A note on Möbius inversion over power set lattices

KLAUS DOHMEN

Abstract. In this paper, we establish a theorem on Möbius inversion over power set lattices which strongly generalizes an early result of Whitney on graph colouring.

Keywords: Möbius inversion, power set lattices, graphs, hypergraphs, colourings *Classification:* 05C15, 05C65, 05A15, 06A07, 06E99

1. Introduction

An important technique in combinatorics is the principle of Möbius inversion over partially ordered sets (see [3, Chapter 25]). For power set lattices, the principle of Möbius inversion states the following:

Proposition. Let S be a finite set, f and g mappings from the power set of S into an additive group such that $g(X) = \sum_{Y \in [X,S]} f(Y)$ for any $X \subseteq S$, where [X,S] denotes the interval $\{Y \mid X \subseteq Y \subseteq S\}$. Then, for any $X \subseteq S$,

(1)
$$f(X) = \sum_{Y \in [X,S]} (-1)^{|Y \setminus X|} g(Y).$$

PROOF: By the asserted relation between f and g, the sum in (1) equals

$$\sum_{Y \in [X,S]} (-1)^{|Y \setminus X|} \sum_{Z \in [Y,S]} f(Z) = \sum_{Z \in [X,S]} f(Z) \sum_{Y \in [X,Z]} (-1)^{|Y \setminus X|},$$

and this is f(X) since the inner sum on the right is zero unless X = Z.

2. A modified inversion formula

The following theorem states that under certain conditions not all terms have to be considered when evaluating the sum in (1). It can be thought of as a generalization of Whitney's Broken-Circuits-Theorem on graph colouring.

Theorem. Let S be a poset and f, g mappings from the power set of S into an additive group such that $g(X) = \sum_{Y \in [X,S]} f(Y)$ for any $X \subseteq S$. For fixed $X \subseteq S$, let C be a set of non-empty subsets of S such that each $C \in C$ is bounded

K. Dohmen

from below by an element $\underline{C} \in S \setminus (C \cup X)$ and f(Y) = 0 for all Y including $C \cup X$ and not containing \underline{C} . Then

(2)
$$f(X) = \sum_{Y \in [X,S] \cap \mathcal{Y}_0} (-1)^{|Y \setminus X|} g(Y),$$

where

(3)
$$\mathcal{Y}_0 := \{ Y \subseteq S \mid Y \not\supseteq C \text{ for all } C \in \mathcal{C} \}.$$

PROOF: Let \leq denote the partial ordering relation on S and \leq^* one of its linear extensions. For each subset Y of S, min^{*} Y denotes the minimum of Y with respect to \leq^* . Consider an enumeration C_1, \ldots, C_n of C such that min^{*} $C_1 \leq^* \ldots \leq^* \min^* C_n$, and define $\mathcal{Y}_m := \{Y \subseteq S \mid C_m \subseteq Y, C_{m+1} \not\subseteq Y, \ldots, C_n \not\subseteq Y\}$ for $m = 1, \ldots, n$. Obviously, the power set of S is the disjoint union of $\mathcal{Y}_0, \ldots, \mathcal{Y}_n$. The proposition gives

$$f(X) = \sum_{m=0}^{n} \sum_{Y \in [X,S] \cap \mathcal{Y}_m} (-1)^{|Y \setminus X|} g(Y).$$

We claim that the inner sum on the right-hand side is zero for m = 1, ..., n. The assertions force $\underline{C_m} < c$ and hence $\underline{C_m} <^* c$ for every $c \in C_m$. From the latter we conclude $\underline{C_m} <^* \min^* C_m \leq^* \min^* C_k$ and therefore $\underline{C_m} \notin C_k$ for k = m, ..., n. For such $k, C_k \subseteq Y$ if and only if $C_k \subseteq Y_m$ where $Y_m := (Y \setminus \{\underline{C_m}\}) \cup (\{\underline{C_m}\} \setminus Y)$. By this, $Y \in \mathcal{Y}_m$ if and only if $Y_m \in \mathcal{Y}_m$. In addition, $X \subseteq Y$ if and only if $X \subseteq Y_m$. Hence,

$$\sum_{Y \in [X,S] \cap \mathcal{Y}_m} (-1)^{|Y \setminus X|} g(Y) = \frac{1}{2} \sum_{Y \in [X,S] \cap \mathcal{Y}_m} ((-1)^{|Y \setminus X|} g(Y) + (-1)^{|Y_m \setminus X|} g(Y_m)).$$

Since $|Y \setminus X| \neq |Y_m \setminus X| \pmod{2}$, it suffices to check $g(Y) = g(Y_m)$ for all $Y \in [X, S] \cap \mathcal{Y}_m$. By the asserted relation between f and g,

$$g(Y) = \sum_{\substack{Z \in [Y,S], \\ \underline{Cm} \notin Z}} f(Z) + \sum_{\substack{Z \in [Y,S], \\ \underline{Cm} \in Z}} f(Z).$$

It is easy to see that the right sum remains unchanged when Y is replaced by Y_m . The same holds for the left sum which, by the assertions of the theorem, equals zero.

Remark. To compare the number of terms in (1) and (2), we define $\chi := |\mathcal{Y}_0 \cap [X, S]|/|[X, S]|$. Obviously, $0 \le \chi \le 1$. By the well-known principle of inclusion and exclusion (which is a particular case of the next corollary),

(4)
$$\chi = \sum_{\mathcal{C}' \subseteq \mathcal{C}} (-1)^{|\mathcal{C}'|} 2^{|X| - |X \cup \bigcup_{C \in \mathcal{C}'} C|}$$

Hence, if C contains n pairwise disjoint sets of cardinality m $(n \in \mathbb{N}_0, m \in \mathbb{N})$ all of them being disjoint with X, then $\chi \leq (1 - 2^{-m})^n$, and this tends to zero as $n \to \infty$.

Corollary. Let \mathcal{A} be a boolean algebra of sets, P a mapping from \mathcal{A} into an additive group such that $P(\emptyset) = 0$ and $P(\mathcal{A} \cup B) = P(\mathcal{A}) + P(B)$ for all disjoint pairs $A, B \in \mathcal{A}$, S a finite poset, $\{A_s\}_{s \in S} \subseteq \mathcal{A}$, $X \subseteq S$ and \mathcal{C} a set of non-empty subsets of S such that each $C \in \mathcal{C}$ is bounded from below by an element $\underline{C} \in S \setminus (C \cup X)$ and $\bigcap_{c \in C} A_c \subseteq A_c$. Then

$$P\left(\bigcap_{x\in X} A_x \cap \bigcap_{s\in S\setminus X} \complement A_s\right) = \sum_{Y\in [X,S]\cap \mathcal{Y}_0} (-1)^{|Y\setminus X|} P\left(\bigcap_{y\in Y} A_y\right).$$

where \mathcal{Y}_0 is defined as in (3) and $\mathcal{C}A_s$ denotes the complement of A_s in \mathcal{A} .

PROOF: For $Y \subseteq S$ define $f(Y) := P(\bigcap_{y \in Y} A_y \cap \bigcap_{s \in S \setminus Y} CA_s), g(Y) := P(\bigcap_{y \in Y} A_y)$. For Y including C and not containing <u>C</u> there is some $B \in A$ such that $f(Y) = P(\bigcap_{c \in C} A_c \cap CA_{\underline{C}} \cap B)$, and hence f(Y) = 0. Therefore, the theorem can be applied.

Remark. Let X be empty and S_{\min} resp. S_{\max} denote the set of minimal resp. maximal elements of S. If the mapping $s \mapsto A_s$ is antitone, then it can be achieved that \mathcal{Y}_0 is the power set of S_{\min} (Proof: Set $\mathcal{C} := \{\{s\} \mid s \in S \setminus S_{\min}\}$, and for each $C \in \mathcal{C}$ choose a lower bound $\underline{C} \in S \setminus C$.). By the duality principle for posets, 'below' can be replaced by 'above' both in the theorem and in the corollary. By this, if $s \mapsto A_s$ is isotone, then it can be achieved that \mathcal{Y}_0 becomes the power set of S_{\max} .

Example 1. In (4), C can be replaced by the set of its minimal elements with respect to set inclusion. This is an immediate consequence of the corollary and the preceding remark since $C \mapsto [C, S]$ is an antitone mapping.

Example 2. A hypergraph is a set S of non-empty sets whose union $\bigcup S$ is finite. The elements of S resp. $\bigcup S$ are the edges resp. vertices of the hypergraph; their number is denoted by m(S) resp. n(S). Define $m^*(S) := \sum_{s \in S} (|s| - 1)$. For $k \in \mathbb{N}$, let $S^{(k)}$ consist of all k-element edges of S. The edges of $S^{(1)}$ are called loops. The subsets of S are called partial hypergraphs of S. A cycle in S is a sequence $(v_1, s_1, \ldots, v_k, s_k)$ where k > 1 and v_1, \ldots, v_k resp. s_1, \ldots, s_k are

K. Dohmen

distinct vertices resp. edges, $v_i, v_{i+1} \in s_i$ for $i = 1, \ldots, k-1$ and $v_k, v_1 \in s_k$. With respect to a linear ordering relation on S, a broken circuit of S is obtained from the edge-set of a cycle in S by removing the smallest edge. For any $\lambda \in \mathbb{N}$, a λ -colouring of S is a mapping $f : \bigcup S \longrightarrow \{1, \ldots, \lambda\}$ (the set of colours). For $X \subseteq S, P_{S,X}(\lambda)$ stands for the number of λ -colourings of S such that X is the set of monochromatic edges. We now establish the following statement:

Let S be a loop-free, linearly ordered hypergraph, and let X be a partial hypergraph of S such that $S^{(2)} \setminus X$ is an initial segment of S and each cycle in S has an edge of $S^{(2)} \setminus X$. Then $P_{S,X}(\lambda) = \sum_{i,j} \rho_{ij} \lambda^{n(S)-i}$ where ρ_{ij} equals $(-1)^{j-|X|}$ times the number of partial hypergraphs Y of S including X but no broken circuits of S and satisfying $m^*(Y) = i$ and m(Y) = j.

PROOF: For $s \in S$ define A_s as the set of λ -colourings of S such that s is monochromatic. For any broken circuit C of S let \underline{C} be the unique edge such that $C \cup \{\underline{C}\}$ is the edge-set of a cycle in S. The assertions force $\underline{C} \in S^{(2)} \setminus (C \cup X)$. Obviously, $\underline{C} \in S^{(2)}$ entrains $\bigcap_{c \in C} A_c \subseteq A_{\underline{C}}$. By the corollary, $P_{S,X}(\lambda) =$ $\sum_Y (-1)^{|Y \setminus X|} |\bigcap_{y \in Y} A_y|$ where the summation is extended over all partial hypergraphs Y of S including X but no broken circuits of S. By [1, Proposition], $|\bigcap_{u \in Y} A_y| = \lambda^{n(S)-m^*(Y)}$. The result now follows. \Box

Note. A particular case of the previous example, namely where X is empty, is published in [2]. For simple graphs and empty X, the above statement is due to Whitney (see [4]) and called *Whitney's Broken-Circuits-Theorem*.

References

- Dohmen K., A contribution to the chromatic theory of uniform hypergraphs, Result. Math. 28 (1995), 49–52.
- [2] Dohmen K., A Broken-Circuits-Theorem for hypergraphs, Arch. Math. 64 (1995), 159–162.
- [3] van Lint J.H., Wilson R.M., A Course in Combinatorics, Cambridge University Press, Cambridge, 1992.
- [4] Whitney H., A logical expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932), 572– 579.

Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany

(Received September 26, 1995)