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A functional representation of the hyperspace monad

TARAS RADUL

Abstract. A functional representation of the hyperspace monad, based on the semilattice
structure of function space, is constructed.
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0. All spaces are compact Hausdorff spaces (compacta), all mappings are con-
tinuous. A functional representation of the hyperspace functor exp is given in [1].
This representation essentially uses the linear structure on function spaces.
From the algebraic point of view hyperspaces are free Louson semilattices.
Hence it would be natural to involve the semi-lattice structure on function spaces
into representations of the hyperspace functor. In this paper such a representation
is given not only for the hyperspace functor but also for the hyperspace monad.
The paper is organized as follows: in Section 1 we give some necessary defini-
tions and recall a result from [1], in Section 2 we construct the monad E and in
Section 3 we prove that the monad E and the hyperspace monad are isomorphic.

1. By Comp we denote the category whose objects are compacta (compact Haus-
dorff spaces) and morphisms are continuous mappings.

For a compactum X by exp X we denote the set of non-void compact subsets
of X provided with the Vietoris topology. A base of this topology consists of the
sets of the form < Uy, ..., Uy, >={Acexp X | AC Uj=, Ui, ANU; # 0 for each
i€{l,...,n}} where Uy,...,Uy, are open in X. The space exp X is called the
hyperspace of X.

For a continuous mapping f : X — Y the mapping exp f : exp X — exp Y is
defined by the formula exp f(A) = fA€exp Y, A € exp X. It is easy to see that
this defines a functor exp : Comp — Comp (the hyperspace functor).

Let F, G be two functors in the category Comp. We say that a transformation
¢ : F' — @G is defined if for every X € Comp is defined the mapping pX :
FX — GX. The transformation ¢ = {©X} is called natural if for every mapping
f: X =Y we have oY o F(f) = G(f) o pX.

A monad T = (T,n, 1) in a category £ consists of an endofunctor T : £ — &
and natural transformations 7 : Idg — T (unity), g : T2 — T (multiplication)
satisfying the relations poTn = ponT =17 and po uT = poTp.

A natural transformation ¢ : T — T’ is called a morphism from monad T =
(T,n, 1) into monad T = (77,1, /) if Yon =n' and o pu = p' o T’ o Tp.
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A morphism of monads is called an isomorphism, provided each component X
is a homeomorphism.

Define the natural transformations s : Idcyy,, — exp and u : exp 2 exp
as follows: sX () = {z} for each z € X; uX(A) = UA, A € exp? X. Then
H = (exp, s, u) is monad ([2]).

Now we recall the result from [1]. Let us denote by C+(X) the space of non-
negative continuous functions on X with natural metric, order, linear and multi-
plicative structures. By ax we denote the function equal o on X.

By ®(X) we denote all functionals ¢ : C+(X) — R4 satisfying next conditions:

(1) o(f +9) < @(f) +#(9),
(2) ©(fg) < (f)el9),
(3) f < g implies ¢(f) < ¢(9),
(4) ¥(af) = ap(f),
() »(f +ax) =v(f) + o,
(6) plax) = a,
where f,g € C4(X), o € R4

The set ®(X) provides a topology with a base consisting of sets of the form
(101, mie) = L € B(X) | [ (:) — pli)| < e for each i € {1,....k}}
where ¢1,...,¢0r € C(X), € > 0. It is shown in [1] that the functor ®(X) is
naturally isomorphic to the hyperspace functor.

2. Let us consider the space C(X;[0;1]) equipped by sup-metric and semilattice
operation — pointwise minimum.

Let p € C(C(X,[0;1]),[0;1]). We say that p is normed if p(cx) = ¢ for each
c € [0;1].

We say that p is supported on a closed set A C X if for each functions g1, g3 :
X — [0;1] such that g1]A = g2]A we have p(g1) = u(g2)-

The minimal closed set A on which p is supported will be called the sup-
port of p (briefly A = supp(u)). So, we can consider u as an element from
C(C(A,[0;1]),[051]) if A = supp(p)-

We say that p is symmetric on its support if for each ¢ € C'(A4,[0;1]) for each
h € Auth(p(A)) we have u(p) = p(h o ¢). Finally we say that u preserve the
semilattice operation if p(min{e1,p2}) = min{u(e1), u(p2)} for each ¢1,p2 €
C(X,10;1]).

Let us define the space E(X) consisting of u € C(C(X,]0;1]),[0;1]) which
are normed, symmetric on its support and preserve the semilattice operation.
The space E(X) provides a topology with a base consisting of sets of the form
(101, 9ni) = (! € B(X) | i (1) — p(s)| < e for each i € {1,...,k}}
where ¢1,..., ¢ € C(X,[0;1]), e > 0.

Let f: X — Y be a mapping. Define the mapping E(f) : E(X) — E(Y) by
the formula E(f)(1)(¢) = pu(f*(¢)) where p € E(X), ¢ € C(Y,[0;1]) and the
mapping f* : C(Y,[0;1]) — C(X,[0;1]) can be defined by the formula f*(¢)(x) =

o([(@)). 7 € X, p € C(¥,[0:1]).
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Later we shall prove that E(X) is a compactum. So, F is an endofunctor on
the category Comp.

Let us define the mapping nX : X — E(X) by the formula nX (z)(¢) = ¢(z)
and the mapping X : EF?(X) — E(X) by the formula X (a)(g9) = a(j) where
a € E%(X), g € C(X,[0;1]) and the mapping § : E(X) — [0;1] is defined by the
formula g(p) = u(g), p € E(X).

It is easy to check that nX and puX are the components of natural transforma-
tions 7 and p such that E = (E,n, ) is the monad on the category Comp.

3. In this section we prove that the monad E is isomorphic to the monad H =
(exp, s, u).

Let us consider the mapping tX : exp X — E(X) defined by the formula
t(A)(f) = inf f(A), f € C(X,[0;1]).

Lemma. The mapping tX is homeomorphism from exp X onto F(X).

PRrROOF: Let tX(A) = p € E(X) and (u;¢1,...,¢n;€) be a neighborhood of u.
Choose an open covering O1, ..., O of A such that diam ;(0;) < ¢ for each i €
{1,...,n},7€{1,...,k}. Then we have tX(< O1,...,0 >) C (1; 01, - - -, Pn; €)
and hence the mapping ¢X is continuous.

Consider A1, Ag € exp X such that A1 # As. We may assume that there exists
a point a € A; such that a ¢ As. Choose a function f € C(X,[0;1]) such that
f(a) =0 and f(A2) =1. Then we have tX (A41)(f) =0 <1 =1tX(A2)(f). Hence
the mapping tX is injective.

Let us prove that the mapping tX is surjective. Consider v € E(X). We can
assume that supp(v) = X. So, we must show that v(f) = inf f(X). We can
assume that inf f(X) = 0.

Suppose v(f) = a > 0. Since v is normed, there exists a point 2 € X such that
f(z) > a. We can assume that f(z) < a for each z € X (in the opposite case we
can consider the function inf{f,ax}).

Let us consider two cases:

(1) f(X) = [0;a]. Define a homeomorphism h : [0;a] — [0;a] by the formula
h(t) = a—t,t € [0;a]. It follows from the symmetry condition that v(h o f) =
v(f) =a. Put g =inf{ho f, f}. Then we have v(g) = inf{v(ho f),v(f)} = a but
g(z) < %a for each z € X. Hence v(g) < %a and we obtain the contradiction.

)
(2) There exists a point b € (0;a) such that b ¢ f(X). Consider the function
f1: X — {b;a} defined by the formula:

a, f(x)>0b
Ao = {
b, f(z) <b.
Since f < f1 < ax, we have v(f1) = a. Define the function

b, f(z)>b
a, f(z) <b.
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It follows from the symmetry condition that v(f2) = v(f1) = a. But
inf{ f1, f2} = bx and v(inf{ f1, fo}) = b. We obtain the contradiction again.
Thus the mapping tX is homeomorphism and the lemma is proved. ([

It follows from Lemma that E(X) is compactum.

Theorem. A transformation t = {tX} is the isomorphism from monad H =
(exp, s,u) into monad E = (E,n, ).

PROOF: Let us show that ¢ is natural transformation. Let f : X — Y be a
mapping and A € exp X. Then we have tY o exp f(A) = info(f(4)), ¢ €
C(Y,[051]) and E(f) o X(A)(¢) = inf f*(p)(A) = inf o( f(A)).

Now let us show that ¢ is the morphism of monads H and E. The identity
tos = n is obvious. Let us check the identity t ou = potE oexpt. Take any
A € exp2X and ¢ € C(X,[0;1]). Then we have t o u(A)(p) = inf p(UA) and
potEoexpt(A)(p) =tE oexp t(A)(¢) = inf{inf p(A) | A € A} = inf (UA).

Now the statement of the theorem follows from Lemma. O
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