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Nonconcentrating generalized Young functionals

Tomáš Roub́ıček

Abstract. The Young measures, used widely for relaxation of various optimization prob-
lems, can be naturally understood as certain functionals on suitable space of integrands,
which allows readily various generalizations. The paper is focused on such functionals
which can be attained by sequences whose “energy” (=pth power) does not concentrate
in the sense that it is relatively weakly compact in L1(Ω). Straightforward applications
to coercive optimization problems are briefly outlined.
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timization problems, nonconcentration of energy

Classification: 49N60

1. Introduction

More than half a century ago, L.C. Young [19] introduced a tool, called now
Young measures, to hold a certain “limit information” about oscillations that may
appear in nonconvex variational problems. This was later widely exploited also
in optimal control and game theory, where oscillation effects typically arise, as
well. Let us recall that a Young measure ν on a domain Ω ⊂ R

n valued on R
m

is a weakly measurable mapping x 7→ νx from Ω to regular probability measures
on R

m; cf. also [2], [14], [16], [17], [19] for details. Alternatively, every Young
measure can be considered as a linear continuous functional on the Banach space
L1(Ω;C0(R

m)) of Bochner integrable mappings Ω → C0(R
m), where C0(R

m)
denotes the space of continuous functions on R

m vanishing at infinity, prescribed
by

h 7→

∫

Ω

∫

Rm

h(x, s)νx(ds) dx,

cf. also the original concept from [20].
This concept was enough general as long as L∞-apriori estimates were at

disposal. Nevertheless, it is an often case that a problem in question is coer-
cive only on some Lp-space with p < ∞, and then test integrands vanishing
at infinity in general cannot preserve a full relevant information about poss-
ible oscillation/concentration effects. The test integrands one can think about
should belong to the space Carp(Ω;Rm), consisting of all Carathéodory functions
h : Ω × R

m → R (i.e. h(x, ·) continuous and h(·, s) measurable) satisfying the
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growth condition |h(x, s)| ≤ ah(x) + bh|s|
p with some ah ∈ L1(Ω) and bh ∈ R

depending on h. This linear space can be naturally (semi)normed by

(1) ‖h‖ = inf
|h(x,s)|≤a(x)+b|s|p

‖a‖L1(Ω) + b.

Nevertheless, the whole space Carp(Ω;Rm) is not separable, so that often it is
more appropriate to work with its subspaces. Let us take some subspace H ⊂
Carp(Ω;Rm) and define the natural imbedding iH of L

p(Ω;Rm) into the Banach
space H∗ by 〈iH(u), h〉 =

∫

Ω h(x, u(x)) dx with h ∈ H and u ∈ Lp(Ω;Rm). Then
we put

Y
p
H (Ω;R

m) =

{η∈H∗; ∃ a net {uξ} bounded in Lp(Ω;Rm), w*- lim iH(uξ) = η}.

It is natural to address the elements of Y p
H(Ω;R

m) as generalized Young func-

tionals; note that for H = L1(Ω;C0(R
m)) we get basically the original Young

functionals that can be attained by bounded sequences from Lp(Ω;Rm), which
justifies our terminology. Let us also remark that the choice H = HR :=
{

h(x, s) =
∑L

l=1 g(x)v(s)(1 + |s|p); g ∈ C(Ω̄), v ∈ R, L ∈ N

}

withR being a com-

plete ring of continuous bounded functions on R
m has been used by DiPerna and

Majda [7]. For another choice of H see (5) below.
The above sketched construction falls into a convex-compactification theory

developed in [13], [14], [15]. It is known that, if H∗ is endowed by the weak*
topology, Y

p
H(Ω;R

m) is convex, σ-compact subset of H∗ into which Lp(Ω;Rm) is
imbedded continuously and densely. Moreover, if H contains a coercive integrand
h(x, s) ≥ a(x) + b|s|p with some a ∈ L1(Ω) and b > 0, then Y p

H(Ω;R
m) is locally

compact and, if also 1 < p < +∞, the imbedding iH is even homeomorphical,
which makes Y p

H (Ω;R
m) a natural hull of the original Lebesgue space, indeed.

Let us emphasize that, unless we care about a concrete nature of the elements
of Y

p
H(Ω;R

m) (which may be a quite nontrivial task as one can see in case of the
DiPerna and Majda measures from [12]), the particular choice of H is basically
not intrinsic provided this space is sufficiently “small” to be separable and simul-
taneously sufficiently “rich” to create a sufficiently fine convex σ-compact hull
Y p

H (Ω;R
m) of Lp(Ω;Rm) which is needed to extend continuously concrete (class

of) problems. The point is that it is usually not difficult to fulfil these antago-
nistic requirements, cf. (5) below. Without reference to any concrete problem,
one can also observe that for an extremely small H the nonconcentration concept
introduced here degenerates (cf. Remark 1 below) while for a sufficiently rich H
some additional desirable properties may occur (cf. Remark 2 below).

2. Nonconcentrating generalized Young functionals

Sometimes it may happen that concentration effects are essentially excluded
so that, likewise in the L∞-case, only oscillation effects can appear. Then the
following class of generalized Young functional is of a particular importance:
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Definition 1. A generalized Young functional η ∈ Y p
H(Ω;R

m) is called p-non-
concentrating if there is a net {uξ}ξ∈Ξ bounded in Lp(Ω;Rm) such that w*-
limξ∈Ξ iH(uξ) = η and the set {|uξ|

p; ξ ∈ Ξ} is relatively weakly compact in

L1(Ω).

The property of being “p-nonconcentrating” is important mainly because
every p-nonconcentrating generalized Young functional admits a (not necessarily
uniquely determined) Young-measure representation provided the test-integrand
space H is separable. More precisely, if η ∈ Y

p
H(Ω;R

m) is p-nonconcentrating and
H is separable, then there exists a Young measure ν such that

(2) 〈η, h〉 =

∫

Ω

∫

Rm

h(x, s)νx(ds) dx

holds for any h ∈ H . This is a consequence of the results by Ball [2] if one realizes
that, since H is separable and thus the weak* topology on bounded subsets of
H∗ is metrizable, η is weakly* attainable by a bounded sequence {uk}k∈N ⊂
Lp(Ω;Rm) such that {|uk|

p; k ∈ N} is relatively weakly compact in L1(Ω), and
that the set {h◦uk; k ∈ N} is relatively weakly compact in L1(Ω) as well because
h has at most p-growth.

Definition 2. For η, η
◦

∈ Y p
H(Ω;R

m), we say that η
◦

is a p-nonconcentrating

modification of η if η
◦

is p-nonconcentrating and 〈η
◦

, h〉 = 〈η, h〉 holds for any
h ∈ H such that |h(x, s)| ≤ a(x) + o(|s|p) with some a ∈ L1(Ω) and o : R+ → R

satisfying limr→∞ o(r)/r = 0.

The p-nonconcentrating modification can be straightforwardly exploited to
prove (by contradiction arguments) the p-nonconcentration of solutions to various
coercive optimization problems, cf. Section 4. The aim of the next section is to
develop a needed theoretical background. The main ingredients we will rely on are
Chacon’s biting lemma [5] (cf. also [3], [17]) and the Dunford-Pettis theorem [8].

3. Main results

Proposition 1. Every η ∈ Y p
H(Ω;R

m) admits at most one p-nonconcentrating

modification η
◦

∈ Y p
H (Ω;R

m).

Proof: Let us suppose η
◦

1, η
◦

2 ∈ Y
p
H(Ω;R

m) are two p-nonconcentrating modifi-

cations of η ∈ Y p
H(Ω;R

m). Let us take h ∈ H and put hr(x, s) = h(x, s)vr(s)
with

vr(s) =











1 for |s| ≤ r,

1 + r − |s| for r ≤ |s| ≤ r + 1,

0 for |s| ≥ r + 1.

Without loss of generality we can suppose that L1(Ω;C0(R
m)) ⊂ H . More in de-

tail, if it is not the case, we can replace H by H̄ = H+L1(Ω;C0(R
m)) and extend
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η, η
◦

1, η
◦

2 on this enlarged space so that again η, η
◦

1, η
◦

2 ∈ Y p
H̄
(Ω;Rm). Besides, the

extended functionals η
◦

1 and η
◦

2 remain p-nonconcentrating as well. If one shows

η
◦

1 = η
◦

2 in the sense of H̄
∗, then it is obvious that it holds for the original function-

als on H as well. Thus, adopting the agreement that H contains L1(Ω;C0(R
m)),

we may and will suppose hr ∈ H because always hr ∈ L1(Ω;C0(R
m)).

As hr has a growth less than p and both η
◦

1 and η
◦

2 are p-nonconcentrating
modifications of η, we have

(3) 〈η
◦

1, hr〉 = 〈η, hr〉 = 〈η
◦

2, hr〉.

Now we want to show that

(4) lim
r→∞

〈η
◦

1, hr〉 = 〈η
◦

1, h〉.

As η
◦

1 is p-nonconcentrating, there is a net {uξ}ξ∈Ξ bounded in Lp(Ω;Rm) such

that w*-limξ∈Ξ iH(uξ) = η
◦

1 and the set {|uξ|
p; ξ ∈ Ξ} is relatively weakly com-

pact in L1(Ω) and therefore, by the Dunford-Pettis theorem, this set is also uni-
formly integrable. This means that, for any ε > 0, one can find rε sufficiently
large so that

sup
ξ∈Ξ

∫

{x∈Ω; |uξ(x)|p≥rε}

|uξ(x)|
p dx ≤ ε.

As h ∈ H ⊂ Carp(Ω;Rm), we have |h(x, s)| ≤ a(x)+b|s|p for a suitable a ∈ L1(Ω)
and b ∈ R. In particular, a is absolutely continuous in the sense that, for any
ε > 0, there is mε > 0 small enough so that

sup

Ω̃⊂Ω measurable
|Ω̃|≤mε

∫

Ω̃

a(x) dx ≤ ε.

Let us notice that it certainly holds |{x∈Ω; |uξ(x)| ≥ r}| ≤ (C/r)p with C =

supξ∈Ξ ‖uξ‖Lp(Ω;Rm). Then, for every r ≥ max(Cm
−1/p
ε/2

, r
1/p
ε/2b
) and every ξ ∈ Ξ,

we can estimate

|〈iH (uξ), hr − h〉| =
∣

∣

∣

∫

Ω
h(x, uξ(x))(vr(uξ(x)) − 1) dx

∣

∣

∣

≤

∫

{x∈Ω; |uξ(x)|≥r}

(

a(x) + b|uξ(x)|
p)

dx

≤

∫

{x∈Ω; |uξ(x)|≥r}

a(x) dx+

∫

{x∈Ω; |uξ(x)|≥r}

b|uξ(x)|
p dx

≤
ε

2
+

ε

2
= ε.
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Passing to the limit with ξ ∈ Ξ, we obtain |〈η
◦

1, hr − h〉| ≤ ε for every r large
enough. As ε was arbitrary, the convergence (4) has been proved.

As the same procedure can be performed also for η
◦

2 in place of η
◦

1, we get

〈η
◦

1, h〉 = 〈η
◦

2, h〉 as a consequence of (3). As it holds for h ∈ H arbitrary, the

identity η
◦

1 = η
◦

2 is demonstrated. �

Proposition 2. Let H be separable. Any η ∈ Y p
H (Ω;R

m) admits its p-noncon-

centrating modification η
◦

∈ Y
p
H(Ω;R

m).

Proof: By the definition of Y
p
H (Ω;R

m) and by the separability of H (which
causes metrizability of the weak* topology on bounded subsets of H∗, there is
a sequence {uk}k∈N bounded in Lp(Ω;Rm) such that w*-limk→∞ iH(uk) = η.
By the biting lemma (in the version from [17, Theorem 23]) there are measurable
Ωk ⊂ Ω such that Ωk ⊂ Ωk+1 for any k ∈ N, |

⋃

k∈N
Ωk| = |Ω|, and such that, after

taking possibly a subsequence (denoted, for simplicity, by the same indices) the set
{χΩk

|uk|
p; k ∈ N} is relatively weakly compact in L1(Ω), where χΩk

: Ω→ {0, 1}
denotes the characteristic function of the set Ωk. Moreover, as the sequence
{χΩk

uk}k∈N is bounded in Lp(Ω;Rm), the sequence {iH(χΩk
uk)}k∈N has a weak*

cluster point η
◦

in Y
p
H(Ω;R

m). By the separability ofH , we can take a subsequence

(denoted again by the same indices) such that w*-limk→∞ iH(χΩk
uk) = η

◦

.

By the very definition, η
◦

is p-nonconcentrating. Let us take h ∈ H such that
|h(x, s)| ≤ a(x) + o(|s|p) with some a ∈ L1(Ω). Then we can estimate

∣

∣〈iH(uk)− iH(χΩk
uk), h〉

∣

∣ =
∣

∣

∣

∫

Ω\Ωk

(h(x, uk(x))− h(x, 0)) dx
∣

∣

∣

≤ ‖2|a|+ o(0)‖L1(Ω\Ωk)
+ ‖o(|uk|

p)‖L1(Ω\Ωk)

≡ Tk,1 + Tk,2.

The first term converges to zero for k → ∞ because of |Ω \ Ωk| → 0. As o
has a sub-linear growth and the sequence {|uk|

p}k∈N is bounded in L1(Ω), there
is some b : R

+ → R such that limr→∞ b(r)/r = +∞ and {b(o(|uk|
p))}k∈N is

bounded in L1(Ω). By La Vallée-Pousin’s criterion, the set {o(|uk|
p); k ∈ N} is

weakly* relatively compact in L1(Ω). Then, by the Dunford-Pettis theorem, this
set is equi-continuous with respect to the Lebesgue measure, which eventually
causes also the term Tk,2 tending to zero for k → ∞. Altogether, we have got
limk→∞〈iH(uk)− iH(χΩk

uk), h〉 = 0.
On the other hand, we have also

lim
k→∞

〈iH(uk)− iH(χΩk
uk), h〉 = 〈η − η

◦

, h〉,

so that we showed that 〈η, h〉 = 〈η
◦

, h〉. As this holds for any h ∈ H with the

growth less that p, we have shown that η
◦

is the p-nonconcentrating modification
of η. �
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Proposition 3. Let H be separable, η ∈ Y p
H(Ω;R

m), and η
◦

∈ Y p
H (Ω;R

m) its
p-nonconcentrating modification. Then:

(i) 〈η − η
◦

, h〉 ≥ 0 provided h ∈ H such that h(x, s) ≥ a0(x) for some a0 ∈
L1(Ω),

(ii) 〈η− η
◦

, h〉 > 0 provided η 6= η
◦

and h ∈ H is coercive in the sense h(x, s) ≥
a0(x) + b|s|p with some a0 ∈ L1(Ω) and b > 0.

Proof: Let us take the sequences {uk}k∈N and {χΩk
uk}k∈N as in the proof of

Proposition 2. For h ∈ H satisfying a0(x) ≤ h ≤ a(x) + c|s|p we can estimate

〈iH(uk)− iH(χΩk
uk), h〉 =

∫

Ω\Ωk

(h(x, uk(x)) − h(x, 0)) dx

≥

∫

Ω\Ωk

(a0(x) − a(x)) dx,

from which we obtain in the limit 〈η − η
◦

, h〉 ≥ 0. The point (i) is proved.

Let us suppose that (ii) does not hold, so that 〈η − η
◦

, h〉 = 0 for some h ∈ H
such that h(x, s) ≥ a0(x)+ b|s|p with b > 0. Our task is to deduce that inevitably

η = η
◦

. Let us take some h̃ ∈ H . As H ⊂ Carp(Ω;Rm) and h is coercive, h̃ can

be majorized by h in the sense h̃ ≤ ã+ c̃h with some ã ∈ L1(Ω) and some c̃ ≥ 0.

By the point (i), we can see that c̃h− h̃ ≥ −ã implies 〈η − η
◦

, c̃h− h̃〉 ≥ 0. Taking

into account also our assumption 〈η − η
◦

, h〉 = 0, we obtain

〈η − η
◦

, h̃〉 ≤ c̃〈η − η
◦

, h〉 = 0.

Making the same procedure for −h̃, we can see that 〈η − η
◦

, h̃〉 = 0. As h̃ ∈ H is

arbitrary, we have got η = η
◦

. The point (ii) has thus been demonstrated. �

Remark 1. Note that the concept of the p-nonconcentrating modification is sen-
sible only if H contains integrands which have (in absolute value) the growth
precisely p because otherwise every generalized Young measure is, by the very
definition, automatically the p-nonconcentrating modification of itself.

Remark 2. If H contains HR defined in Section 1 for some ring R, then even
every sequence {uk}k∈N such that every cluster point of {iH(uk)}k∈N is p-non-
concentrating must have a relatively L1-weakly compact energy {|uk|

p; k ∈ N};
cf. [14, Proposition 3.4.15] for details. Let us emphasize that this obviously does
not hold if H is too small.

Remark 3. For an example of a procedure realizing the mapping η 7→ η
◦

in a
concrete case we refer to [11, Theorem 3] where an explicit formula is isolated
for the case of the generalization of Young measures developed by DiPerna and
Majda [7].
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4. Applications in brief

The above results have straightforward applications to various optimization
problems which are coercive in an Lp-space with p < +∞ but not with p = +∞.
Such problems arise typically in variational calculus, but also in optimal control
theory and game theory if the control (or strategies) are not apriori bounded. For
illustration, let us demonstrate it briefly (we refer to [14, Chapter 4] for details) on
a simple optimal control problem for a system of ordinary differential equations

(P)











minimize
∫ T
0 ϕ(t, y(t), u(t)) dt

subject to dy/dt = Φ(t, y(t), u(t)), y(0) = y0

y ∈ W 1,q(0, T ;Rn), u ∈ Lp(0, T ;Rm),

with some ϕ : (0, T ) × R
n × R

m → R, Φ : (0, T ) × R
n × R

m → R
n, y0 ∈ R

n,
and p, q > 1. Note that the admissible controls are not bounded in L∞(0, T ;Rm)
as usual; for such kind of problems we refer also to [4], [18]. Under suitable
qualification imposed on Φ (in particular, a Lipschitz continuity of Φ(t, ·, s) and
at most p/q-growth of |Φ(t, r, ·)|), the controlled system possesses for any control
u ∈ Lp(0, T ;Rm) a unique solution y in the Sobolev space W 1,q(0, T ;Rn) of
functions (0, T ) → R

n with the time derivative in Lq(0, T ;Rn). Then we take a
separable subspace H ⊂ Carp(0, T ;Rm) which is rich enough so that (ϕ ◦ y) ∈ H

and g · (Φ ◦ y) ∈ H for any y ∈ W 1,q(0, T ;Rn) and g ∈ Lq/(q−1)(0, T ;Rn), where
[ϕ ◦ y](t, s) = ϕ(t, y(t), s) and [g · (Φ ◦ y)](t, s) = g(t) · Φ(t, y(t), s). The smallest
linear subspace of this property is obviously
(5)

H = {c(ϕ◦y1)+ g · (Φ◦y2); c∈R, g∈Lq/(q−1)(0, T ;Rn), y1, y2∈W 1,q(0, T ;Rn)}.

Such H is also separable if endowed by the natural norm (1). Of course, we can
also take a large space, e.g. H + HR which is still separable provided R is so;
then Remark 2 is effective.
As neither linearity of Φ(t, r, ·) nor convexity of ϕ(t, r, ·) is required, the problem

(P) need not have any solution and we must introduce naturally the relaxed
(=extended) problem:

(RP)











minimize 〈η, ϕ ◦ y〉

subject to dy/dt = (Φ ◦ y) • η, y(0) = y0

y ∈ W 1,q(0, T ;Rn), η ∈ Y
p
H(Ω;R

m),

where (Φ ◦ y) • η ∈ Lq(0, T ;Rn) is defined by the identity 〈(Φ ◦ y) •η, g〉 =

〈η, g · (Φ ◦ y)〉 which is to be valid for any g ∈ Lq/(q−1)(0, T ;Rn). Under suit-
able qualification imposed on the data ϕ and Φ, the relaxed problem (RP) has
a solution which can be understood in a natural way as a generalized solution
to the original problem (P). Especially, we have to suppose that ϕ is coercive:
ϕ(t, r, s) ≥ a(t) + b|s|p with some a ∈ L1(Ω) and b > 0. Since H is separable, we
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can immediately claim that, for every solution (y, η) to (RP), the relaxed control
η is p-nonconcentrating. Indeed, if it would not be true, then the p-noncon-
centrating modification η

◦

of η (which does exist thanks to Proposition 2) would
drive the controlled system to the same state y because Φ has the growth p/q

lesser than p but, by Proposition 3, 〈η
◦

,Φ ◦ y〉 < 〈η,Φ ◦ y〉 so that the pair (y, η)
would not be optimal, a contradiction.

Remark 4. The p-nonconcentration of optimal solutions to relaxed problems en-
ables us, using the Young-measure representation (2) of such solutions, to ana-
lyze in details the respective optimality conditions which take typically the form
of (extended) maximum principles of the Pontryagin type (for optimal control or
game-theoretical problems) or of the Weierstrass type (for problems of variational
calculus), cf. [14].

Remark 5. The fact that every solution to a relaxed problem is p-nonconcentrating
has an impact on the minimizing sequences for the original problems: by Remark 2
we can here deduce that every minimizing sequence {(yk, uk)}k∈N for (P) does
not concentrate energy in the sense that the set {|uk|

p}k∈N is relatively weakly
compact in L1(Ω). In optimal-control context, such property had to be essentially
only supposed in Berliocchi and Lasry [4, Theorem 5]. In the variational-calculus
context, the results of such type were recently obtained by Kinderlehrer and
Pedregal [9], cf. also Kristensen [10]. Yet, such results usually rely on fairly
advanced techniques, e.g. a calculation of the lower semicontinuous envelope of
the minimized functional, which may be a nontrivial task; cf. [1], [6]. Contrary to
this, the results presented here make possible to overcome readily these nontrivial
technicalities and can be applied by a routine way in many cases in optimal
control, variational calculus, and non-cooperative game theory, cf. [14].
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[12] Kruž́ık M., Roub́ıček T., On the measures of DiPerna and Majda, Mathematica Bohemica,
in print.
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Classe III 30 (1937), 212–234.

[20] Young L.C., Generalized surfaces in the calculus of variations, Ann. Math. 43 (1942),
part I: 84–103, part II: 530–544.

Mathematical Institute, Charles University, Sokolovská 83, CZ-186 00 Praha 8,
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