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On a theorem of Fermi

V.V. SLAVSKII

Abstract. Conformally flat metric g is said to be Ricci superosculating with g at the
point zg if g;;(x0) = Gij(x0), I"fj(wo) = Ffj (z0), Rfj(mo) = Rfj(xo), where R;; is the
Ricci tensor. In this paper the following theorem is proved:

If ~ is a smooth curve of the Riemannian manifold M (without self-crossing), then

there is a neighbourhood of « and a conformally flat metric g which is the Ricci super-
osculating with g along the curve 7.
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Let g = gijd:cida:j and g = gijd:cida:j be two metrics on the n-dimensional
manifold M. The metric g is said to be tangent, respectively osculating with the
metric ¢ at the point zg € M ([1]), if

gij(x0) = gij(wo),  respectively,

09i; 0Gii _
9ij(20) = Gijw0), 5t (o) = 57 (x0) (or THj(wo) = Dj(e0))
where I‘i-“j are the Cristoffel symbols.

If v is a smooth curve of the manifold M, then there is a local Euclidean metric
g which is osculating with the g along the curve (this theorem is due to Fermi [1]).

The Riemannian curvature tensor can be computed with the help of the first
and second derivatives of the metric tensor g;;; hence, there exists no local-
Euclidean metric which is superosculating of degree two with g. But if we consider
a class of conformally flat metrics, there is a conformally flat metric which has
some equal combinations of first and second derivatives.

Definition. Conformally flat metric g is said to be Ricci superosculating with g
at the point zg if

9ij(x0) = Gij(zo), Th;(z0) =Tfi(x0), Rij(zo) = Rij(o),

where R;; is the Ricci tensor.
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Theorem. If v is a smooth curve of the Riemannian manifold M (without self-
crossing), then there is a neighbourhood of 7 and a conformally flat metric g
which is the Ricci superosculating with g along the curve 7.

To prove the theorem we use the conformal connection and a conformal de-
velopment of the curve ([2]-[4]). Let R"*2? = R"*! x R be a pseudo-Euclidean
Minkowski space with a Lorentz inner product given by formula ([5]):

(21, 22) = (w1, 72) — C1C2,

where z; = (z;,¢;) € R™2, i =1,2; (x1,22) is an inner product for the Eu-
clidean space R"*1. Let Ct = {2 = (,¢) : (2,2) = 0,¢ > 0} denote the light
cone of the Minkowski space. We consider the basis F' for the space R™2 as the
column of vectors of R"*2. Let GL(n +1,1) be a manifold of all the basis of the
kind:

Ft={e1,...,en, 2,2*},
where {e1,...,en} are spacelike vectors (i.e. |[|g;;|| = |/{(e;,e;)| is a positively
definite matrix),
(1) <Zvei> = <Z*7ei> =0, <ZaZ*> =-1, <Z>2 = <Z*>2 =0.

Let us fix the basis F, € GL(n + 1, 1), then any other basis ' € GL(n + 1,1)
can be identified with the linear transformation F such that F' = F - F.. The
matrix-valued 1-form & is defined by

=dF -Fl=|wll, ij=1,...n+2
or
(2) dF =d(F-F)=dF - F ' F.F,=% F.
Now (1) implies

= kK~ ko~
dgij = w;. Grj + wj. Gkis
n+2 n+1 n+1 n+2
= 0, 0,

wn—i—l. - wn+2. = wn—i—l. +wn+2. =
k= n+2 _ k= n+1l _
Wnt1.0ki —w;. =0, wpio gk —w; ' =0.
Let us set
K i n+2 K i . 1 . 1
w11 =W, wZH' =wj, Wy =w", wi'""_ =w, a= wn":l..

The equation of Cartan-Maurera d® + %[@, ®) =0 for P is written

n
dw;’ = Zwﬁ/\wﬂ + Wi AW Fwi AW da=w; AW,
k=1

dw' = ¥ /\wki. +anwt, dw* =tk /\‘Uki. —a AW



On the Fermi theorem

We now give a construction of the conformal Cartan connection. Let g =
gijdt'dt! be the Riemannian metric on the manifold M. Let ® be the differential
matrix 1-forms defined by the formulas:

. . ) . 1 Ra:.dtF
_ J_ I g4k _ k Jik _ k _
(.()Z — dt7'7 wi. = Flkdt 5 u};k = m <ledt — m) = Azkdt 5 o = O7

where ng are the Cristoffel symbols, R;; is the Ricci tensor, A;; is the reduced
Ricci tensor, R is the scalar curvature. The form ® is called the normal conformal
Cartan connection of the Riemannian manifold M ([2]-[4]). We denote this matrix

of differential 1-forms by ® = {w?, wﬁ,w%", 0}.

Definition. Let {M, g} be the Riemannian manifold; and let o be a differ-
ential 1-form on M. The extended conformal Cartan connection matrix ¢ =

{wi,fjf,&;, a} on the manifold M, associated with «, is the matrix defined by
the formulas:

& =w —aw! +ddw; = (ka - oy, + O‘jgik) dt”,

3 — ol o? Y\ g

w; =w; —aja— Doy + 5 w; = Aij — oy — o+ 5 9ij dt’,

where a = a’w; = a;w’, Da; is the covariant derivative, |a|? = oqy.

The curvature matrix of the extended Cartan connection is defined by the
formula: —~

- 1~ ~ - - -
do+[@®=1 0 [ 0 [ 0],
S5 0 | 0

where WZJ = WZ] are the forms of the Weyl tensor (it is independent of the choice
of a), S' = S' + oW are the forms of the Schouten-Weyl tensor ([6]).

Definition. Let v = {z%(t) : a < t < b} be a smooth curve of the manifold
{M,g,a} and Fy = {e(l), €229 29%Y € GL(n +1,1) be a starting basis such
that:

gij(v(a)) = (e, €}).
The lifting F' : [a,b] — GL(n + 1,1) is the solution of the differential matrix
equation I = &(§)F, F(a) = Fy. The vector function z : [a,b] — CF (the
component of F) is called the conformal development of .

Remark 1. The development z does not depend on the choice of the local basis
{e1,...,en} and the form « on the manifold M (for the proof see [3]).

Remark 2. In the case of the continuous curve =, the lifting of the curve, for an
arbitrary connection, was defined in [7].

869



870 V.V. Slavskii

Lemma. Let Z : D — CT be an immersion of the domain D C R™ into the light
cone CT C R™2 of the Minkowski space R"2, and let § = (dZ,dZ) = gijdztdx’
denote the conformally flat metric ([5]), then

d*Z = Zjjda'da! = ZyT};datda? + 27 gijdatda? + Z A;jda’da

where f‘fj are the Cristoffel symbols, A;, is the reduced Ricci tensor of the metric
g, the vector Z* is defined by the formulas:

<Z*5ZZ>:07 <Z7Z*>:_1a <Z*7Z*>:Ov

2
where Zi = %, Zij = —dfidzxj.
PRrooF: The vectors {Z1,...,Zn, Z, Z*} form a basis, hence
(3) Zij = ZME + Z*N;j + ZP;.

It is easy to see, from (1), that

MZIE = f‘fj, Nij = glj

If we differentiate (3) with respect to x° and equate the mixed partial derivatives

Zijs and Zisja we obtain Pij = Aij' O

Remark.  The tensors g;; and f_lij completely define the second fundamental
form of the surface {Z(x)} in the Minkowski space.

PROOF OF THE THEOREM: Let {z!,22, ..., 2"} be the Fermi co-ordinate system
([8]) in the tube about the curve

7:{96:12:---=x"=0,a§9€1§b}7

that is:

(a) the tangent vectors %, cey 8% form the orthonormal frame field along
the curve v, . .
(b) the curves {z! = const, 2’ = ¢'s : s > 0,5 > 2} are geodesics, where
{c'}, are constants.
Let Be(7) = {z: 31" o(2%)? < €2, a < 2! < b} denote the (solid) tube of the
radius € about . We will determine the immersion

7 : Be(y) — CT,

such that § = (dZ,dZ) will be the required conformally flat metric.



On the Fermi theorem

Let zg = (a,0,...,0) € B-(7) be the starting point. Any point z = (z!,...,z")
€ Be(v) can be connected with zy by the curve (open polygon) I, consisting of
the two arcs. The first arc is a line segment along the axis of Be(%):

z(t) = {a(1 —t) + tz*,0,...,0}, 0<t<1,
the second arc is the geodesic segment which is orthogonal to the axis
z(t) = {at, (t—1)2?,...,(t—1)a"}, 1<t<2

The curve Iz : [0,2] — B:(7y) depends smoothly on the terminal point z. Let £
denote the family of all such curves ;.
Let us fix the basis Fy € GL(n + 1,1) and associate I with the lifting

Fp(t) ={e1(®)z,---sent)z, 2(t)z, 2" ()2},
into the group GL(n 4 1,1). Then we may consider the map
F:z € Be(y) = Fx(2) e GL(n + 1,1).

Let & = {@i, cDZJ ,w;,a} be a matrix 1-forms corresponding to the map F by the
formula (2). Let Z(z) = z(2), be a component of the map F, that is the terminal
point of the development [,.

Since ® = (I>|£, then the forms ® and ® are equal along the axis B(7) (on the
tangent space of the manifold M). We have

dZ = 7;0" = Z;dat,
dZ; = 07 Zj + 0, 2% + @} Z,
for any point of v. Then
A7 =0 da' Z; + 0;da’ Z* + 0fda' Z = ) da' Zj + widat Z* + Wida' Z,

for any point of . The application of the Lemma gives us the required result.
Other applications of the conformal development curves can be find in [3]. O
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