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Random coincidence degree theory with

applications to random differential inclusions

E. Tarafdar, P. Watson, Xian-Zhi Yuan∗

Abstract. The aim of this paper is to establish a random coincidence degree theory.
This degree theory possesses all the usual properties of the deterministic degree theory
such as existence of solutions, excision and Borsuk’s odd mapping theorem. Our degree
theory provides a method for proving the existence of random solutions of the equation
Lx ∈ N(ω, x) where L : domL ⊂ X → Z is a linear Fredholm mapping of index zero

and N : Ω×G → 2Z is a noncompact Carathéodory mapping. Applications to random
differential inclusions are also considered.

Keywords: Carathéodory upper semicontinuous, random (stochastic) topological degree,
Souslin family, measurable space
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1. Introduction

Let X and Z be normed spaces. The study of solutions of the equation

Lx ∈ N(x)

where L : domL ⊂ X → Z is a linear mapping and N : G→ 2Z is a multivalued
mapping has drawn a lot of interest due to the wide range of problems which can
be expressed in this manner. For instance, the equation represents many nonlinear
ordinary, partial and functional differential equations as well as optimal control
problems (see Pruszko [21], Gaines and Mawhin [7] and Gaines and Peterson [8]
for examples of this formulation of differential problems).
Using an equivalence theorem which reduces the problem of existence of solu-

tions of the equation to that of fixed points of an auxiliary mapping and the Leray-
Schauder degree, Mawhin [15] developed a degree called the coincidence degree for
the pair (L,N). With the subsequent development of the Leray-Schauder degree
by authors such as Nussbaum [17], [18], Sadovskii [24] and Ma [14], the coinci-
dence degree has been extended to the noncompact, set-valued case by Tarafdar
and Teo [28].

∗The corresponding author and present mail address is: George Xian-Zhi Yuan, Department
of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, N.S., B3H
3J5, Canada.
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The purpose of this paper is to study the existence of solutions of the equation

Lx ∈ N(ω, x)

where N : Ω × G → 2Z is a Carathéodory mapping and (Ω,Σ) is a measurable
space. The inclusion of a randomness factor ω ∈ Ω leads to wider class of problems
which can be solved using the coincidence degree method.
The layout of this work is as follows: in Section 2, Carathéodory mappings

are introduced along with a selection theorem for these mappings. This selec-
tion result is used throughout the rest of the paper. Section 3 summarizes the
deterministic coincidence degree of Tarafdar and Teo, and in Section 4 the Sto-
chastic Coincidence Degree is defined and its properties are given. In Section 5,
applications to Random Generalized Boundary Value Problems are given.
Now in order to make the paper comprehensible we recall some definitions and

notations.
An abstract measurable (Ω,Σ) is a pair where Ω is a set and Σ is a σ-algebra of

subsets of Ω. If X is a topological space, the Borel σ-algebra B(X) is the smallest
σ-algebra containing all open subsets of X .
Suppose that to each finite sequence (i1, i2, · · · , in) of positive integers corre-

sponds a subset Si1,i2,··· ,in of a given set. Then the set

S =
⋃

(ij)∞j=1∈I

∞⋂

n=1

Si1,i2,··· ,in

the union being taken over all the (uncountable) collection I of all infinite sequence
(ij)

∞
j=1, is said to have been formed from these sets by means of the Souslin (see

Wagner [31] and reference therein) operation. Let G be a family of subsets in a
non-empty set X . Then G is said to be a Souslin family if each set obtained from
G by Souslin operation is still in G. We shall say that the measurable space (Ω,Σ)
admits the Souslin operation (or say, Σ is a Souslin family) if every subset formed
by Souslin operation from measurable sets is still measurable. Every measurable
space derived from an outer measurable admits the Souslin operation (e.g., see
Rogers [23, p. 44-49]). A more compact notation for the Souslin operation is given
as follows. Let σ := (i1, i2, · · · ), be an infinite sequence of positive integers, we
shall denote by σ|n the finite sequence (i1, i2, · · · , in) obtained by stopping at the
nth term. With this notation, the formula displayed above becomes

S =
⋃

σ∈I

∞⋂

n=1

Sσ|n.

We note that many measurable spaces are derived from an outer measurable.
For example, if the measurable space (Ω,Σ) has an outer measure, then Σ is a
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Souslin family (e.g., see Saks [26, p. 50]). In particular, every finite or σ-finite com-
plete measurable space (in which subsets of sets of measure zero are measurable)
has a Souslin family Σ.
Let X and Y be topological spaces. A mapping F : X → 2Y is said to be

upper semi-continuous (u.s.c.) at the point x if for any neighborhood V of F (x),
there exists a neighborhood U of x such that F (z) ⊂ V for any z ∈ U . Note
that usc is nothing else than continuity in the single valued case. Let (Ω,Σ) be

an abstract measurable space. A multivalued mapping F : Ω→ 2X is said to be
Σ-measurable if the set F−1(B) := {ω ∈ Ω : F (ω) ∩ B 6= ∅} ∈ Σ for any closed
subset B of X .

2. Carathéodory set-valued mappings and related results

Let (Ω,Σ) be a measurable space, X and Y two topological spaces. Then

a mapping F : Ω × X → 2Y is said to be Carathéodory if (a) the mapping

Fx : Ω → 2Y , Fx(ω) := F (ω, x) is measurable for all fixed x ∈ X and (b) the

mapping Fω : X → 2Y , Fω(x) := F (ω, x) is upper semicontinuous for all fixed
ω ∈ Ω.
We begin with a result which is a special case of Theorem 2.3 of Tan and

Yuan [27]. First though, we say F : Ω×X → 2X has a random fixed point if there
exists a single valued measurable mapping ξ : Ω→ X such that ξ(ω) ∈ F (ω, ξ(ω))
for all ω ∈ Ω.

Theorem 2.1. Let (Ω,Σ) be a measurable space, Σ a Souslin family and X

a non-empty separable Banach space. Suppose F : Ω × X → 2X is such that
GraphF ∈ Σ ⊗ B(X × X). Then F has a random fixed point if and only if the
mapping F (ω, ·) : X → 2X has a fixed point for each fixed ω ∈ Ω.

2A. On k − φ-contractions

Let X be an arbitrary topological vector space. By K(X) we shall mean the
family of all (nonempty) closed convex subsets of X , and CK(X) shall denote
the family of all compact convex sets in X . By A we mean the closure of the
set A in X and ∂A we mean the boundary of A. For details of the following, see
Petryshyn and Fitzpatrick [19], Sadovskii [24] or Tarafdar and Thompson [29].

Definition 2.2. Let C be a lattice with a minimal element which we denote by
zero, 0. A mapping φ : 2X → C where 2X denotes the power set of X , is called
a measure of noncompactness if, for any A ⊂ X , B ⊂ X , it satisfies the following
properties:

(i) φ(coA) = φ(A),
(ii) φ(A) = 0 if and only if A is precompact,
(iii) φ(A ∪B) = max{φ(A), φ(B)}.

From (iii) we see that A ⊂ B =⇒ φ(A) ≤ φ(B).
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Definition 2.3. Let φ be a measure of noncompactness and we additionally
assume that the lattice C has the property that, for each c ∈ C and λ ∈ R with
λ > 0, there is defined an element λc ∈ C. Let W ⊂ X . An u.s.c. mapping
F : W → CK(X) is called a k − φ-contraction or a k − φ-contractive mapping if
there exists some k > 0 such that, for every subset A of W ,

φ(F (A)) ≤ kφ(A).

If the mapping F is such that φ(F (A)) < φ(A) for all A ⊂ W , then F is said to
be φ-condensing. It is clear that if F is k − φ-contraction, then it is condensing.

The following results follow almost immediately from Definition 2.3.

Proposition 2.4. Let φ be a measure of noncompactness with the additional
property that for any subsets A and B of X ,

φ(A+B) ≤ φ(A) + φ(B).

If F,G : W → CK(X) are k1− and k2 − φ-contractions respectively, then the
mapping F +G :W → CK(X) defined by

(F +G)(x) = F (x) +G(x)

is a (k1 + k2)− φ-contraction.

Proposition 2.5. Let φ be a measure of noncompactness, F :W → CK(X) be
a k1−φ-contraction and G : X → X be linear, continuous single valued mapping
such that for each subset A of X , we have

φ(G(A)) ≤ k2φ(A).

Then GF :W → CK(X) defined by

GF (x) = {G(y) : y ∈ F (x)}

is a k1k2 − φ-contraction.

Proposition 2.6. If F and G are k − φ-contractions, then so is λF + (1 − λ)G
for any λ ∈ [0, 1].

2B. A ‘Selection’ Theorem

Lemma 2.7. Suppose that X is a Banach space and {Gi : i = 1, 2, . . . } is a
family of bounded, nonempty subsets of X such that Gn+1 ⊂ Gn for n ∈ N and
limn→∞ φ(Gn) = 0 where φ is a measure of noncompactness defined above. Then⋂∞
n=1Gn 6= ∅ and is compact.

Proof: Theorem 6.1.2 of Lloyd [13]. �
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Lemma 2.8. Let X be a topological space and F : X → CK(X) be a set-valued
mapping. Then we have that

(i) F : X → CK(X) is upper semicontinuous if and only if F+(G) = {x :
F (x) ⊂ G} is open for any open set G ⊂ X ;

(ii) the composition of two upper semicontinuous maps is an upper semicon-
tinuous map.

Proof: See Berge [2]. �

Proposition 2.9. Let X be a topological space and Y be a normal topological
space. If F : X → 2Y is upper semicontinuous, then the mapping F : X → 2Y

defined by F (x) := F (x) for each x ∈ X is also upper semicontinuous.

Proof: According to the definition of upper semicontinuity, for each open neigh-

borhood V in Y , it suffices to prove that the set F
+
(V ) = {x ∈ X : F (x) ⊂ V }

is open in X . Now suppose x0 ∈ F
+
(V ), then F (x0) ⊂ V . As F (x0) is closed

and Y is normal, there exists a non-empty open neighborhood V1 of V such that
F (x0) ⊂ F (x0) ⊂ V1 ⊂ V1 ⊂ V . As F is upper semicontinuous and note that
F (x0) ⊂ V1, so that there exists a non-empty open neighborhood N(x0) of x0
such that F (w) ⊂ V1 for all w ∈ N(x0). Therefore we have F (w) ⊂ V1 ⊂ V .
Hence we have proved that F (w) ⊂ V for all w ∈ N(x0), which means that

N(x) ⊂ F
+
(V ). Thus F

+
(V ) is open in X and the conclusion follows. �

Proposition 2.10. LetX be a topological vector space and Y be a locally convex
topological vector space. If F : X → 2Y is upper semicontinuous, then the
mapping coF : X → 2Y defined by coF (x) := co (F (x)) for each x ∈ X is upper
semicontinuous.

Proof: Similar to the arguments above, it suffices to prove that for each open
neighborhood V of Y , the set (coF )+(V ) = {x ∈ X : coF (x) ⊂ V } is open
in X . Now suppose x0 ∈ (coF )

+(V ), then coF (x0) ⊂ V . As Y is a locally
convex topological vector space, without loss of generality, we may assume that
V is convex. As F is upper semicontinuous and F (x0) ⊂ coF (x0) ⊂ V , there
exits a non-empty open neighborhood N(x0) of x0 such that F (w) ⊂ V for all
w ∈ N(x0). Thus cof(w) ⊂ co (V ) = V for all w ∈ N(x0) as V is convex.
Therefore N(x0) ⊂ (coF )

+(V ), which implies that (coF )+(V ) is open in X .
Therefore the conclusion follows and the proof is complete. �

In joining Propositions 2.9 and 2.10, we have the following theorem:

Theorem 2.11. Let X be a topological space and Y be a non-empty subset of a
normed space. If F : X → 2Y is upper semicontinuous, then the mapping coF :
X → 2Y defined by coF (x) := coF (x) for each x ∈ X is upper semicontinuous.

Proof: Note that each subset of normed space is normal and the composition
of upper semicontinuous mappings is upper semicontinuous. Thus it is clear that
the conclusion follows from Propositions 2.9 and 2.10. �
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Now we present the following selection result which was first given in our
paper [30]; for the convenience of the reader, we give an outline of its proof here.

Theorem 2.12. Let (Ω,Σ) be a measurable space, X a non-empty metrizable
and separable space and Y be a metrizable and separable convex set in a locally
convex Hausdorff topological vector space E. Suppose F : Ω × X → 2Y is a
Carathéodory mapping with non-empty compact, convex values such that Fω :
X → 2Y is φ-condensing for any fixed ω ∈ Ω. Then there exists a set-valued
mapping S : Ω×X → 2Y with the following properties:

(1) S is Carathéodory such that Sω is φ-condensing for any fixed ω ∈ Ω. Also
S has nonempty compact convex values and S(ω, x) ⊂ F (ω, x) for each
(ω, x) ∈ Ω×X ;

and

(2) S is jointly measurable from Ω×X to 2Y (i.e. the set S−1(B) = {(ω, x) ∈
Ω×X : S(ω, x)∩B 6= ∅} ∈ Σ⊗B(X) for each closed subset B ∈ 2Y ), and
hence the graph of S is measurable.

Proof: As assumptions on Y , the mapping F and the graph of F (ω, ·) for each
fixed ω ∈ Ω remain unchanged in the completion of Y , without loss of generality,
we may assume that the space Y is complete. Since X is metrizable and separable,
we shall denote by d the metric of X and let X0 be a countable dense subset of X .
We define S : Ω×X → 2Y by

S(ω, x) =

∞⋂

i=1

co [∪{z∈X0:d(z,x)< 1n }F (ω, z)]

for each (ω, x) ∈ Ω×X . It is clear that

S(ω, x) =

∞⋂

i=1

co [∪{z∈X0:d(z,x)< 1n }F (ω, z)] =

∞⋂

i=1

co [∪{z∈X0:d(z,x)≤ 1n}F (ω, z)]

for each (ω, x) ∈ Ω×X . Now we shall first claim that S(ω, x) 6= ∅ for each (ω, x) ∈
Ω×X . For each fixed ω ∈ Ω, as the mapping Fω(·) is condensing, it follows that for

each x ∈ X and n ∈ N, we have that φ(co [∪{z∈X0:d(z,x)< 1n}F (ω, z)]) ≤ φ(B 1

n

(x)).

Note that limn→∞ φ(B 1

n

(x)) = 0, so that

limn→∞ φ({co [∪{z∈X0:d(z,x)< 1n}F (ω, z)]}) = 0. Then Lemma 2.7 implies that⋂∞
n=1 co [∪{z∈X0:d(z,x)< 1n }F (ω, z)] 6= ∅. Thus S(ω, x) is non-empty and compact

for each (ω, x) ∈ Ω×X .
Secondly, by the upper semicontinuity of Fω(·), we shall show that S(ω, x) ⊂

F (ω, x) for each (ω, x) ∈ Ω × X (so that S(ω, ·) is condensing for each fixed
ω ∈ Ω). For each (ω, x) ∈ Ω × X , let O(ω, x) := {Uα}α∈I be the family of
all open neighborhoods of F (ω, x). Note that F (ω, ·) is upper semicontinuous,
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for each Uα ∈ O(ω, x), there exists n ∈ N such that for each z ∈ X0 with

d(z, x) < 1
n , we have F (ω, z) ⊂ Uα. Hence for each z ∈ X0 with d(z, x) <

1
n ,

S(ω, x) ⊂ [co [∪{z∈X0:d(z,x)< 1n }F (ω, z)] ⊂ Uα. Therefore S(ω, x) ⊂
⋂
α∈I Uα. As

F (ω, x) is closed, we have that
⋂
α∈I Uα = F (ω, x). Thus S(ω, x) ⊂ F (ω, x) for

each (ω, x) ∈ Ω×X . It is not difficult to show that the mapping x 7→ {z ∈ X0 :
d(z, x) ≤ 1

n} from X to X0 is upper semicontinuous (e.g., see Proposition 5 in

[30]), and so the composition mapping x 7→ co [∪{z∈X0:d(z,x)≤ 1n}F (ω, x)] is also

upper semicontinuous for each n ∈ N. In order to prove that x 7→ Sω(·) is upper
semicontinuous, it suffices to show that the set V := {x ∈ X : S(ω, x) ⊂ U}
is open for each non-empty open subset U of Y . Now assume that x0 ∈ V ,
i.e. S(ω, x0) ⊂ U . We claim that there exists n0 ∈ N such that S′

n0(ω, x0) :=

co [∪{z∈X0:d(z,x)≤ 1n }F (ω, x0) ⊂ U by the fact that the measure φ of noncompact-

ness of decreasing closed subset {S′
n(ω, x0)}n∈N converges to zero as n → ∞

since
φ(Sn(ω, x0)) < φ({z ∈ X0 : d(x, z) ≤

1

n
}) ≤ φ(B 1

n

(x0))→ 0

when n→∞.
As S′

n0(ω, ·) is upper semicontinuous, there exists a non-empty open neighbor-
hood N(x0) of x0 in X such that S

′
n0(ω, z) ⊂ U for all z ∈ N(x0). Note that

S(ω, x) ⊂ S′
n(ω, x) for all (ω, x) ∈ Ω×X . Thus N(x0) ⊂ V , and we have proved

that V is open in X . Hence S(ω, ·) : X → 2Y is upper semicontinuous with
non-empty closed and convex values.
Finally we show that S is jointly measurable. Let B be any non-empty closed

subset B of Y . We can show that

{(ω, x) ∈ Ω×X : S(ω, x) ∩B 6= ∅} =
⋂

n∈N

{(ω, x) ∈ Ω×X : Sn(ω, x) ∩B 6= ∅},

where for each n ∈ N, Sn is a set-valued mapping from Ω×X to Y defined as

Sn(ω, x) = co [∪{z∈X0:d(z,x)< 1n }F (ω, z)]

for each (ω, x) ∈ Ω × X . Let W1 := {(ω, x) ∈ Ω × X : S(ω, x) ∩ B 6= ∅} and
W2 :=

⋂
n∈N
{(ω, x) ∈ Ω×X : Sn(ω, x) ∩B 6= ∅}. It is clear that W1 ⊂ W2. We

now show that W2 ⊂W1. Let (ω, x) ∈W2. Then Sn(ω, x) ∩B 6= ∅ for all n ∈ N.
Note that {Sn(ω, x) ∩ B}n∈N is a decreasing non-empty closed subsets of Y and
limn→∞ φ(Sn(ω, x) ∩ B) ≤ limn→∞ φ(Sn(ω, x)) = 0. By Lemma 2.7 again, we
have that

⋂
n∈N

Sn(ω, x) ∩ B 6= ∅, so that (ω, x) ∈ W1 and we have proved that
W1 =W2. For each n ∈ N, note that the set

{(ω, x) ∈ Ω×X : (
⋃

z∈X0

{F (ω, z) : d(z, x) <
1

n
) ∩B 6= ∅}

=
⋃

z∈X0

{ω ∈ Ω : F (ω, z) ∩B 6= ∅} × {x ∈ X : d(x, z) <
1

n
}
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belongs to Σ ⊗ B(Y ). As each measurable mapping is weakly measurable, The-
orem 9.1 of Himmelberg in [11] implies that the mapping Sn is jointly weakly
measurable. Note that

{(ω, x) ∈ Ω×X : S(ω, x) ∩B 6= ∅}

=
⋂

n∈N

{(ω, x) ∈ Ω×X : Sn(ω, x) ∩B 6= ∅} ∈ Σ⊗ B(X).

Hence S is also jointly weakly measurable. Since the mapping S has non-empty
compact values, Theorem 3.1 of Himmelberg in [11] shows that S is jointly mea-
surable and the proof is complete.

�

3. Deterministic coincidence degree theory

Here we shall summarize some results obtained in Tarafdar and Teo [28].

3A. Ultimately compact mappings

Let X denote a separated locally convex topological vector space over the reals
with the additional property that for each compact subset A of X , there is a
retraction of X onto the convex closure of A, coA.
Let Ω ⊂ X be open and let F : Ω → K(X) be u.s.c. We define a transfinite

sequence of sets {Kα} so that the limit of the sequence necessarily contains all
the fixed points of F . Let K0 = coF (Ω) and suppose Kβ has been defined for all
ordinals β less that the ordinal α. If α is an ordinal of the first kind, let Kα =
coF (Ω ∩Kα−1) and if α is an ordinal of the second kind, let Kα =

⋂
β<αKβ.

Note the following properties of the transfinite family {Kα}:

(i) each Kα is closed and convex with Kα ⊆ Kβ for all α ≥ β;

(ii) F (Ω ∩Kα) ⊆ Kα for any ordinal α.

Furthermore, as the transfinite sequence is nonincreasing, there is an ordinal γ
such that Kγ = Kγ+1, and so Kγ = Kβ for all β ≥ γ. We define K = K(F,Ω) :=

Kγ . Then it is clear that F (Ω ∩K) ⊂ K and indeed coF (Ω ∩K) = K.

Definition 3.1. An u.s.c. mapping F : Ω → K(X) is said to be ultimately
compact if either K∩Ω = ∅ or, if K∩Ω 6= ∅, then F (Ω∩K) is relatively compact.
If F is ultimately compact, then we say I − F is an ultimately compact vector
field, where I is the identity mapping on X .

Definition 3.2 (The degree for ultimately compact vector fields).
Let Ω ⊂ X be open and let F : Ω → K(X) be ultimately compact with 0 /∈
x − F (x) for each x ∈ ∂Ω. If K ∩ Ω is empty, define the degree of I − F on Ω
with respect to zero, denoted by d(I − F,Ω, 0) to be zero. If K ∩ Ω 6= ∅, let ̺ be
a retraction of X onto K and define

d(I − F,Ω, 0) = dc(I − F̺, ̺
−1(Ω), 0),
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where the right-hand term is the degree for compact set-valued vector fields as
studied by Ma [14].

To see that this degree is well defined and has the usual properties of a degree,
please see Petryshyn and Fitzpatrick [19].

The following result is a simple consequence of Lemmas 3.2 and 3.4 of Petryshyn
and Fitzpatrick [19].

Proposition 3.3. Let φ : 2X → R+ = {t ∈ R : t ≥ 0} ∪ {∞} be a measure of
noncompactness and suppose that F : Ω → CK(X) is a k − φ-contraction with
0 < k < 1 and φ(F (Ω)) <∞. If either X is quasi-complete or Ω is complete, then
F is ultimately compact.

3B. The set-valued coincidence degree

Let X and Z be two vector spaces and let L : domL ⊂ X → Z be a linear
mapping, where domL represents the domain of L. Similarly we shall denote the
kernel of L by kerL, the range of L by ImL and the quotient space Z/ImL, the
cokernel of L, by cokerL.
Given a vector subspace of a vector space E, there always exists a projection

(a linear and idempotent operator) P of E onto Y and E is the direct sum of
ImP = Y and kerP .

Definition 3.4. If X , Z, and L are as above, let P and Q be projections on X
and Z respectively such that

ImP = kerL and kerQ = ImL.

Such a pair of projections (P,Q) will be called exact with respect to L.

Definition 3.5. Let LP denote the restriction of L to kerP ∩ domL. Then LP
is an isomorphism from kerP ∩domL to ImL. Let KP : ImL→ kerP ∩domL be
the inverse of LP . KP is then called the pseudo inverse of L associated with P .

Let π : Z → cokerL be the canonical surjection, that is π(z) = z + ImL for
each z ∈ Z. It is easy to verify that the restriction of π to ImQ is an algebraic
isomorphism. Furthermore, if Z is a topological vector space and cokerL is given
the quotient topology, then π is continuous.
The following results are almost immediate:

PKP = 0,

LKP = LPKP = I,

KPL = KPL(I − P ) = I − P,

Qz = 0⇔ z ∈ ImL⇔ π(z) = 0.

The next two results can be found in Mawhin [15].
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Proposition 3.6. Let (P,Q) and (P ′, Q′) be pairs of projections exact with
respect to L. Then

KP ′ = (I − P ′)KP

PKP ′ + P ′KP = 0

where KP and KP ′ denote the pseudo-inverses of L associated with P and P ′

respectively.

Proposition 3.7. Let P , P ′ be projections ofX onto kerL and let P ′′ = aP+bP ′

for some real numbers a and b. Then P ′′ is a projection onto kerL if and only if
a + b = 1. If this necessary and sufficient condition holds, the pseudo-inverse of
L associated with P ′′ is given by

KP ′′ = aKP + bKP ′.

In determining the existence of solutions to the equation Lx ∈ Nx, we need
only consider the existence of a fixed point of an auxiliary mapping. Formally we
have:

Theorem 3.8. Let X and Z be two vector spaces over the same scalar field. Let
L : domL ⊂ X → Z be a linear mapping and N : A ⊂ X → 2Z be a set-valued
mapping. Further assume that there is a linear one-to-one mapping

ψ : cokerL→ kerL.

Then x0 ∈ domL ∩A is a solution of the equation

Lx ∈ Nx

if and only if x0 is a fixed point of the set-valued mapping Mψ : A→ 2
X defined

by
Mψx = Px+ [ψπ +KP (I −Q)]Nx

for every pair (P,Q) of exact projections with respect to L.

The proof can be found in Tarafdar and Teo [28], Theorem 3.1.

Assumptions I.

(a) X is a real Banach space and Z is a real normed linear space.

(b) L : domL ⊂ X → Z is a linear Fredholm mapping of index zero defined on a
subspace domL of X , that is L is linear, ImL is closed and

dimkerL = dimcokerL <∞.

(c) Ω is a bounded open set in X and N : Ω→ CK(Z) is a set-valued mapping.
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(d) N is upper semi-continuous with πN(Ω) bounded in cokerL.

(e) Let (P,Q) be an exact pair of projections with respect to L and let KP be the
pseudo-inverse of L associated with P . Let φ be a measure of noncompactness
defined on 2X such that φ satisfies the subadditivity condition of Proposition 2.4
and takes values in R+ = {t ∈ R : t ≥ 0} ∪ {∞}. We assume that with such a
measure of noncompactness φ, KP (I−Q)N is a k−φ-contraction with 0 < k < 1
and that φ(KP (I − Q)N(Ω)) < ∞. In this case we also assume that KP is
continuous.

(f) 0 /∈ (L −N)(domL ∩ ∂Ω).

Remark 3.9.

(1) From assumption (b), it follows that the exact pair of projections (P,Q) may
be assumed continuous. Furthermore (b) guarantees the existence of a linear
isomorphism ψ : cokerL→ kerL.

(2) Suppose assumptions (a) to (d) hold. Let (P,Q) and (P ′, Q′) be exact pairs of
continuous projections with respect to L, and suppose that (P,Q) satisfy assump-
tion (e). Then the pair (P ′, Q′) also satisfies assumption (e). (Proposition 3.1 of
Tarafdar and Teo [28].)

(3) Suppose assumptions (a) to (e) are satisfied and let ψ : cokerL → kerL be
a continuous isomorphism. Then the image of a point x ∈ Ω under the mapping
Mψ as defined in Theorem 3.15 is a compact convex subset of X . Furthermore,
Mψ is a k − φ-contraction (Proposition 3.2 of Tarafdar and Teo [28]). From
Propositions 3.8 and 3.9 we see that Mψ is an ultimately compact mapping and
from assumption (f) and Theorem 3.15, 0 /∈ (I −Mψ)(domL ∩ ∂Ω). Thus the
degree of the ultimately compact vector field I −Mψ with respect to zero is well
defined.

Definition 3.10. Let LL denote the set of all continuous isomorphisms from
cokerL to kerL. ψ and ψ′ are said to be homotopic in LL if there exists a
continuous mapping ψ : cokerL×[0, 1]→ kerL such that ψ(·, 0) = ψ, ψ(·, 1) = ψ′

and for any λ ∈ [0, 1], ψ(·, λ) ∈ LL.

Note that to be homotopic is an equivalence relation which partitions LL into
equivalence classes called homotopy classes.

Definition 3.11. ψ : cokerL → kerL is said to be orientation preserving if
{ψa1, . . . , ψan} belongs to the orientation chosen in kerL where {a1, . . . , an} is
a basis for cokerL belonging to a certain chosen orientation. Otherwise ψ is said
to be orientation reversing.

Indeed, LL is partitioned into two homotopy classes, those continuous isomor-
phisms which are orientation preserving, and those which are orientation revers-
ing. (See Gaines and Mawhin [7].)
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Theorem 3.12. Let assumptions (a) to (f) be satisfied. Then d(I −Mψ,Ω, 0)
as defined in Definition 3.2 depends only on L, N and the homotopy class of ψ
in LL.

Proof: See Theorem 3.2 of Tarafdar and Teo [28]. �

Definition 3.13 (The set-valued coincidence degree).
Suppose that assumptions (a) to (f) are satisfied and ψ is an orientation preserving
continuous isomorphism from cokerL to kerL. Then the coincidence degree of L
and N in Ω, denoted by d[(L,N),Ω], is defined by

d[(L,N),Ω] = d(I −Mψ,Ω, 0)

where Mψ : Ω→ CK(X) is defined by

Mψ = P + [ψπ +KP (I −Q)]N

and the right-hand term is the degree for the set-valued ultimately compact vector
field I −Mψ as defined in Definition 3.2.

The reader is referred to Tarafdar and Teo [28] for the properties of this coin-
cidence degree.

4. Stochastic topological degree theory

Let L : domL ⊂ X → Z and N : Ω × G → 2Z , where (Ω,Σ) is a measurable
space, X is a Banach space and Z is a normed linear space, both of which are
over the reals.

Definition 4.1. A random (or stochastic) solution to the equation Lx ∈ N(ω, x)
is a measurable mapping ϕ : Ω→ X such that

Lϕ(ω) ∈ N(ω, ϕ(ω))

for all ω ∈ Ω.

Theorem 4.2 (Equivalence Theorem).
Let X and Z be two vector spaces over the same scalar field. Let L : domL ⊂
X → Z be a linear mapping and N : Ω×G→ 2Z be a set-valued mapping where
G ⊂ X . Further, assume that there is a linear one-to-one mapping

ψ : cokerL→ kerL.

Then ϕ : Ω→ domL ∩G is a random solution of the equation

Lx ∈ N(ω, x)
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if and only if ϕ : Ω→ domL∩G is a random fixed point of the set-valued mapping
Mψ : Ω×G→ 2

X defined by

Mψ(ω, x) = Px+ [ψπ +KP (I −Q)]N(ω, x)

for every pair of exact projections (P,Q) with respect to L, where π and KP have
their meaning as explained in Section 3.

Proof: Suppose ϕ : Ω→ domL∩G is a random solution of Lx ∈ N(ω, x). Then
for ω ∈ Ω fixed, ϕ(ω) ∈ domL ∩G satisfies Lϕ(ω) ∈ N(ω, ϕ(ω)) := Nωϕ(ω). By

Theorem 3.15 we see that ϕ(ω) is a fixed point of the mappingMψ(ω, ·) : G→ 2
X .

As this is true for all ω ∈ Ω and ϕ : Ω → domL ∩ G is measurable, then ϕ is a
random fixed point of Mψ : Ω×G→ 2

X .
Exactly the same argument gives the converse result. �

Assumptions II.

(â)X is a real Banach space, Z is a real normed linear space, (Ω,Σ) is a measurable
space where Σ is a Suslin family and G ⊂ X is bounded and open.

(b̂) L : domL ⊂ X → Z is a linear Fredholm mapping of index zero defined on a
subspace domL of X .

(ĉ) The set-valued mapping N : Ω × G → CK(Z) is Carathéodory upper semi-
continuous and the image of each (ω, x) in Ω×G under N is a nonempty compact
convex subset of Z.

For each ω ∈ Ω;

(d̂) πN(ω,G) is bounded in cokerL.

(ê) Let (P,Q) be an exact pair of projections with respect to L and let KP be the
pseudo-inverse of L associated with P . Let φ be a measure of noncompactness
defined on 2X such that φ satisfies the subadditivity condition of Proposition 2.4
and takes values in R+ = {t ∈ R : t ≥ 0} ∪ {∞}. We assume that with such
a measure of noncompactness φ, KP (I − Q)N(ω, ·) is a k − φ-contraction with
0 < k < 1 and that φ(KP (I −Q)N(ω,G)) <∞. In this case we also assume that
KP is continuous.

(̂f) 0 /∈ (L−Nω)(domL ∩ ∂G).

Definition 4.3 (The stochastic coincidence degree for set-valued noncompact
mappings).

Suppose that assumptions (â) to (̂f) are satisfied. Then the stochastic coincidence
degree of L and N in G, denoted by dS [(L,N), G] is defined as

dS [(L,N), G]

= {d[(L,Nω), G] : for all ω ∈ Ω such that d[(L,Nω), G] is defined}.
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Remark 4.4. In the deterministic case, that is, say, when Ω contains a single
element, the Stochastic Degree reduces to the Deterministic Degree of Tarafdar
and Teo [28].

Theorem 4.5 (Properties of the stochastic degree).
Suppose that the conditions of Definition 4.3 are satisfied so that the degree is
well defined. Then we have:

(a) Existence Theorem: If in addition to assumption (â), X is separable and
each element of dS [(L,N), G] is not equal to zero then there is a random solution
to Lx ∈ N(ω, x).

(b) Excision Property: If G1 ⊂ G is an open set such that (L−Nω)
−1(0) ⊂

G1 for all ω ∈ Ω then

dS [(L,N), G] = d[(L,N), G1].

(c) Additivity: If G is the union of two disjoint open sets G1 and G2 such
that there is no solution to Lx ∈ N(ω, x) on ∂G1 ∪ ∂G2, then

dS [(L,N), G] = {d[(L,Nω), G1] + d[(L,Nω), G2] : ω ∈ Ω}.

(d) Borsuk’s Theorem: If G is a symmetric, bounded and open neighbor-
hood of the origin and N(ω,−x) = −N(ω, x) for all (ω, x) ∈ Ω × G then each
element of dS [(L,N), G] is odd.

Proof: (a): It is clear that N satisfies those properties of the Selection theorem,
Theorem 2.12, and indeed so does the mapping Mψ(ω, x) = Px+ [ψπ +KP (I −

Q)]N(ω, x) from Ω × G to CK(X). Let S : Ω × G → CK(X) be the selection
of Mψ. By hypothesis we have for all ω ∈ Ω, d(I −Mψ(ω, ·), G, 0) 6= 0. Also
it is clear that S(ω, ·) is homotopic to Mψ(ω, ·) so we observe that S(ω, ·) has a
deterministic fixed point for all ω ∈ Ω. Theorem 2.1 implies that S has a random
fixed point, and as S is contained in Mψ, then Mψ has a random fixed point. An
application of Theorem 4.2 gives the result.

(b) and (c): Both follow from the definition of the Stochastic Coincidence
Degree and the corresponding property of the Deterministic Coincidence Degree
as defined in Tarafdar and Teo [28].

(d): From the construction of the mapping S(ω, x) as in Theorem 2.12, it is
clear that if N(ω,−x) = −N(ω, x) then S(ω,−x) = −S(ω, x). The result follows
from Theorem 3.4 of Tarafdar and Teo [28]. �

Theorem 4.5 (Homotopy Invariance).

Let assumptions (â) and (b̂) be satisfied and let G be a bounded open subset

of X . Let φ, P , Q and KP be as given in assumption (ê) and suppose N̂ :
Ω×G× [0, 1]→ CK(Z) satisfy the following:
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For each ω ∈ Ω,

(i) N̂(ω, ·, ·) is u.s.c. on G× [0, 1] and for (x, t) ∈ G× [0, 1] fixed, N̂(·, x, t) is
measurable,

(ii) πN̂ω(G× [0, 1]) is bounded,

(iii) φ(KP (I −Q)N̂ω(G× [0, 1])) <∞,
(iv) there exists k ∈ (0, 1) such that, for every A ⊂ G,

φ(KP (I −Q)N̂ω(A× [0, 1])) < kφ(A),

(v) for each λ ∈ [0, 1],

0 /∈ (L− N̂(ω, ·, λ))(domL ∩ ∂G).

Then dS [(L, N̂(·, ·, λ)), G] is independent of λ ∈ [0, 1].

Proof: Fix ω ∈ Ω. From Theorem 3.5 of Tarafdar and Teo [28],
d[(L,Nω(·, λ)), G] is independent of λ ∈ [0, 1] and so the conclusion is clear. �

Remark 4.6. This stochastic coincidence degree can be generalized further to
the case when L has non-negative index, e.g., see Akashi [1] or Gaines and Mawhin
[7] for details.

Definition 4.7. A mapping N : Ω×G→ CK(Z) satisfying assumptions (ĉ), (d̂)
and (ê) will be called an L− k − φ-contraction.

5. Applications to random differential inclusions

This section begins with a result generalizing the work of several authors in-
cluding Petryshyn and Fitzpatrick [19, Theorem 3.5] and Pruszko [21, Theo-
rem 2.9]. Then the result will be applied to the Random Generalized Boundary
Value Problem; initially for first-order differential inclusions, and then for elliptic
partial differential inclusions.

Theorem 5.1. Let Fi : Ω ×X → 2
Z (for i = 1, 2, 3) be L − k − φ-contraction

mappings with k < 1 such that

(i) Lx ∈ F2(ω, x) =⇒ ‖x‖ < 1 for any ω ∈ Ω; and F2(ω, kx) = kF2(ω, x) for
any k ∈ R, that is F2(ω, ·) is homogeneous,

(ii) KP (I −Q)F1(ω,X) and πF1(ω,X) are bounded,
(iii) F3(ω, x) ⊂ F1(ω, x) + F2(ω, x) for all (ω, x) ∈ Ω×X .

Then there exists a random solution to the equation Lx ∈ F3(ω, x).

Proof: Fix ω ∈ Ω. We may choose β > 0 such that ‖x − y‖ ≥ β for all
x ∈ ∂B1(0) and y ∈Mψ(ω, x) = P (x) + [ψπ+KP (I −Q)]F2(ω, x). Indeed if this
is not the case, then we can choose {xn}∞n=1 ⊂ ∂B1(0) and yn ∈Mψ(ω, xn) such

that ‖xn − yn‖ <
1
n .



740 E.Tarafdar, P.Watson, Xian-Zhi Yuan

Now {xn} ⊂ {yn}+{xn−yn} so φ({xn}) ≤ φ({yn})+φ({xn−yn}) = φ({yn})
as ‖xn− yn‖ <

1
n . Using the fact that Mψ(ω, ·) is a k-set contraction (as F2(ω, ·)

is), we get φ({xn}) < φ({xn}) which means that the sequence {xn} is relatively
compact. Without loss of generality, let us assume that xn → x0. Clearly x0 ∈
∂B1(0) and yn → x0, and so we conclude that x0 ∈Mψ(ω, x0). But by virtue ot
the Equivalence Theorem this contradicts assumption (i).
From condition (ii), we can choose r > 0 such that [ψπ + KP,Q]F1(ω,X) is

contained in Br(0). Choose s > 0 such that sβ > r. Then if ‖x‖ = s and
y ∈Mψ(ω, x) for any ω ∈ Ω, then

‖x− y‖ = s‖x/s− y/s‖ ≥ sβ > r

because y/s ∈Mψ(ω, x/s).

Define the homotopy H : [0, 1]× Ω×Bs(0)→ CK(Z) by

H(t, ω, x) = F2(ω, x) + t(F3(ω, x)− F2(ω, x)).

It is easy to verify that H satisfies conditions (i) to (iv) of Theorem 4.5. We now
show that Lx /∈ H(t, ω, x) for all (t, ω, x) ∈ [0, 1]× Ω× ∂Bs(0).
Note that Lx ∈ H(t, ω, x) for some x ∈ ∂Bs(0) if and only if the sets

{x− z : x ∈ ∂Bs(0), z ∈Mψ(ω, x)}

and

{t(y − z) : t ∈ [0, 1], y ∈ [ψπ +KP,Q]F3(ω, x), z ∈ [ψπ +KP,Q]F2(ω, x)}

have a nonempty intersection.
But {x− z : x ∈ ∂Bs(0), z ∈Mψ(ω, x)}∩Br(0) = ∅ because if x ∈ ∂Bs(0) and

z ∈Mψ(ω, x) then ‖x− z‖ > r.
Furthermore

{t(y − z) : t ∈ [0, 1], y ∈ [ψπ + KP,Q]F3(ω, x), z ∈ [ψπ + KP,Q]F2(ω, x)} ⊂
Br(0). This follows since ty = tz + t(y − z) ∈ t[ψπ + KP,Q]F3(ω, x) ⊂ t[ψπ +
KP,Q]F2(ω, x) + tBr(0) and tz ∈ t[ψπ +KP,Q]F2(ω, x) together imply t(y − z) ∈
Br(0).
Hence the intersection is empty so Lx /∈ H(t, ω, x) for all (t, ω, x) ∈ [0, 1]×Ω×

∂Bs(0).
Consequently,

d[(L,F3(ω, ·)), Bs(0)] = d[(L,H(1, ω, ·)), Bs(0)]

= d[(L,H(0, ω, ·)), Bs(0)]

= d[(L,F2(ω, ·)), Bs(0)]

6= 0
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as F2(ω, ·) is odd. From the definition of the Coincidence Degree this is equivalent
to d(I−Nψ(ω, ·), Bs(0), 0) 6= 0 where Nψ(ω, x) = Px+[ψπ+KP (I−Q)]F3(ω, x).
As before, it is easy to verify that this mapping satisfies those properties in The-
orem 2.12, so let S : Ω × G → CK(X) be the selection of Nψ. Note that
d(I − S(ω, ·), Bs(0), 0) 6= 0 because S is homotopic to Nψ and so for each ω ∈ Ω,
S(ω, ·) has a fixed point which implies that S has a random fixed point because of
Theorem 2.1 and the fact that S has measurable graph. As S(ω, x) ⊂ Nψ(ω, x),
then Nψ has a random fixed point and from Theorem 4.2, we have that F3 has a
random fixed point. �

Theorem 5.1 generalizes Theorem 3.7 of Petryshyn and Fitzpatrick [19] in the
following ways: (i) the mappings are random (as opposed to being deterministic)
and (ii) the fixed point case has been extended to the coincidence case.
Although Pruszko considered the coincidence case, the mappings in Theo-

rem 2.9 of [21] are compact and deterministic.
Instead of condition (i) both Petryshyn and Fitzpatrick and Pruszko had the

stronger condition

(i′) Lx ∈ F2(ω, x) =⇒ x = 0.

Example A.

Let us consider the following random boundary value differential inclusion:

(⋆)

{
x′(t) ∈ Φ(ω, t, x(t)) where t ∈ T ,

l0(x) + l1(x) = 0

where Φ : Ω×T ×R
k → CK(Rk), T is some interval [a, b], and l0, l1 : C(T ;R

k)→
R
k.
A mapping ξ : Ω × T → R

k is a random solution of (⋆) if it is measurable in
ω, absolutely continuous in t and for all ω ∈ Ω,

ξ′(ω, t) ∈ Φ(ω, t, ξ(ω, t))

and
l0(ξ(ω, t)) + l1(ξ(ω, t)) = 0.

By C(T ;Rk) we mean the separable Banach space of continuous functions

from T to R
k with the norm ‖x‖ = max{|x(t)| : t ∈ T } and by L1(T ;Rk) we

mean the separable Banach space of Lebesgue integrable functions with the norm
‖x‖ =

∫
T |x(t)| dt.

Let g : Ω×T → R
+ and h : Ω×T ×R→ R

+ be single valued mappings, where
R
+ = [0,∞). We make the following assumptions:

(1) the σ-algebra Σ is complete;
(2) g is measurable in ω and integrable in t;
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(3) h is Σ ⊗ BT measurable, homogeneous and continuous in x ∈ R and for
any A ⊂ R bounded, there exists a function fA ∈ L

1(T ;R) such that

|h(ω, t, x)| ≤ fA(t) for all x ∈ A;

(4) Φ is Σ⊗ BT -measurable and u.s.c. in x ∈ R
k;

(5) |Φ(ω, t, u)| = sup{‖z‖ : z ∈ Φ(ω, t, u)} ≤ g(ω, t) + h(ω, t, |u|);
(6) l0 : C(T ;R

k) → R
k is continuous and homogeneous, and l1 is continuous

and bounded.

Proposition 5.2. The mapping (l0+l1) : C(T ;R
k)→ R

k is a compact mapping.

Proof: As l0 is continuous at the point zero, it is bounded in a certain neigh-
borhood of zero. So if A ⊂ C(T ;Rk) is bounded, then so is l0(A) from the

homogeneity of l0. Clearly then (l0 + l1)(A) is bounded in R
k. �

Let Ca(T ;R
k) ⊂ C(T ;Rk) denote the space of all absolutely continuous func-

tions. We now formulate an equivalent problem.

Let Λ : Ω× C(T ;Rk)→ 2L
1(T ;Rk) be defined by

Λ(ω, x) = {z ∈ L1 : z(t) ∈ Φ(ω, t, x(t)) for all t ∈ T }

and N : Ω× C(T ;Rk)→ 2L
1×Rk

be defined by

N(ω, x) =

(
Λ(ω, x)

l0(x) + l1(x)

)
.

Let L : Ca(T ;R
k)→ L1(T ;Rk)× R

k be defined by

L(x) =

(
x′(t)

0

)
.

It is easy to verify that ξ : Ω× T → R
k is a solution of (⋆) if and only if ξ is a

random solution of Lx ∈ N(ω, x). �

Proposition 5.3. Under these assumptions, L is a linear Fredholm mapping of
index zero, Nx is measurable and Nω is an L-compact mapping.

Proof: The following is clear:

kerL ≈ R
k

ImL = L1 × {0}

cokerL = L1 × R
k / L1 × {0}

and also L is linear. Thus the first part of the proof is complete.
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The fact that Nx is measurable follows from Nowak [14, p. 419] as we assume
that Σ is complete. Using Proposition 1.4 of Pruszko [21] we see that Λω(·) is a
weakly compact mapping and hence so is N(ω, ·). In order to show that Nω(x) is
L-compact, it is enough to show that ψπNω(x) andKP (I−Q)Nω(x) are compact.
But ψπ is a linear continuous mapping, and if A ⊂ C(T ;RK) is bounded, then

from assumption (5), Nω(A) is bounded in L
1×R

k so that ψπNω(A) is bounded
in a finite dimensional space. Using Proposition 1.7 of Pruszko [21], we see that
ψπNω(x) is a compact mapping. Now we come to proving that KP (I −Q)Nω(x)
is a compact mapping. The projection Q : L1 × R

k → L1 × R
k is given by

Q(z, c) = (0, c) so that ImL = kerQ. We now find an explicit form for KP .

Let P : C(T ;Rk) → R
k be defined by P (x(t)) = x(a). Then ImP = R

k =
kerL and the pseudo-inverse of L associated with P is given by the mapping
KP : L

1 × {0} → Ca(T ;R
k) ∩ kerP defined by

KP (z, 0)(t) =

∫ t

a
z(s) ds.

See Gaines and Mawhin [7].

Let A ⊂ C(T ;Rk) be bounded. From Proposition 5.2 we know that l0+ l1 is a
compact mapping. Using Proposition 1.7 of Pruszko [21] it is enough to show that

the subset of Ca(T ;R
k) consisting of those functions defined by

∫ t
a z(s) ds where

z ∈ Λω(A) is relatively compact. But using assumption (5) and the Arzelà-Ascoli
theorem, we see that indeed this is the case, and the proof is complete. �

Theorem 5.4. If the function ξ(ω, t) ≡ 0 is the only solution of the problem

(⋆⋆)

{
|x′(t)| ≤ h(ω, t, |x(t)|)

l0(x) = 0

then problem (⋆) has a solution.

Proof: Define the following mappings:

Λ1(ω, x) = {z ∈ L
1(T ;Rk) : |z(t)| ≤ g(ω, t) for all t ∈ T }

Λ2(ω, x) = {z ∈ L
1(T ;Rk) : |z(t)| ≤ h(ω, t, |x(t)|) for all t ∈ T }

Λ3(ω, x) = {z ∈ L
1(T ;Rk) : z(t) ∈ Φ(ω, t, x(t)) for all t ∈ T }.

We aim to apply Theorem 5.1 with the functions:

F1(ω, x) =

(
Λ1(ω, x)

l1(x)

)
,

F2(ω, x) =

(
Λ2(ω, x)

l0(x)

)
, and

F3(ω, x) =

(
Λ3(ω, x)

l0(x) + l1(x)

)
.
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On account of the assumptions on the mappings g and h, and Proposition 5.3, we
have that Fi is an L − k − φ-contraction for i = 1, 2, 3 (because Fi is a compact
mapping). By hypothesis, x = 0 is the only solution of Lx ∈ F2(ω, x) and
moreover F2(ω, ·) is homogeneous. Thus (i) of Theorem 5.1 is satisfied.
Noticing that πF1(ω,X) ≡ l1(X) and recalling the form of the mappings KP

and Q as given in Proposition 5.3, part (ii) of Theorem 5.1 is easily verified.
See Pruszko [21] page 966 for the proof that F3 ⊂ F1 + F2. As all the as-

sumptions of Theorem 5.1 are satisfied, Lx ∈ F3(ω, x) has a random solution, or
equivalently, problem (⋆) has a solution. �

Remark 5.5. Pruszko [21] has proved Theorem 5.4 in the deterministic case.

Example B.

Let G be a bounded domain in R
n whose boundary ∂G is C∞. We will consider

real-valued functions of the following type u : G → R. For a multi-index α =
(α1, . . . , αn) and a function u : G→ R, the symbol

Dαu = D|α|u/(∂α1x1 · · · ∂
αnxn)

will denote the partial derivative of u (if it exists) of the order |α| = α1+ · · ·+αn.
Let Cm(G) be the space of all functions u : G → R which are continuous

together with derivatives Dαu, |α| < m, and let

Ĉmp (G) = {u ∈ C
m(G) :

∑

|α|≤m

∫

G
|Dαu(x)|p dx <∞}

for 1 ≤ p <∞. In the space Ĉmp (G) we define the norm as follows:

‖u‖m,p =




∑

|α|≤m

∫

G
|Dαu(x)|p dx





1

p

.

By Hm,p(G) we will mean the Sobolev space which is the completion of Ĉ
m
p (G)

with respect to the above norm, and by C∞
0 (G) we will mean the space of infinitely

differentiable functions u : G→ R with compact support contained in G.
Let u, v : G → R be two integrable functions. We say that the function v is

the α-th weak derivative of u if, for every f ∈ C∞
0 (G),

∫

G
u(x)Dαf(x) dx = (−1)|α|

∫

G
v(x)f(x) dx

and we write D̂α(u) instead of v.
The following two facts are well known (see [6] or [9]):

(i) Hm,p(G) = {u ∈ Lp(G) : D̂αu ∈ Lp(G), |α| ≤ m};
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(ii) let α be such that |α| ≤ m. Then the mapping D̂α : Hm,p(G) → Lp(G) is a

continuous extension of the mapping Dα : Cm(G)→ C0(G).

Let Cm(G) be the space of functions u : G→ R which are uniformly continuous
together with derivatives Dα(u) for |α| ≤ m. In this space we shall define a norm
as

|u|m =
∑

|α|≤m

sup
x∈G
|Dαu(x)|.

Let Cm+µ(G), 0 < µ < 1 be the Hölder space with the norm

|u|m+µ = |u|m +
∑

|α|=m

sup{
|Dαu(x)−Dαu(y)|

|x− y|µ
: x, y ∈ G, x 6= y}

and note that Cm+µ(G) ⊂ Cm(G). Indeed the embedding î : Cm+µ(G) →
Cm(G) given by î(u) = u is a compact mapping (see [6]). The Sobolev Imbedding

Theorem (again see [6]) ensures that for p > n, the mapping ĵ : Hm,p → Cm−1+µ

where µ = n
p defined by ĵ(û) = u where û = u almost everywhere on G is a well

defined continuous mapping.
We shall consider the elliptic operator Ap : Hm,p(G)→ Lp(G) given by

Ap(u)(x) =
∑

|α|≤m

aα(x)D̂
α(u)(x),

where aα(·) ∈ C∞(G) and the differential boundary operators Bj : C
m−1(G)→

C0(G), j = 1, 2, . . . , k given by

Bj(u)(x) =
∑

|α|≤mj

bjα(x)D
α(u)(x)

where mj < m and bjα ∈ C
∞(G).

For (Ω,Σ) a complete measurable space, and Φ : Ω×G×R×R→ CK(R), we
formulate the following boundary value problem:

(†)






u(ω, ·) ∈ Cm−1(G)

Ap(uω)(x) ∈ Φ(ω, x, u(x), Dβu(x)) on G, |β| < m, p > n

Bj(uω)(x) = 0 on ∂Ω, j = 1, . . . , k.

A solution of (†) is a mapping u : Ω × G → R such that ux : Ω → R is Σ
measurable for all x ∈ G and (†) is satisfied for all ω ∈ Ω.
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Theorem 5.6. Suppose that a multivalued mapping Φ : Ω×G×R×R→ 2R is
Carathéodory and the values of Φ are bounded in the following sense:

|Φ(ω, x, u, v)| ≤ g(ω, x) ∀ (ω, x) ∈ Ω×G, (u, v) ∈ R
2

where gx is measurable for each fixed x ∈ G and gω ∈ Lp(G), p > n.
Assume also that ImAp = Lp(G) and j(kerAp) ⊂ C∞(G). If for each ω ∈ Ω,

the system

(‡)

{
Ap(uω) = 0

Bj(uω)(x) = 0 for all x ∈ ∂G, j = 1, . . . , k

has only the trivial solution u(ω, x) ≡ 0, then problem (†) has a solution.

Proof: We shall apply Theorem 5.1. To this end, let us define the following sets:
X1 = C

m−1(G), X2 = L
p(G) and

X = {u ∈ X1 : u ∈ Hm,p(G), Bj(u)(x)|∂G ≡ 0 j = 1, . . . , k}.

Let F1 : Ω×X1 → 2
X2 be defined by

F1(ω, u) = {v ∈ X2 : v(x) ∈ Φ(ω, x, u(x), D
βu(x)) for all x ∈ G}

and L : domL = X → X2 by
Lu = Ap(u).

It is clear that u : Ω×G→ R is a random solution of problem (†) if and only if
u is a random solution of Lu ∈ F1(ω, u).
Note that F1(·, u) is a measurable mapping for all u ∈ X1 from the same

reasoning as in Proposition 5.3.
As problem (‡) has only the trivial solution, we see that Ap|X is a one-to-one

mapping and so from the Banach mapping theorem, Ap|X
−1 is continuous. We

claim that Ap|X
−1 is in fact a compact map. Consider the commutative diagram:

Lp(G)
Ap|X

−1

−−−−−→ (X, ‖ · ‖m,p)

L−1

y ĵ|X

y

(X, | · |m−1) ←−−−−
î|X

(X, | · |m−1+µ)

By virtue of the remarks above regarding the regularity of the mappings î and ĵ,
we see that L−1 is a completely continuous mapping. Thus the pseudo-inverse of
L is exactly L−1 and using Proposition 1.7 of Pruszko [21] it is clear that F1(ω, ·)
is an L-compact mapping. So we have (i) of the Theorem satisfied with F2 ≡ 0,
(ii) is satisfied with F1 as above and for F3 = F1, (iii) is satisfied. Thus there
exists a random solution to the equation Lu ∈ F1(ω, u), and so problem (†) has a
random solution. �
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Remark 5.7. This result can be generalized further to the case where (‡) has
only finitely many linearly independent solutions so that the kernel of L in X is
no longer simply {0}; in this case L has nonzero index, e.g., see Akashi [1].

Notice that in Theorem 5.1 there is no explicit mention of a measure on the
σ-algebra Σ and consequently we do not speak of properties holding almost ev-
erywhere, but rather everywhere in Ω. In the Examples it is implicit that there
exists a measure (as we assume that Σ is complete) although we continue to em-
ploy the stronger condition of property P holding everywhere in Ω. This is not
necessary and a minor alteration of the proofs will give the same results for the
almost everywhere case.
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