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Abstract. Some theorems characterizing the metric and covering dimension of arbitrary
subspaces in a Euclidean space will be obtained in terms of e-translations; some of
them were proved in our previous paper [G1] under the additional assumption of the
boundedness of subspaces.
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1. Introduction

In the previous paper [G1] we proved some theorems which characterize the
metric dimension pdim for bounded subspaces in a Euclidean space in terms of
e-translations. In this paper, these results will be extended for arbitrary (un-
bounded) subspaces and also, we will obtain some results characterizing the cov-
ering dimension dim in terms of some classes of e-translations such as U -0-
dimensional mappings in the sense of [Z-S] or uniformly 0-dimensional mappings
of Katétov [Kal].

Throughout this paper, all spaces are assumed to be metric and mappings are
continuous.

2. Metric dimension and e-translations

Let X C R™ and € > 0. Then a mapping f : X — R™ is called an e-translation
if || z— f(x) ||[< e for every € X. The metric dimension udim X of X is defined
to be the least integer m for which X admits open covers of order < m + 1 with
arbitrarily small meshes [Sm1]. Suppose U is a locally finite open cover of X
and P = {p, : U € U} is an arbitrary set in R™. Consider the rectilinear closed
(degenerate in general) simplex (pUO ;-1 Py, ) With vertices Pyys- -+ Py, for every
finite number of elements Uyp,..., U, € U with UpN---NU, # 0. Let N be
the family of all of these simplexes and we call N' the compler determined by U
and P . Then the k-mapping f : X — UN relative to Y and P is defined by

d(z, X — U)

= for z € X.
ZVeu dz, X = V)

f(z) = Z fo(@)p, where f;(x)

veu
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If for some € > 0, 6(U U {p,, }) < € for every U € U, then f is an e-translation.
By a simplicial complez K in R™, we mean a geometric (not necessarily finite)
simplicial complex which is locally finite in R™ at every point in UK. Also, a
polyhedron means an underlying space of a simplicial complex. If P = UK and
K is a uniform complex in the sense of Smirnov [Sm2], then we call K a uniform
triangulation of P. We note that if a polyhedron P in R™ admits a uniform
triangulation, then P is closed in R™ [Sm2]. The following lemma is an extension
of [Eg, Theorem 3].

Lemma 1. Let X be an arbitrary subspace in R"™ with udim X <m, 0 < m <
n — 1. Then for every ¢ > 0 and every sequence {H;} of (n —m — 1)-dimensional
planes in R™, there exists an e-translation of f : X — P C R™ — UH; where P is
an m-dimensional polyhedron with a uniform triangulation.

PRrROOF: Take a § > 0 with 4,/nd/3 < e. For every integer k, we denote by F(k)
the open interval ((k — 2)d, (k + £)J) and set

&= {E(kl,...,kn) cki, ... kp € Z} where E(kl,...,kn) = E(kl) XE(kn)

Then £ is an open cover of R" by open n-cubes with mesh < €. For F € &, we
denote by p,, the center of F and set P = {p, : E € £}. Let N' be the complex
determined by £ and P. Denote by 7(ki,...,kyn) the closed n-cube {z € R™ :
kid <a; < (k;+1)0,1 <i<n},and weset T = {7(k1,...,kn) : k1,...,kn € Z}.
Then for every simplex o € A there exists 7 € 7 such that all vertices of o are
those of 7. For 7 € 7, let Vi be the set of vertices of 7. Then the family of
all (n — 1)-dimensional planes determined by n points from V; defines a cellular
decomposition of 7, and applying the barycentric decomposition [AH], we obtain
a simplicial decomposition K7 of 7. Then K = U{K; : 7 € T} defines a uniform
triangulation of R™ since every K, is finite and congruent to each other.

Now let U be an open cover of X with mesh ¢ < §/3 and ord & < m+1; such
a cover exists since udim X < m by assumption. Since d/3 is a Lebesgue number
of &€ there exists i : Y — & such that U C i(U) for every U € U. Define an open
cover V of X by

V={V,:E€&} where V, =U{U €U :i(U) = E}.
Then V is a star-finite open cover of X and ord V < m+ 1. Let £ be the complex
determined by V and P and g : X — UL the x-mapping relative to V and P.
Note that UL C UKc(m) where (™) is the m-skeleton of K and that g is a A\
translation where A = mesh &, because §(V, U {p,}) < §(E) for E € £. Let

Vo = {p;} be the set of vertices in K(™) . Since K is uniform, so is (™) . Hence
by [Sm2, Corollary to Theorem 2| there exists an &’ > 0 satisfying the condition:

if {¢g;} CR™ and || p; — ¢; ||< € for every i, then there exist a uniform
complex K/ with vertices in {¢;} and an isomorphism ¢ : K™ — K/
sending each simplex (p;y, ..., Pi,.) to (Gg,---» G, )-
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We may assume that A\ + &’ < e. Moreover, by [Ku, p.307] we can choose {g;} so
that {g;} is in general position relative to { H; } i.e., cN(UH;) = ) for every simplex
o whose vertices are in {¢;} and dimo < m. Then the polyhedron P = UK’ is
disjoint from UH; and the homeomorphism A : UK(™ — P induced from v, which
is linear on each simplex, is an '-translation. Then f = hog: X — P is a desired
e-translation since || z — f(x) ||<||  —g(z) || + || g(x) — h(g(x)) [|[< A+ &’ < € for
every x € X. (|

Let m,n be integers with 0 < m < m — 1. The space N7}, is defined to be
the set of points in R™ at most m of whose coordinates are rationals. Then we
have dimN}}, = pdim N7}, = m][E]. The space SI¥,, which was defined in [G2] by
modifying the space Sy, in [G1], satisfies the relations:

N7, €SP, pdim S, = m and dim S}, = min{2m,n — 1}.

Note that dim X < 2udim X for every X by [Ka2]. Hence, among those subspaces
in R™ of metric dimension m, S}, is of the maximal difference with its covering
dimension.

The following theorem is an extension of [G1, Theorem 1] which was proved
under the additional condition of the boundedness of X.

Theorem 2. Let X be an arbitrary subspace in R™ and m an integer with 0 <
m < n — 1. Then the following conditions are equivalent.
(a) pdim X <m.
(b) For every e > 0 and every polyhedron P in R" of dimension <n—m —1,
there exists an e-translation f : X — R™ with f(X)NP(or C1(f(X))NP) =
0.
(¢c) For every ¢ > 0 and every polyhedron P with a uniform triangulation in
R™ of dimension < n —m — 1, there exists an e-translation f : X — R"

with f(X) N P (or CI(f(X)) N P) = 0.

PROOF: Since every polyhedron admits a triangulation consisting of countably
many simplexes, (a) implies (b) by Lemma 1. Obviously (b) implies (c).
Assume that the condition (c) is satisfied. Then for every € > 0, as was proved
essentially in [G1, Theorem 1], there exists an e-translation of X into an m-
dimensional polyhedron; it needs only to observe that the polyhedron B; 5, _m—1
in [G1] allows a uniform triangulation. Hence by [Sml, Corollary 2] we have
pdim X < m. O

The following theorem which extends [G1, Theorem 2], can be proved similarly
by use of Lemma 1 and its proof is omitted.

Theorem 3. For every subspace X in R"™ and every integer m with0 < m < n—1,
the following conditions are equivalent.
(a) pdim X <m.
(b) For every e > 0 there exists an e-translation f of X into an m-dimensional
polyhedron P (with a uniform triangulation) such that P C N7.,.
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(c) For every e > 0 there exists an e-translation f of X into an m-dimensional
polyhedron P (with a uniform triangulation) such that P C S7,.

3. Covering dimension and e-translations

Let & be an open cover of a space X and A C X. Then we write U-dim A < 0
if there exists a pairwise disjoint open collection Uy in X such that Uly DO A and
Up refines U. A mapping [ : X — Y is called U-0-dimensional (or U-dim f < 0)
if for some open cover V of Y, U-dim f~1(V) < 0 for every V € V [Z-S].

Lemma 4. LetU be a countable star-finite open cover of a space X with ord U <
k+1and N the complex determined by U and P ={p, : U e U} CR". If N
consists of non-degenerate simplexes and is locally finite in R™ at every point in
UAN, then U-dim f < 0 for the k-mapping f determined by U and P.

PROOF: By [Ku, p.239], there exists a geometric realization K of the nerve of U
in R2F+1 Let Q = {q, : U € U} where g, is the vertex of K corresponding to
U e U, and let 7 : K — N be the mapping sending each simplex (qUO oo dy,)
to (pUO, .++sPy, ). Since K is locally finite, 7 induces a mapping p : UK — UN
uniquely which is linear on each simplex in K. Clearly we have f = p o g for the
k-mapping ¢ relative to U and Q.

Let y € UN. Then y is contained in the interior of only finitely many simplexes
in NV, say o1, ...,0s. Since p is homeomorphic on each simplex, p~!(y) consists of
exactly s points. For every z; € p~!(y), we choose a simplex 7; € K such that z; is
in the interior of 7;, 1 <14 < s. Let W; be the open star of 7; in K, and then {WV; :
1 < < s} is pairwise disjoint. For, if otherwise, there would be a simplex 7 € K
with distinct faces 7; and 7;. But this contradicts that p is homeomorphic on 7.
Let £ be the subcomplex of K such that UL = UK — U{WW; : 1 < i < s}. Since
N is locally finite by assumption, V, = UN — p(UL) is an open neighborhood
of y such that f~1(Vy) = ¢~ 1'p~ (V) C U{g~1(W;) : 1 < i < s}. Since g is a
r-mapping, {g71(W;) : 1 < i < s} refines & . This means U-dim f~1(V,) < 0
and hence U-dim f < 0. O

Theorem 5. Let X be an arbitrary subspace in R™ and k an integer with 0 <
k < n. Then dim X < k iff for every finite open cover U of X, there exists an
e-translation f : X — R™ such that U-dim f < 0 and f(X) (or CI(f(X))) € N}

PROOF: Necessity. Let ¢ > 0 and U = {Uy,...,U,} be an open cover of X. Let
& be the cover of R™ by open n-cubes with mesh < ¢ in the proof of Lemma 1.
Since dim X < k, there exists an open cover V = {V(k1,...,kn;j) : k1,...,kn €
Z,1 <j <r}suchthat ord V < k+1and V(k1,...,kn;j) C E(k1,..., k) NU;
for every k; and j. As in the proof of Lemma 1, we can take P = {p,, : V € V}
in R™ such that

P is in general position in R™,

py € E(k1,...,ky) for V.=V(ky,..., kn;j), and

UN C N} where N is the complex determined by V and P .
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Then A consists of non-degenerate simplexes and is locally finite in R"™. Hence
the k-mapping f relative to V and P is U -0-dimensional by Lemma 4 and is a
desired e-translation since §(V U{p,, }) < mesh £ < €. The proof of the sufficiency
is almost evident. (]

Let X C R™ and £ > 0. We denote by T (X)) the collection of all e-translations
of X into R™ and set T(X) = U{T<(X) : € > 0}. Then T'(X) is complete relative
to the metric defined by d(f,g) = sup{|| f(z) — g(z) ||: z € X }.

Theorem 6. Let X be a bounded subspace in R™ with 0 < k < n. Then
dim X < k iff for every € > 0 there exists a uniformly 0-dimensional e-translation
[+ X — R" such that f(X) (or CI(f(X))) € N}.

ProoF: The sufficiency of the theorem follows from the fact that every uniformly
0-dimensional mapping does not decrease the dimension [Kal, Theorem 3.3].

Assume that dimX < k and € > 0. Let {H;} be a sequence of (n — k — 1)-
dimensional planes in R™ such that R® — N’ = UH;. We set

Si={feT(X):Cl(f(X))NH; =0} for i € N, and
T ={fe€T(X): f is uniformly 0-dimensional }.

Then S; is dense and open in T(X), and 7 is a dense Gg-set in T(X) [Kal,
Theorem 2.15]. Hence NS; N7 is dense in T(X), and there exists f € NS; N T
with d(1x, f) < e. Then f is an e-translation of X with CI(f(X)) C N} O

We don’t know whether Theorem 6 is valid for unbounded subspace X.
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