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A note on topology of Z-continuous posets

Venu G. Menon

Abstract. Z-continuous posets are common generalizations of continuous posets, com-
pletely distributive lattices, and unique factorization posets. Though the algebraic prop-
erties of Z-continuous posets had been studied by several authors, the topological prop-
erties are rather unknown. In this short note an intrinsic topology on a Z-continuous
poset is defined and its properties are explored.
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Introduction

Z-continuous posets were introduced byWright, Wagner, and Thatcher [WWT]
as a generalization of continuous lattices. The family of Z-continuous posets
in fact includes completely distributive lattices ([R]), and unique factorization
posets ([M]). The algebraic properties of Z-continuous posets had been studied
by several authors eg. [BE], [N], [V1], [V2]. Though topological methods play
an important role in the theory of continuous lattices from its inception, the
topological properties of Z-continuous posets have never been studied. In this
short note, we define an intrinsic topology on a Z-continuous poset, and point
out some pleasant properties of this topology. Of course a lot more need to be
done in this direction.
A subset system Z is a function which assigns to each poset P a set Z(P ) of

subsets of P such that (i) for all P , all singletons of P are in Z(P ), and (ii) if
f : P → Q is a monotone function between posets, and S is Z(P ), then f(S) is
in Z(Q) ([WWT]). Some examples of the subset systems are all subsets, directed
subsets, and finite subsets; see [V1] and [V2] for more examples. For S ∈ Z(P ),
↓ S is called a Z-ideal. The poset (ordered by inclusion) of all Z-ideals of a
poset P is denoted by IZ(P ). Let P be a poset. For x, y ∈ P , x is said to
be Z-waybelow y (written x ≪ y) if whenever y ≤ supS for some S ∈ Z(P ),
there exists an s ∈ S such that x ≤ s. A poset is called Z-continuous if (i) it
is Z-complete (meaning: for every S ∈ Z(P ), supS exists), (ii) for every x ∈ P ,
the set ⇓ x = {y : y ≪ x} ∈ IZ(P ), and for every x ∈ P , x = Sup ⇓ x. A
Z-continuous poset is called strongly Z-continuous if the waybelow relation has
the interpolation property; that is, x ≪ y implies that there exists a z ∈ P such
that x ≪ z ≪ y. If the subset system is union-complete, then any Z-continuous
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poset is strongly Z-continuous ([V1]). The following table shows the most well
known examples of Z-continuous posets. See [V2] for more examples.

Subset system Z Z-continuous poset

All subsets Completely distributive lattices [R]
Directed subsets Continuous posets [COMP]
Finite subsets Unique factoring posets [M]

1. Topology

Definition 1.1. For a poset P , let σZ(P ) denote the set of all subsets V of P

satisfying the following conditions: (i) V =↑ V , and (ii) whenever supS is in V

for some S ∈ Z(P ), then there exists s ∈ S such that s ∈ V . Let ωZ(P ) = {P\ ↑
x : x ∈ P}. Let λ(P ) denote the topology on P generated by ωZ(P ) ∪ ωZ(P ) as
subbasic open sets.

If Z is the subset system of all subsets, this topology is the same as the interval
topology, and if Z is the subset system of all directed subsets, then this topology
is the same as the Lawson topology ([COMP]).

Proposition 1.2. If P is a strongly Z-continuous poset, then λZ(P ) is a T3
topology.

Proof: Since P\ ↓ x ∈ σZ(P ), ↓ x is a closed set, and since P\ ↑ x ∈ ωZ(P ),
↑ x is a closed set. Therefore {x} =↑ x∩ ↓ x is closed, and hence λZ(P ) is a T1
topology. Now we shall show that λZ(P ) is regular. It is sufficient if we show
that for each y ∈ P , and a subbasic open set U containing y, there exists an open
set V such that y ∈ V , and the closure of V is contained in U .
Let y ∈ V where V ∈ σZ (P ). Since y = sup ⇓ y and ⇓ y is a Z-ideal, there

exists x ≪ y such that x ∈ V . Therefore y ∈⇑ x ⊆ Cl(⇑ x) ⊆↑ x ⊆ V . Now we
shall show that ⇑ x is an open set. Let supS ∈⇑ x for some Z-set S of P . By
the interpolation property, there exists a z ∈ P such that x ≪ z ≪ supS. Then
there exists s ∈ S such that x ≪ z ≤ s. This proves that ⇑ x is open.
Now let y ∈ P\ ↑ x. Then x 6≤ y, and therefore there exists u ≪ x such

that u 6≤ y. By the interpolation property, there exists z such that u ≪ z ≪ x.
Therefore y ∈ P\ ↑ u ⊆ Cl(P\ ↑ u) ⊆ P\ ⇑ z ⊆ P\ ↑ x. This completes the proof
of the proposition. �

For the remaining of this note, we assume the topology on a Z-continuous
P poset is the Λ(P ) topology. A function between two Z-continuous posets is
called a homomorphism if it preserves the sups of Z-sets and is an upper adjoint.
See [BE] and [V1].

Proposition 1.3. Let P , Q be Z-continuous posets. If f : P → Q is a homo-

morphism, then f is continuous.
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Proof: Since f is an upper adjoint inf f−1(↑ t) exists for all t ∈ Q. Let s =
inf f−1(↑ t). Then, since upper adjoints preserves infs, f(s) = f(inf f−1(↑ t)) =
inf ff−1(↑ t) = inf ↑ t = t. Thus s ∈ f−1(↑ t) and hence f−1(↑ t) =↑ s.
Therefore f−1(↑ t) is closed. Now let V ∈ σZ(Q). We shall show that f−1(V ) ∈
σZ(P ). Since f is a monotone map, f−1(V ) is an upper set. Let S be a Z-set in
P such that supS ∈ f−1(V ). Then f(supS) ∈ V and, since f is Z-continuous,
sup f(S) ∈ V . Since f(S) is a Z-set in Q and since V ∈ σZ (Q), there exists x ∈ S

such that f(x) ∈ V ; that is, x ∈ f−1(V ). Thus f−1(V ) ∈ σZ(P ). This completes
the proof that f is continuous. �

The following lemma was proved in [BE].

Lemma 1.4. Let P , Q be Z-continuous posets, and let (g, d) be a Galois connec-
tion from P to Q. If g is Z-continuous, then d preserves the waybelow relation.

A subposet of a Z-continuous poset is called a subalgebra if the inclusion map
is an upper adjoint which preserves the sups of Z-sets. It was shown in [V1] that
a subalgebra of a Z-continuous poset is Z-continuous.

Proposition 1.5. Every subalgebra of a strongly Z-continuous poset P is a

closed subspace of P .

Proof: Let j be the lower adjoint of the inclusion map i : S → P . Let x ∈ P \S.
We want to find an open set containing x and contained in P \ S. Note that
ij(x) ≥ x which implies that j(x) > x. Then there exists y ∈ P such that
y � x and y ≪ j(x). Therefore x ∈ P\ ↑ y = V1. Since j preserves sups,
y ≪P j(x) = j(supP ⇓ x) = supS j(⇓ x). Then by the above lemma, j(y) ≤S

j(x) = supS j(⇓ x) and hence there exists z ≪ x such that j(y) ≤ j(z). Therefore
x ∈ ⇑ z = V2. Let V = V1 ∩ V2. We claim S ∩ V = ∅. Indeed, if r ∈ S ∩ V , then
y 6≤ r and z ≪ r. Then y ≤ j(y) ≤ j(z) ≤ j(r) = r. This contradiction proves
the claim. This completes the proof of the proposition. �

A subposet B of a Z-continuous poset P is called a basis if, for all x ∈ P ,
(i) ⇓ x ∩ B ∈ IZ(P ) and (ii) x = sup ⇓ x ∩ B ([V1]).

Proposition 1.6. If P is a Z-continuous poset with a countable basis, then P

is metrizable.

Proof: Let B be a countable basis of P . We shall show that {P\ ↑ b : b ∈
B} ∪ {⇑ b : b ∈ B} is a subbasis of the topology. Let V ∈ σZ(P ) and let
x ∈ V . Since sup(⇓ x ∩ B) = x and ⇓ x ∩ B ∈ IZ(P ), there exists y ∈ V

such that y ∈ ⇓ x ∩ B. Then x ∈ ⇑ y ⊆ V . Now let P\ ↑ x ∈ ωZ(P ). Then
P\ ↑ x = P\ ↑ sup(⇓ x∩B) = P \ (

⋂
b∈⇓x∩B

↑ b) =
⋃

b∈⇓x∩B
P\ ↑ b. This proves

the claim, and the proposition follows from Urysohn’s Metrization Theorem. �
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