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A note on Möbius inversion over power set lattices

Klaus Dohmen

Abstract. In this paper, we establish a theorem on Möbius inversion over power set
lattices which strongly generalizes an early result of Whitney on graph colouring.
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1. Introduction

An important technique in combinatorics is the principle of Möbius inversion
over partially ordered sets (see [3, Chapter 25]). For power set lattices, the prin-
ciple of Möbius inversion states the following:

Proposition. Let S be a finite set, f and g mappings from the power set of S
into an additive group such that g(X) =

∑

Y ∈ [X,S] f(Y ) for any X ⊆ S, where

[X, S] denotes the interval {Y |X ⊆ Y ⊆ S}. Then, for any X ⊆ S,

(1) f(X) =
∑

Y ∈ [X,S]

(−1)|Y \X| g(Y ).

Proof: By the asserted relation between f and g, the sum in (1) equals

∑

Y ∈ [X,S]

(−1)|Y \X|
∑

Z∈ [Y,S]

f(Z) =
∑

Z∈ [X,S]

f(Z)
∑

Y ∈ [X,Z]

(−1)|Y \X| ,

and this is f(X) since the inner sum on the right is zero unless X = Z. �

2. A modified inversion formula

The following theorem states that under certain conditions not all terms have
to be considered when evaluating the sum in (1). It can be thought of as a
generalization of Whitney’s Broken-Circuits-Theorem on graph colouring.

Theorem. Let S be a poset and f, g mappings from the power set of S into
an additive group such that g(X) =

∑

Y ∈ [X,S] f(Y ) for any X ⊆ S. For fixed

X ⊆ S, let C be a set of non-empty subsets of S such that each C ∈ C is bounded
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from below by an element C ∈ S \ (C ∪ X) and f(Y ) = 0 for all Y including
C ∪ X and not containing C. Then

(2) f(X) =
∑

Y ∈ [X,S]∩Y0

(−1)|Y \X| g(Y ),

where

(3) Y0 := {Y ⊆ S |Y 6⊇ C for all C ∈ C}.

Proof: Let ≤ denote the partial ordering relation on S and ≤∗ one of its linear
extensions. For each subset Y of S, min∗ Y denotes the minimum of Y with
respect to ≤∗. Consider an enumeration C1, . . . , Cn of C such that min∗ C1 ≤∗

. . . ≤∗ min∗ Cn, and define Ym := {Y ⊆ S |Cm ⊆ Y, Cm+1 6⊆ Y, . . . , Cn 6⊆ Y } for
m = 1, . . . , n. Obviously, the power set of S is the disjoint union of Y0, . . . ,Yn.
The proposition gives

f(X) =
n

∑

m=0

∑

Y ∈ [X,S]∩Ym

(−1)|Y \X| g(Y ).

We claim that the inner sum on the right-hand side is zero for m = 1, . . . , n. The
assertions force Cm < c and hence Cm <∗ c for every c ∈ Cm. From the latter we
conclude Cm <∗ min∗ Cm ≤∗ min∗ Ck and therefore Cm /∈ Ck for k = m, . . . , n.
For such k, Ck ⊆ Y if and only if Ck ⊆ Ym where Ym := (Y \{Cm})∪({Cm}\Y ).
By this, Y ∈ Ym if and only if Ym ∈ Ym. In addition, X ⊆ Y if and only if
X ⊆ Ym. Hence,

∑

Y ∈ [X,S]∩Ym

(−1)|Y \X| g(Y ) =
1

2

∑

Y ∈ [X,S]∩Ym

(

(−1)|Y \X| g(Y ) + (−1)|Ym\X| g(Ym)
)

.

Since |Y \ X | 6≡ |Ym \ X |(mod 2), it suffices to check g(Y ) = g(Ym) for all
Y ∈ [X, S] ∩ Ym. By the asserted relation between f and g,

g(Y ) =
∑

Z∈ [Y,S],
Cm /∈Z

f(Z) +
∑

Z∈ [Y,S],
Cm∈Z

f(Z).

It is easy to see that the right sum remains unchanged when Y is replaced by Ym.
The same holds for the left sum which, by the assertions of the theorem, equals
zero. �
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Remark. To compare the number of terms in (1) and (2), we define χ := |Y0 ∩
[X, S]|/|[X, S]|. Obviously, 0 ≤ χ ≤ 1. By the well-known principle of inclusion
and exclusion (which is a particular case of the next corollary),

(4) χ =
∑

C′⊆C

(−1)|C
′|2|X|−|X∪

S
C∈C′

C| .

Hence, if C contains n pairwise disjoint sets of cardinality m (n ∈ N0, m ∈ N) all
of them being disjoint with X , then χ ≤ (1 − 2−m)n, and this tends to zero as
n → ∞. �

Corollary. Let A be a boolean algebra of sets, P a mapping from A into an
additive group such that P (∅) = 0 and P (A ∪ B) = P (A) + P (B) for all disjoint
pairs A, B ∈ A, S a finite poset, {As}s∈S ⊆ A, X ⊆ S and C a set of non-
empty subsets of S such that each C ∈ C is bounded from below by an element
C ∈ S \ (C ∪ X) and

⋂

c∈C Ac ⊆ AC . Then

P





⋂

x∈X

Ax ∩
⋂

s∈S\X

∁As



 =
∑

Y ∈ [X,S]∩Y0

(−1)|Y \X| P





⋂

y∈Y

Ay



 ,

where Y0 is defined as in (3) and ∁As denotes the complement of As in A.

Proof: For Y ⊆ S define f(Y ) := P (
⋂

y∈Y Ay ∩
⋂

s∈S\Y ∁As), g(Y ) :=

P (
⋂

y∈Y Ay). For Y including C and not containing C there is some B ∈ A

such that f(Y ) = P (
⋂

c∈C Ac ∩ ∁AC ∩ B), and hence f(Y ) = 0. Therefore, the
theorem can be applied. �

Remark. Let X be empty and Smin resp. Smax denote the set of minimal resp.
maximal elements of S. If the mapping s 7→ As is antitone, then it can be achieved
that Y0 is the power set of Smin (Proof: Set C := {{s} | s ∈ S \ Smin}, and for
each C ∈ C choose a lower bound C ∈ S \C.). By the duality principle for posets,
‘below’ can be replaced by ‘above’ both in the theorem and in the corollary. By
this, if s 7→ As is isotone, then it can be achieved that Y0 becomes the power set
of Smax. �

Example 1. In (4), C can be replaced by the set of its minimal elements with
respect to set inclusion. This is an immediate consequence of the corollary and
the preceding remark since C 7→ [C, S] is an antitone mapping. �

Example 2. A hypergraph is a set S of non-empty sets whose union
⋃

S is finite.
The elements of S resp.

⋃

S are the edges resp. vertices of the hypergraph; their
number is denoted by m(S) resp. n(S). Define m∗(S) :=

∑

s∈S(|s| − 1). For

k ∈ N, let S(k) consist of all k-element edges of S. The edges of S(1) are called
loops. The subsets of S are called partial hypergraphs of S. A cycle in S is
a sequence (v1, s1, . . . , vk, sk) where k > 1 and v1, . . . , vk resp. s1, . . . , sk are
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distinct vertices resp. edges, vi, vi+1 ∈ si for i = 1, . . . , k − 1 and vk, v1 ∈ sk.
With respect to a linear ordering relation on S, a broken circuit of S is obtained
from the edge-set of a cycle in S by removing the smallest edge. For any λ ∈ N,
a λ-colouring of S is a mapping f :

⋃

S −→ {1, . . . , λ} (the set of colours). For
X ⊆ S, PS,X(λ) stands for the number of λ-colourings of S such that X is the
set of monochromatic edges. We now establish the following statement:

Let S be a loop-free, linearly ordered hypergraph, and let X be a partial

hypergraph of S such that S(2) \ X is an initial segment of S and each cycle in

S has an edge of S(2) \ X . Then PS,X(λ) =
∑

i,j ρijλ
n(S)−i where ρij equals

(−1)j−|X| times the number of partial hypergraphs Y of S including X but no
broken circuits of S and satisfying m∗(Y ) = i and m(Y ) = j.

Proof: For s ∈ S define As as the set of λ-colourings of S such that s is
monochromatic. For any broken circuit C of S let C be the unique edge such that

C ∪ {C} is the edge-set of a cycle in S. The assertions force C ∈ S(2) \ (C ∪ X).

Obviously, C ∈ S(2) entrains
⋂

c∈C Ac ⊆ AC . By the corollary, PS,X(λ) =
∑

Y (−1)
|Y \X||

⋂

y∈Y Ay| where the summation is extended over all partial hy-

pergraphs Y of S including X but no broken circuits of S. By [1, Proposition],

|
⋂

y∈Y Ay | = λn(S)−m∗(Y ). The result now follows. �

Note. A particular case of the previous example, namely where X is empty, is
published in [2]. For simple graphs and empty X , the above statement is due to
Whitney (see [4]) and called Whitney’s Broken-Circuits-Theorem. �
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