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On variations of functions of one real variable

Washek F. Pfeffer

Abstract. We discuss variations of functions that provide conceptually similar descriptive
definitions of the Lebesgue and Denjoy-Perron integrals.
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The conceptual affinity between the Denjoy-Perron and Lebesgue integrals was
established vis-à-vis their Riemannian definitions more than twenty years ago in
the works of Henstock [6], Kurzweil [8], and McShane [10]. Yet, until recently,
the descriptive definitions of these integrals have little in common. Modifying the
variational measures of Thomson [15] and elaborating on a new result of Bon-
giorno, Di Piazza, and Skvortsov [2], we shall elucidate the similarities between
the contemporary descriptive definitions of the Lebesgue integral, Denjoy-Perron
integral, and F -integral of [12, Chapter 11].
Our ambient space is the real line R. The interior, diameter, and the Lebesgue

measure of a set E ⊂ R are denoted by intE, d(E), and |E|, respectively. A set
E ⊂ R with |E| = 0 is called negligible. The terms “almost everywhere” and
“absolutely continuous” always refer to the Lebesgue measure in R. For x ∈ R
and ε ≥ 0, we let U(x, ε) = (x − ε, x+ ε).
A cell is a compact nondegenerate subinterval of R, and a figure is a finite

(possibly empty) union of cells. We say figures A and B overlap if their interiors
meet. With each nonempty figure A, we associate two numbers: the perimeter
‖A‖ equal to twice the number of connected components of A, and the regularity

r(A) =
|A|

d(A)‖A‖
.

For completeness, we let ‖A‖ = r(A) = 0 whenever A is the empty figure. Note
that a figure A is a cell whenever r(A) ≥ 1/4, in which case r(A) = 1/2.
Unless specified otherwise, all functions we shall consider are real-valued. If

F is a function defined on a cell A and B is a subfigure of A whose connected
components are the cells [a1, b1], . . . , [an, bn], we let

F (B) =
n

∑

i=1

[

F (bi)− F (ai)
]

.
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Clearly, F (B ∪ C) = F (B) + F (C) whenever B and C are nonoverlapping sub-
figures of A. Denoting by the same symbol both the function of points and the
associated function of figures will lead to no confusion.
A nonnegative function δ on a set E ⊂ R is called a gage on E whenever its null

set Nδ =
{

x ∈ E : δ(x) = 0
}

is countable. A partition is a collection (possibly

empty) P =
{

(A1, x1), . . . , (Ap, xp)
}

such that A1, . . . , Ap are nonoverlapping
figures, and xi ∈ Ai for i = 1, . . . , p. Given ε > 0, E ⊂ Rm, and a gage δ on E,
we say that P is

1. cellular if each Ai is a cell;
2. ε-regular if r(Ai) > ε for i = 1, . . . , p;
3. in E if

⋃p
i=1 Ai ⊂ E;

4. anchored in E if {x1, . . . , xp} ⊂ E;
5. δ-fine if it is anchored in E and d(Ai) < δ(xi) for i = 1, . . . , p.

Given a positive gage δ on A, a collection Q =
{

(B1, y1), . . . , (Bq, yq)
}

is called
a δ-fine McShane partition in A if B1, . . . , Bq are nonoverlapping subcells of A,

each yi is a point in A, and d
(

Bi∪{yi}
)

< δ(yi) for i = 1, . . . , q. If each yi belongs
to a set E ⊂ A, we say Q is anchored in E.

Proposition 1. A function f on a cell A is Lebesgue integrable in A if and only
if there is a function F on A satisfying the following condition: given ε > 0, we
can find a positive gage δ on A so that

p
∑

i=1

∣

∣f(xi)|Ai| − F (Ai)
∣

∣ < ε

for each δ-fine partition
{

(A1, x1), . . . , (Ap, xp)
}

in A. The function F is the
indefinite Lebesgue integral of f in A; in particular, F is continuous.

Proof: The continuity of F at x ∈ A is easily established by choosing a suffi-
ciently small positive gage δ on A and considering a δ-fine partition

{

(A ∩ [x − η, x+ η], x)
}

(see [12, Corollary 2.3.2] for details).
Suppose the condition of the proposition is satisfied, and select a δ-fine Mc-

Shane partition
{

(B1, y1), . . . , (Bq, yq)
}

in A. Denote by x1, . . . , xp the distinct
points among y1, . . . , yq, and let Ci =

⋃

{Bj : yj = xi}. As F is continuous, there

is a δ-fine cellular partition
{

(D1, x1), . . . , (Dp, xp)
}

in A such that

p
∑

i=1

[

∣

∣f(xi)
∣

∣ · |Di|+
∣

∣F (Di)
∣

∣

]

< ε

and
p

∑

i,k=1

[

∣

∣f(xi)
∣

∣ · |Ci ∩ Dk|+
∣

∣F (Ci ∩ Dk)
∣

∣

]

< ε .
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If Ai = Di ∪
(

Ci −
⋃p

k=1Dk

)

, then
{

(A1, x1), . . . , (Ap, xp)
}

is a δ-fine partition
in A, and we have

ε >

p
∑

i=1

[

f(xi)|Ai| − F (Ai)
]

=

p
∑

i=1

[

f(xi)|Di| − F (Di)
]

+

p
∑

i=1

[

f(xi)|Ci| − F (Ci)
]

−

p
∑

i,k=1

[

f(xi)|Ci ∩ Dk| − F (Ci ∩ Dk)
]

>

q
∑

j=1

[

f(yj)|Bj | − F (Bj)
]

− 2ε .

From this inequality we deduce
∑q

j=1

∣

∣f(yj)|Bj | − F (Bj)
∣

∣ < 6ε.

Conversely, suppose we can find a positive gage δ on A so that

q
∑

j=1

∣

∣f(yj)|Bj | − F (Bj)
∣

∣ < ε

for each δ-fine McShane partition in A, and select a δ-fine partition
{

(A1, x1),

. . . , (Ap, xp)
}

in A. If Ai,1, . . . , Ai,ni
are the connected components of Ai, then

{

(Ai,j , xi) : j = 1, . . . , ni and i = 1, . . . , p
}

is a δ-fine McShane partition in A, and we have

p
∑

i=1

∣

∣f(xi)|Ai| − F (Ai)
∣

∣ ≤

p
∑

i=1

ni
∑

j=1

∣

∣f(xi)|Ai,j | − F (Ai,j)
∣

∣ < ε .

Thus the condition of the theorem is equivalent to f being McShane integrable
in A, and the proposition follows from [5, Theorem 10.9]. �

In Proposition 1, a positive gage is needed to assure the continuity of F . If F
is assumed continuous and a positive gage is replaced by an arbitrary gage, the
condition of Proposition 1 defines an integral that is closed with respect to the
formation of improper integrals, and thus slightly more general than the Lebesgue
integral.

Proposition 2. A function f on a cell A is Denjoy-Perron integrable in A if and
only if there is a continuous function F on A satisfying the following condition:
given ε > 0, we can find a gage δ on A so that

p
∑

i=1

∣

∣f(xi)|Ai| − F (Ai)
∣

∣ < ε
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for each δ-fine cellular partition
{

(A1, x1), . . . , (Ap, xp)
}

in A. The function F is
the indefinite Denjoy-Perron integral of f in A.

Proof: In view of [5, Chapter 11], it suffices to show that if the condition of the
proposition holds, it holds already for a positive gage δ+. To this end, enumerate
the null set Nδ of δ as z1, z2, . . . , and find θn > 0 so that

∣

∣f(zn)
∣

∣ · |C|+
∣

∣F (C)
∣

∣ < 2−nε

for each cell C ⊂ U(zn, θn) and n = 1, 2, . . . . Now let

δ+(x) =

{

θn if x = zn for an integer n ≥ 1,

δ(x) if x ∈ A − Nδ.

Given a δ+-fine cellular partition
{

(A1, x1), . . . , (Ap, xp)
}

, observe that

p
∑

i=1

∣

∣f(xi)|Ai| − F (Ai)
∣

∣ <
∑

δ(xi)>0

∣

∣f(xi)|Ai| − F (Ai)
∣

∣+

∞
∑

n=1

2−nε < 2ε,

which establishes the proposition. �

According to [5, Chapter 11], a gage in Proposition 2 can be replaced by a
positive gage, in which case the continuity of F can be deduced as in Proposition 1.
However, a slight modification of [12, Example 12.3.5] shows that Proposition 2
is false when cellular partitions, which are (1/4)-regular partitions, are replaced
by α-regular partitions with α < 1/4.
Propositions 1 and 2 lead to the definition of the F -integral, which lies properly

in between the Lebesgue and Denjoy-Perron integrals. It was introduced in [13]
as a coordinate free multidimensional integral that integrates partial derivatives
of differentiable functions (cf. [11]).

Definition 3. A function f on a cell A is called F -integrable in A whenever there
is a continuous function F on A satisfying the following condition: given ε > 0,
we can find a gage δ on A so that

p
∑

i=1

∣

∣f(xi)|Ai| − F (Ai)
∣

∣ < ε

for each δ-fine ε-regular partition
{

(A1, x1), . . . , (Ap, xp)
}

in A. The function F ,
uniquely determined by f , is called the indefinite F-integral of f in A.

We note that the additivity properties of the F -integral depend on the use of
arbitrary, not necessarily positive, gages.
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Remark 4. One may also consider the integrals defined by means of α-regular
partitions, where 0 < α < 1/4 is a fixed number. Whether different α’s produce
different integrals is unclear, however, the work of Jarńık and Kurzweil [9] suggests
this may be the case. We do not study these integrals, since they may not be
invariant with respect to diffeomorphisms (a diffeomorphic image of an α-regular
figure need not be α-regular).

Let F be a function defined on a cell A, and let E ⊂ A be an arbitrary set.
Elaborating on the ideas of B.S. Thomson [15, Chapter 3], we define variations
of F corresponding to the integrals discussed earlier.

Lebesgue variation:

V LF (E) = inf
δ
sup
P

p
∑

i=1

∣

∣F (Ai)
∣

∣

where δ is a positive gage on E and P =
{

(A1, x1), . . . , (Ap, xp)
}

is a δ-fine
partition in A anchored in E.

Denjoy-Perron variation:

V DP F (E) = inf
δ
sup
P

p
∑

i=1

∣

∣F (Ai)
∣

∣

where δ is a gage on E and P =
{

(A1, x1), . . . , (Ap, xp)
}

is a δ-fine cellular
partition in A anchored in E.

F-variation:

V FF (E) = sup
α
inf
δ
sup
P

p
∑

i=1

∣

∣F (Ai)
∣

∣

where α > 0, δ is a gage on E, and P =
{

(A1, x1), . . . , (Ap, xp)
}

is a δ-fine
α-regular partition in A anchored in E.

Arguments analogous to those of [15, Theorems 3.7 and 3.15] reveal that the

extended real-valued functions V LF , V DP F , and V FF are Borel regular measures
in A (cf. [12, Lemma 3.3.14] and [3, Lemma 4.6]). We shall use this important
fact in the proof of Proposition 6 below. The inequalities

(1) V DP F ≤ V FF ≤ V LF

follow directly from the definitions.

Remark 5. Let F be a continuous function on a cell A. Employing ideas which
proved Proposition 1, it is easy to show that in defining V LF (E) we can use δ-fine

McShane partitions . Similarly, V DP F (E) can be defined by positive gages (cf. [2,
Proposition 6] and the proof of Proposition 2).

If F is a function on a cell A, we denote by V F (B) the usual variation of F
over a figure B ⊂ A [5, Chapter 4].
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Proposition 6. If F is a continuous function in a cell A, then

(2) V DP F (B) = V FF (B) = V F (B)

for each figure B ⊂ A, and V LF (A) = V F (A). Moreover, V DP F = V FF

whenever V FF is σ-finite, and V FF = V LF whenever V LF is σ-finite.

Proof: Equality (2), which is an easy consequence of generalized Cousin’s lemma
[7, Lemma 6], was established in [1, Proposition 4.8].

If V FF is σ-finite, then V DP F and V FF vanish on all but countably many
singletons. Thus it is not difficult to deduce from (2) that V DP F (U) = V FF (U)

for each relatively open set U ⊂ A (see [12, Lemma 3.4.4] for details). As V DP F

and V FF are σ-finite Borel regular measures in A, they coincide.
Let B be a subfigure of A, and let intAB be the relative interior of B in A.

Choose a positive gage δ on intAB so that A∩U
(

x, δ(x)
)

⊂ B for each x ∈ intAB,

and let
{

(A1, x1), . . . , (Ap, xp)
}

be a δ-fine partition in A anchored in intAB. By
the choice of δ, eachAi is contained inB, and so if Ai,1, . . . , Ai,ki

are the connected
components of Ai, then

p
∑

i=1

∣

∣F (Ai)
∣

∣ ≤

p
∑

i=1

ki
∑

j=1

∣

∣F (Ai,j)
∣

∣ ≤ V F (B) .

From this and (1), we obtain

(3) V FF (intAB) ≤ V LF (intAB) ≤ V F (B) ;

in particular, V LF (A) = V F (A) by (2). Using (3), the proof is completed by the
argument employed in the previous paragraph. �

Lemma 7. Let F be a function on a cell A. If V FL
(

{x}
)

= 0 for each x ∈ A,

then V FL(A) < +∞.

Proof: Observe first F is continuous at x ∈ A whenever V LF
(

{x}
)

= 0. Accord-

ing to Remark 5, for each y ∈ A, there is an ηy > 0 such that
∑q

j=1

∣

∣F (Bj)
∣

∣ < 1

for every ηy-fine McShane partition
{

(B1, y1), . . . , (Bq, yq)
}

in A anchored in {y},
i.e., with y1 = · · · = yq = y. Since A is compact, we can find points z1, . . . , zn

in A so that A is covered by U(z1, ηz1), . . . , U(zn, ηzn). Define a positive gage δ
on A as follows: given x ∈ A, select a δ(x) > 0 so that U

(

x, δ(x)
)

is contained in

some U(zk, ηzk
). Now each δ-fine McShane partition

{

(A1, x1), . . . , (Ap, xp)
}

in
A is the disjoint union of families P1, . . . , Pn such that Ai ⊂ U(zk, ηk) whenever
(Ai, xi) ∈ Pk. It follows that

{

(Ai, zk) : (Ai, xi) ∈ Pk

}

is an ηzk
-fine McShane

partition in A anchored in {zk}, and so
p

∑

i=1

∣

∣F (Ai)
∣

∣ =
n

∑

k=1

∑

(Ai,xi)∈Pk

∣

∣F (Ai)
∣

∣ < n .

In view of this and Remark 5, we have V FL(A) ≤ n. �
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Proposition 8. A function F in a cell A is absolutely continuous if and only if
V LF is absolutely continuous.

Proof: Let F be absolutely continuous, and choose an η > 0 and a negligible
set E ⊂ A. There is a δ > 0 such that

∑n
j=1

∣

∣F (Bj)
∣

∣ < ε for each collection

B1, . . . , Bn of nonoverlapping subcells of A with
∑n

j=1 |Bj | < η. Find an open

set U containing E so that |U | < η, and select a positive gage δ on E such
that U

(

x, δ(x)
)

⊂ U for each x ∈ E. Now if
{

(A1, x1), . . . , (Ap, xp)
}

is a δ-fine
partition in A anchored in E, then it is a partition in U . If Ai,1, . . . , Ai,ni

are the
connected components of Ai, then

p
∑

i=1

∣

∣F (Ai)
∣

∣ ≤

p
∑

i=1

ni
∑

j=1

∣

∣F (Ai,j)
∣

∣ < ε ,

and V LF (E) = 0 by the arbitrariness of ε.

Conversely, assume that V LF is absolutely continuous, and choose an ε > 0.
In view of Lemma 7, there is an η > 0 such that V LF (E) < ε whenever E ⊂ A
and |E| < η [14, Theorem 6.11]. If B ⊂ A is the union of nonoverlapping cells
B1, . . . , Bn and |B| < η, then Proposition 6 implies

n
∑

j=1

∣

∣F (Bj)
∣

∣ ≤
n

∑

j=1

V F (Bj) = V F (B) = V DP F (B) ≤ V LF (B) < ε ,

establishing the absolutely continuous of F . �

We shall use the expression “F is the indefinite integral of its derivative,”
which has the following usual meaning: the function F is differentiable almost
everywhere in its domain, and it is the indefinite integral of F ′ extended arbitrarily
to the domain of F .

Theorem 9. A function F on a cell A is the indefinite Lebesgue integral of its
derivative if and only if V LF is absolutely continuous.

Proof: The theorem follows from Proposition 8 and [5, Theorem 4.15]. �

Corollary 10. A function F on a cell A is the indefinite Lebesgue integral of its
derivative whenever V DP F is absolutely continuous and V LF is σ-finite.

Proof: If V LF is σ-finite, then V LF = V DP F by Proposition 6, and the corol-
lary follows from Theorem 9.

�

Proposition 11. Let F be a continuous function on a cell A. If V DP F is
absolutely continuous it is σ-finite.

Proof: In a roundabout way the proposition was proved in [2, Theorem 5]. We
present a direct proof, which is virtually identical to that of [2, Theorem 1].
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Suppose V DP F is absolutely continuous but not σ-finite, and denote by U◦ the
union of all open sets U with V DP F (A ∩ U) < +∞. Since U◦ is Lindelöf, the

V DP F measure of A ∩ U◦ is σ-finite. The set K = A − U◦ is compact, and it is
easy to verify that V DP F (K ∩U) = +∞ for each open set U which meets K. As

V DP F
(

{x}
)

= 0 for every x ∈ A, the set K is perfect.

Claim. If U is an open set which meets K, then A ∩ U contains a disjoint
collection A1, . . . , Ap of at least two cells such that the interior of each Ai meets
K, and

(4)

p
∑

i=1

∣

∣F (Ai)
∣

∣ > 1 .

Proof: Select a gage δ on K ∩ U so that U
(

x, δ(x)
)

⊂ U for each x ∈ K ∩

U . There is a δ-fine cellular partition
{

(A1, x1), . . . , (Ap, xp)
}

in A anchored in
K ∩ U such that (4) holds. By the choice of δ, each Ai is contained in A ∩ U .
Since F is continuous and K is perfect, we can modify the cells Ai so that they
become disjoint, their interiors meet K, and they are still contained in A∩U and
satisfy (4). If p = 1 and A1 = [a, b], find points c and d so that a < c < d < b and
both (a, c) and (d, b) meet K. As F is continuous and

1 <
∣

∣F (A1)
∣

∣ ≤
∣

∣F
(

[a, c]
)∣

∣+
∣

∣F
(

[c, d]
)∣

∣+
∣

∣F
(

[d, b]
)∣

∣ ,

the points c and d can be selected so that 1 <
∣

∣F
(

[a, c]
)
∣

∣ +
∣

∣F
(

[d, b]
)
∣

∣. Thus we
may assume p ≥ 2, and the claim is established.

Using the claim, construct inductively disjoint families {Ak,1, . . . , Ak,pk
} of

subcells of A so that the following conditions are satisfied for k = 1, 2, . . . .

1. K ∩ intAk,i 6= ∅ for i = 1, . . . , pk.
2. Each Ak+1,j is contained in some Ak,i.
3. Each Ak,i contains at least two cells Ak+1,j .

4.
∣

∣

⋃pk

i=1Ak,i

∣

∣ < 1/k.

5.
∑

Ak+1,j⊂Ak,i

∣

∣F (Ak+1,j)
∣

∣ > 1 for i = 1, . . . , pk.

It follows from conditions 3 and 4 that N =
⋂∞

k=1

⋃pk

i=1Ak,i is a negligible perfect

subset of A. We obtain a contradiction by showing that V DP F (N) ≥ 1.
To this end, choose a gage δ on N , and for k = 1, 2, . . . , let

Nk =
{

x ∈ N : δ(x) > 1/k
}

.

Since the set
⋃∞

k=1Nk = N − Nδ is Gδ, it is completely metrizable [4, Theo-
rem 4.3.23]. By the Baire category theorem some Ns is dense in (N − Nδ) ∩ U ,
where U is an open set which meets N − Nδ. There is an integer k > s such
that some Ak−1,j is contained in U . Condition 4 implies that d(Ak,i) < 1/s for
i = 1, . . . , pk. Hence choosing xi ∈ Ak,i ∩Ns, we obtain a δ-fine cellular partition
{

(Ak,1, x1), . . . , (Ak,pk
, xpk
)
}

in A anchored in N . The desired contradiction fol-
lows from condition 5.

�
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Theorem 12. A continuous function F on a cell A is the indefinite Denjoy-Perron
integral of its derivative if and only if V DP F is absolutely continuous.

Proof: The theorem follows from Proposition 11 and [1, Theorem 4.4], which
asserts that F is the indefinite Denjoy-Perron integral of its derivative if and only
if V DP F is absolutely continuous and σ-finite. �

Theorem 13. A continuous function F on a cell A is the indefinite F -integral
of its derivative if and only if V FF is absolutely continuous.

Proof: As the converse follows from [3, Theorem 5.3], assume V FF is absolutely

continuous. Then V DP F is absolutely continuous by (1), and Theorem 12 implies
that F is differentiable at each x ∈ A−N , where N is a negligible subset of A. We
show that F is the indefinite F -integral of the function f defined by the formula

f(x) =

{

F ′(x) if x ∈ A − N ,

0 if x ∈ N .

To this end, choose an ε > 0, and for each x ∈ A − N , find an ηx > 0 so that
∣

∣F ′(x)|B| − F (B)
∣

∣ < ε2d(B)‖B‖

for each figure B ⊂ A ∩ U(x, ηx); the existence of ηx is a readily verifiable conse-
quence of the differentiability of F at x. By our assumption, there is a gage β on
N such that

∑p
i=1

∣

∣F (Ai)
∣

∣ < ε for each β-fine ε-regular partition
{

(A1, x1), . . . ,

(Ap, xp)
}

in A anchored in N . Let

δ(x) =

{

ηx if x ∈ A − N ,

β(x) if x ∈ N ,

and select a δ-fine ε-regular partition
{

(A1, x1), . . . , (Ap, xp)
}

in A. Then

p
∑

i=1

∣

∣f(x)|Ai| − F (Ai)
∣

∣ =
∑

xi∈N

∣

∣F (Ai)
∣

∣+ ε2
∑

xi 6∈N

d(B)‖B‖

< ε+ ε
∑

xi 6∈N

|Ai| ≤ ε
(

1 + |A|
)

,

and the theorem is proved. �

Corollary 14. Let F be a continuous function on a cell A. If V FF is absolutely
continuous it is σ-finite.

Proof: In view of Theorem 13, the function F is the indefinite F -integral of a
function f on A. Fix an integer n ≥ 1 and let E =

{

x ∈ A :
∣

∣f(x)
∣

∣ < n
}

. Since

A =

∞
⋃

k=1

{

x ∈ A :
∣

∣f(x)
∣

∣ < k
}

,
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it suffices to show that V FF (E) < +∞. To this end, choose a positive ε ≤ 1, and
find a gage δ on A so that

p
∑

i=1

∣

∣f(x)|Ai| − F (Ai)
∣

∣ < ε

for each δ-fine ε-regular partition in A. If such a partition is anchored in E, then

p
∑

i=1

∣

∣F (Ai)
∣

∣ ≤

p
∑

i=1

∣

∣f(x)|Ai| − F (Ai)
∣

∣+

p
∑

i=1

∣

∣f(x)
∣

∣ · |Ai|

< ε+ n

p
∑

i=1

|Ai| ≤ 1 + n|A| ,

and we conclude that V FF (E) ≤ 1 + n|A|. �

Corollary 15. A continuous function F on a cell A is the indefinite F -integral
of its derivative whenever V DP F is absolutely continuous and V FF is σ-finite.

Proof: If V FF is σ-finite, then V FF = V DP F by Proposition 6, and the
corollary follows from Theorem 13. �
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