of a space X.

Let A be a subset of a space X:

(i) ([5], [6]) The τ -closure of A, denoted by $cl_{\tau}(A)$, is the set of all points $x \in X$ such that any cozero-set neighbourhood of x intersects A.

(ii) ([2]) The $\tau\theta$ -closure of A, denoted by $cl_{\tau\theta}(A)$, is the set of all points $x \in X$ such that $cl_{\tau}(V) \cap A \neq \emptyset$ for every open neighbourhood V of x.

For every X and every $A \subset X$ we have $\overline{A} \subset cl_{\tau\theta}(A) \subset cl_{\tau}(A)$. It is clear that if X is completely regular then $\overline{A} = cl_{\tau\theta}(A) = cl_{\tau}(A)$ for every $A \subset X$.

Definition 1. Let X be a space. The functional spread of X, denoted by fs(X), is the smallest infinite cardinal number κ such that for every open family \mathcal{U} of X and every $A \subset \bigcup \mathcal{U}$ there exist a $\mathcal{V} \in [\mathcal{U}]^{\leq \kappa}$ and a $B \in [A]^{\leq \kappa}$ such that $A \subset cl_{\tau\theta}(B) \cup \bigcup \{cl_{\tau}(V) : V \in \mathcal{V}\}.$ **Remark 2.** Let \mathcal{U} be an open cover of a space X, let $s(X) \leq \kappa$. By a well-known result of Shapirovskii it follows that there are a $\mathcal{V} \in [\mathcal{U}]^{\leq \kappa}$ and a $A \in [X]^{\leq \kappa}$ such that $X = \overline{A} \cup \bigcup \mathcal{V}$. Since $s(Y) \leq s(X)$ for every subspace Y of X it easily follows that $fs(X) \leq s(X)$. However the above inequality can be proper as the following example shows. For every $x \in R$ let $\mathcal{B}_x = \{\{x\} \cup B(x, \frac{1}{n}) \cap Q : n \in N\}$ and let Xbe R with the topology generated by the neighbourhood system $\{\mathcal{B}_x\}_{x \in R}$. Then X is a functionally Hausdorff space such that $fs(X) = \omega < s(X)$.

Definition 3. Let X be a functionally Hausdorff space and let $x \in X$. A family of open neighbourhoods of x is said to be a τ -pseudobase for x if $\bigcap \{cl_{\tau}(U) : U \in \mathcal{U}\} = \{x\}$. Let $\psi_{\tau}(x, X) = \min \{|\mathcal{U}| : \mathcal{U} \text{ is a } \tau$ -pseudobase for $x\} + \omega$, the τ -pseudocharacter of X is defined as follows: $\psi_{\tau}(X) = \sup \{\psi_{\tau}(x, X) : x \in X\}$.

Remark 4. It is obvious that for every Tychonoff space X we have $\psi_{\tau}(X) = \psi(X)$. Moreover $\psi_{\tau}(X) \leq \chi(X)$ for every functionally Hausdorff space X. In fact let $x \in X$ and let \mathcal{B}_x be a local base at x, we claim that $\bigcap \{cl_{\tau}(B) : B \in \mathcal{B}_x\} = \{x\}$. Let us consider a point $y \in X \setminus \{x\}$, since X is functionally Hausdorff there is a continuous mapping $f : X \to I$ such that f(x) = 0 and f(y) = 1. Let $B \in \mathcal{B}_x$ such that $B \subset f^{-1}([0, \frac{1}{2}])$, then $cl_{\tau}(B) \subset f^{-1}([0, \frac{1}{2}])$. Hence $y \notin cl_{\tau}(B)$.

The above inequality can be proper. Let τ be the euclidean topology on R and let X be R with the topology $\sigma = \{V \setminus C : V \in \tau, C \subset R \text{ and } |C| \leq \omega\}$. Then Xis a functionally Hausdorff space such that $\psi_{\tau}(X) = \omega < \chi(X)$.

A relation between ψ_{τ} and fs is given in the following

Proposition 5. If X is a functionally Hausdorff space then $\psi_{\tau}(X) \leq 2^{fs(X)}$.

PROOF: Let $fs(X) = \kappa$ and $x \in X$. Since X is functionally Hausdorff then for every $y \in X \setminus \{x\}$ there are open sets U_y and V_y such that $x \in U_y$, $y \in V_y$ and $cl_\tau(U_y) \cap cl_\tau(V_y) = \emptyset$. Since $fs(X) = \kappa$ we can find $A, B \in [X \setminus \{x\}]^{\leq \kappa}$ such that $X \setminus \{x\} \subset cl_{\tau\theta}(A) \cup \bigcup \{cl_\tau(V_y) : y \in B\}$. Let $\mathcal{C} = \{C \subset A : x \notin cl_\tau(C)\}$, for every $C \in \mathcal{C}$ take a cozero-set G(C) such that $x \in G(C)$ and $cl_\tau(G(C)) \subset$ $X \setminus cl_\tau(C)$. Set $\mathcal{A} = \{G(C) : C \in \mathcal{C}\}$, $\mathcal{B} = \{U_y : y \in B\}$ and $\mathcal{U} = \mathcal{A} \cup \mathcal{B}$. Clearly $|\mathcal{U}| \leq 2^{\kappa}$. We claim that the family \mathcal{U} of open neighbourhoods of x is a τ -pseudobase for x. Let us take $z \in X \setminus \{x\}$. If $z \in \bigcup \{cl_\tau(V_y) : y \in B\}$ then there is an $y \in B$ such that $z \notin cl_\tau(U_y) \supset \bigcap \{cl_\tau(U) : U \in \mathcal{U}\}$. If $z \in cl_{\tau\theta}(A)$ let $\mathcal{B}_z = \{B_\lambda : \lambda \in \Lambda\}$ be the family of all open neighbourhoods of z, choose a point $x_\lambda \in cl_\tau(B_\lambda \cap V_z) \cap A$ for every $B_\lambda \in \mathcal{B}_z$ and set $C = \{x_\lambda : \lambda \in \Lambda\}$. Clearly $C \subset A, z \in cl_{\tau\theta}(C) \subset cl_\tau(C) \subset cl_\tau(V_z)$ and $x \notin cl_\tau(C)$. Therefore $C \in \mathcal{C}$ and $z \notin cl_\tau(G(C)) \supset \bigcap \{cl_\tau(U) : U \in \mathcal{U}\}$. Hence $\bigcap \{cl_\tau(U) : U \in \mathcal{U}\} = \{x\}$.

Theorem 6. If X is a functionally Hausdorff space then $|X| \leq 2^{fs(X)\psi_{\tau}(X)}$.

PROOF: Let $fs(X)\psi_{\tau}(X) = \kappa$, and for each $x \in X$ let \mathcal{V}_x be a τ -pseudobase for x with $|\mathcal{V}_x| \leq \kappa$. Construct a sequence $\{A_{\alpha} : \alpha < \kappa^+\}$ of subsets of X and a sequence of open collections $\{\mathcal{V}_{\alpha} : 0 < \alpha < \kappa^+\}$ such that:

- (i) $|A_{\alpha}| \leq 2^{\kappa}$ for every $\alpha < \kappa^+$;
- (ii) $\mathcal{V}_{\alpha} = \{ V : V \in \mathcal{V}_x, x \in \bigcup_{\beta < \alpha} A_{\beta} \}, 0 < \alpha < \kappa^+;$
- (iii) If \mathcal{W} is a family of $\leq \kappa$ elements of \mathcal{V}_{α} and K_{λ} , $\lambda < \kappa$, are subsets of $\bigcup_{\beta < \alpha} A_{\beta}$ with $|K_{\lambda}| \leq \kappa$ and $X \neq \bigcup_{\lambda < \kappa} cl_{\tau\theta}(K_{\lambda}) \cup \bigcup \{cl_{\tau}(W) : W \in \mathcal{W}\}$ then $A_{\alpha} \setminus (\bigcup_{\alpha < \kappa^{+}} cl_{\tau\theta}(K_{\lambda}) \cup \bigcup_{\alpha < \kappa^{+}} cl_{\tau}(W) : W \in \mathcal{W}\}) \neq \emptyset$. Let $A = \bigcup_{\alpha < \kappa^{+}} A_{\alpha}$. It is enough to show that A = X. Suppose not and let

Let $A = \bigcup_{\alpha < \kappa^+} A_{\alpha}$. It is enough to show that A = X. Suppose not and let $z \in X \setminus A$. Let $\mathcal{V}_z = \{V_\lambda : \lambda \in \Lambda\}, |\Lambda| \le \kappa$, since $\{z\} = \bigcap\{cl_\tau(V_\lambda) : \lambda \in \Lambda\}$ it follows that $X \setminus \{z\} = \bigcup\{X \setminus cl_\tau(V) : \lambda \in \Lambda\}$.

For every $\lambda \in \Lambda$ let $S_{\lambda} = A \cap (X \setminus cl_{\tau}(V_{\lambda}))$, and for every $y \in S_{\lambda}$ let $U_y \in \mathcal{V}_y$ such that $z \notin cl_{\tau}(U_y)$. Since $fs(X) \leq \kappa$ there are $B_{\lambda}, C_{\lambda} \in [S_{\lambda}]^{\leq \kappa}$ such that $S_{\lambda} \subset cl_{\tau\theta}(C_{\lambda}) \cup \bigcup \{cl_{\tau}(U_y) : y \in B_{\lambda}\}.$

Let $B = \bigcup \{B_{\lambda} : \lambda \in \Lambda\}$, hence $A = \bigcup \{S_{\lambda} : \lambda \in \Lambda\} \subset \bigcup \{cl_{\tau\theta}(C_{\lambda}) : \lambda \in \Lambda\} \cup \bigcup \{cl_{\tau}(U_y) : y \in B\}$ and $z \notin \bigcup \{cl_{\tau\theta}(C_{\lambda}) : \lambda \in \Lambda\} \cup \bigcup \{cl_{\tau}(U_y) : y \in B\}$ (clearly $z \notin \bigcup \{cl_{\tau}(U_y) : y \in B\}$, moreover for every $\lambda \in \Lambda V_{\lambda}$ is an open neighbourhood of z such that $cl_{\tau}(V_{\lambda}) \cap C_{\lambda} = \emptyset$, so $z \notin \bigcup \{cl_{\tau\theta}(C_{\lambda}) : \lambda \in \Lambda\}$).

Choose $\alpha \in \kappa^+$ such that $B \cup \bigcup \{C_{\lambda} : \lambda \in \Lambda\} \subset \bigcup \{A_{\beta} : \beta \in \alpha\}$. Now $X \neq \bigcup \{cl_{\tau\theta}(C_{\lambda}) : \lambda \in \Lambda\} \cup \bigcup \{cl_{\tau}(U_y) : y \in B\}$, so by (iii) $A_{\alpha} \setminus (\bigcup \{cl_{\tau\theta}(C_{\lambda}) : \lambda \in \Lambda\} \cup \bigcup \{cl_{\tau}(U_y) : y \in B\}) \neq \emptyset$. Since $A \subset \bigcup \{cl_{\tau\theta}(C_{\lambda}) : \lambda \in \Lambda\} \cup \bigcup \{cl_{\tau}(U_y) : y \in B\}$ we have a contradiction. \Box

Remark 7. The above theorem can be proved using elementary submodels (our approach follows that of [13], [14], [3]). Let $\kappa = fs(X)\psi_{\tau}(X)$ and let τ and \mathcal{G} be the topology on X and the family of all cozero sets of X respectively. For every $x \in X$ let \mathcal{B}_x be a τ -pseudobase for x such that $|\mathcal{B}_x| \leq \kappa$ and let $\psi: X \to \mathcal{P}(\tau)$ be the map defined by $\psi(x) = \mathcal{B}_x$ for every $x \in X$. Let \mathcal{M} be an elementary submodel such that $|\mathcal{M}| = 2^{\kappa}, X, \tau, \mathcal{G}, \psi \in \mathcal{M}$ and \mathcal{M} is closed under κ -sequences. Observe that for every $x \in X \cap \mathcal{M}$ it follows that $\mathcal{B}_x \subset \mathcal{M}$. We claim that $X \subset \mathcal{M}$ (and hence $|X| \leq 2^{\kappa}$). Suppose not, choose a point $z \in X \setminus \mathcal{M}$ and let $\mathcal{B}_z = \{B_\lambda : \lambda \in \Lambda\}, |\Lambda| \leq \kappa$. Since $\{z\} = \bigcap \{cl_\tau(B_\lambda) : \lambda \in \Lambda\}$ it follows that $X \setminus \{z\} = \bigcup \{X \setminus cl_{\tau}(B_{\lambda}) : \lambda \in \Lambda\}$. Let $S_{\lambda} = X \cap \mathcal{M} \cap (X \setminus cl_{\tau}(B_{\lambda}))$ for every $\lambda \in \Lambda$. For every $y \in S_{\lambda}$ let $U_y \in \mathcal{M}$ such that $y \in U_y$ and $z \notin \mathcal{M}$ $cl_{\tau}(U_y)$. $\{U_y: y \in S_{\lambda}\}$ is a family of open subsets of X such that $S_{\lambda} \subset \bigcup \{U_y:$ $y \in S_{\lambda}$. Since $fs(X) \leq \kappa$ there are $A_{\lambda} \in [S_{\lambda}]^{\leq \kappa}$ and $\mathcal{V}_{\lambda} \in [\mathcal{U}_{\lambda}]^{\leq \kappa}$ such that $S_{\lambda} \subset cl_{\tau\theta}(A_{\lambda}) \cup \bigcup \{cl_{\tau}(V) : V \in \mathcal{V}_{\lambda}\}$. Let $V_{\lambda} = \bigcup \{cl_{\tau}(V) : V \in \mathcal{V}_{\lambda}\}$, observe that $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}, \mathcal{A} = \{d_{\tau\theta}(A_{\lambda}) : \lambda \in \Lambda\} \subset \mathcal{M} \text{ and } \mathcal{M} \text{ is closed under}$ κ -sequences so $\mathcal{V}, \mathcal{A} \in \mathcal{M}$. Set $V = \bigcup \mathcal{V}$ and $\mathcal{A} = \bigcup \mathcal{A}$, by elementarity it follows that $A \cup V \in \mathcal{M}$. Now $z \in X \setminus (A \cup V)$ so by elementarity there is some $x \in X \cap \mathcal{M}$ such that $x \notin A \cup V$. Since $X \cap \mathcal{M} \subset A \cup V$ we have a contradiction.

Remark 8. The w-compactness degree of a space X, denoted by wcd(X), is the smallest infinite cardinal κ such that for every open cover \mathcal{U} of X there is a $\mathcal{V} \in [\mathcal{U}]^{\leq \kappa}$ such that $X = \bigcup \{ cl_{\tau}(V) : V \in \mathcal{V} \}$. In [2] it is shown that $|X| \leq 2^{wcd(X)\chi(X)}$ for every functionally Hausdorff space X. It is worth noting that Theorem 6 can give a better bound than the above result. The space X in Remark 4 is a functionally Hausdorff space such that $|X| = 2^{fs(X)\psi_{\tau}(X)} < 2^{wcd(X)\chi(X)}$.

A fundamental result of Shapirovskii on spread says that if X is a Hausdorff space with $s(X) \leq \kappa$ then there is a subset S of X such that $|S| \leq 2^{\kappa}$ and $X = \bigcup \{\overline{A} : A \in [S]^{\leq \kappa} \}$.

We conclude this paper with the following

Theorem 9. Let X be a functionally Hausdorff space with $fs(X) \leq \kappa$. Then there is a subset S of X such that $|S| \leq 2^{\kappa}$ and $X = \bigcup \{cl_{\tau\theta}(A) : A \in [S]^{\leq \kappa} \}$.

PROOF: By Proposition 5 it follows that $\psi_{\tau}(X) \leq 2^{\kappa}$, so for every $x \in X$ there is a τ -pseudobase \mathcal{B}_x for x such that $\mathcal{B}_x \leq 2^{\kappa}$. Let τ and \mathcal{G} be the topology on Xand the family of all cozero-sets of X respectively. Moreover let $\psi: X \to \mathcal{P}(\tau)$ be the map defined by $\psi(x) = \mathcal{B}_x$ for every $x \in X$. Take an elementary submodel \mathcal{M} of cardinality 2^{κ} such that $X, \tau, \mathcal{G}, \psi \in \mathcal{M}$ and which is closed under κ -sequences. $X \cap \mathcal{M}$ is a subset of X with the required properties. Let $x \in X$, we may assume that $x \notin X \cap \mathcal{M}$. We claim that there is a subset A of X such that $|A| \leq \kappa$ and $x \in cl_{\tau\theta}(A)$. Observe that $\mathcal{B}_y \subset \mathcal{M}$ for every $y \in X \cap \mathcal{M}$. Now for every $y \in X \cap \mathcal{M}$ take a $B_y \in \mathcal{B}_y$ (so $B_y \in \mathcal{M}$) such that $x \notin cl_{\tau}(B_y)$. Since $fs(X) \leq \kappa$ it follows that there are $A, B \in [X \cap \mathcal{M}]^{\leq \kappa}$ such that $X \cap \mathcal{M} \subset cl_{\tau\theta}(A) \cup \bigcup \{cl_{\tau}(B_y) : y \in B\}$. Since $A \in [\mathcal{M}]^{\leq \kappa}$ and \mathcal{M} is closed under κ -sequences it follows that $A \in \mathcal{M}$ and hence $cl_{\tau\theta}(A) \in \mathcal{M}$. Moreover $\{cl_{\tau}(B_y) : y \in B\} \in [\mathcal{M}]^{\leq \kappa}$ and again $\{cl_{\tau}(B_y) : y \in B\} \in \mathcal{M}$. Therefore $cl_{\tau\theta}(A) \cup \bigcup \{cl_{\tau}(B_y) : y \in B\} \in \mathcal{M}$, hence $X = cl_{\tau\theta}(A) \cup \bigcup \{cl_{\tau}(B_y) : y \in B\}$ and $x \in cl_{\tau\theta}(A)$.

References

- Engelking R., General Topology. Revised and completed edition, Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin, 1989.
- [2] Fedeli A., Two cardinal inequalities for functionally Hausdorff spaces, Comment. Math. Univ. Carolinae 35.2 (1994), 365–369.
- [3] Fedeli A., Watson S., Elementary Submodels in Topology, submitted.
- [4] Hodel R., Cardinal Functions I, Handbook of Set-theoretic Topology, (Kunen K. and Vaughan J.E., eds.) Elsevier Science Publishers, B.V., North Holland, 1984, pp. 1–61.
- [5] Ishii T., On the Tychonoff functor and w-compactness, Topology Appl. 11 (1980), 175–187.
- [6] Ishii T., The Tychonoff functor and related topics, Topics in General Topology, (Morita K. and Nagata J., eds.) Elsevier Science Publishers, B.V., North Holland, 1989, pp. 203–243.
- [7] Juhàsz I., Cardinal functions in topology—ten years later, Mathematical Centre Tracts 123, Amsterdam, 1980.
- [8] Kočinac Lj., Some cardinal functions on Urysohn spaces, to appear.
- Kočinac Lj., On the cardinality of Urysohn and H-closed spaces, Proc. of the Mathematical Conference in Priština, 1994, pp. 105–111.
- [10] Schröder J., Urysohn cellularity and Urysohn spread, Math. Japonicae 38 (1993), 1129–1133.
- [11] Shapirovskii B., On discrete subspaces of topological spaces. Weight, tightness and Suslin number, Soviet Math. Dokl. 13 (1972), 215–219.
- [12] Sun S.H., Choo K.G., Some new cardinal inequalities involving a cardinal function less than the spread and the density, Comment. Math. Univ. Carolinae 31.2 (1990), 395–401.

[14] Watson S., The Lindelöf number of a power: an introduction to the use of elementary submodels in general topology, Topology Appl. 58 (1994), 25–34.

DIPARTIMENTO DI MATEMATICA PURA ED APPLICATA, UNIVERSITÀ, 67100 L'AQUILA, ITALY

(Received January 19, 1996)