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On the density of the hyperspace of a metric space
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of the notions of totally bounded and compact metric space.
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1. Introduction

The behaviour of cardinal functions on hyperspaces has not been as well in-
vestigated as that relative to other topological operations. Generally speaking,
this kind of investigation often consists of computing the value of a given cardinal
function on the hyperspace in terms of its value on the base space, and possibly
other topological properties of the latter.
Some recent results showed that it can turn out to be somehow surprising,

such as the possibility that a cardinal function decreases by passing from the base
space to the hyperspace (see [5]).
In this paper, we study the density of the hyperspace of a metric (or metrizable)

space, equipped with the Hausdorff or the locally finite topology. To this end,
besides the density of the base space, two suitable generalizations of the notions
of totally bounded and compact metric space will play a fundamental role. Such
notions turn out to be of some independent interest, and will be studied in detail
in the forthcoming paper ([3]).
In the following, the symbol |A| will denote the cardinality of the set A, while

cof (ν) will be the cofinality of the cardinal ν. Every topological space is assumed
to be infinite.

2. Generalized total boundedness and compactness

Definitions. For every ε > 0 let UDε be the family of all ε-uniformly discrete
subsets of X , i.e.

UDε = {A ⊂ X | ∀x, y ∈ A : (x 6= y ⇒ d(x, y) ≥ ε)}.

Let
UD =

⋃

ε>0

UDε
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be the family of all uniformly discrete subsets.
Let UDmaxε be the subfamily of UDε containing all the elements which are

maximal with respect to the set-theoretic inclusion.

Remark 1. For every ε > 0, the family UDmaxε is not empty; this fact follows
by Zorn’s lemma as the collection UDε is clearly inductive. More precisely, every
ε-uniformly discrete subset is contained in a maximal ε-uniformly discrete subset.
Every U ∈ UDmaxε enjoys, in addition to being ε-uniformly discrete, the fol-

lowing property, which is easily proved using maximality:

(D) for all x ∈ X there exists u ∈ U such that d(x, u) < ε.

Definition. A subset U that satisfies condition (D) is said to be ε-dense (see
[7]).
In fact, the elements of UDmaxε are exactly the subsets which are ε-uniformly

discrete and ε-dense at the same time.

Lemma 2. Let (rn)n∈N (where N = ω \ {0}) be a sequence of positive real
numbers such that limn→∞ rn = 0, and let Un be an element of UDmaxrn

for every

n ∈ N. Then
dX = sup

n∈N

|Un|.

Proof: As every discrete subset has cardinality less than or equal to the density
of the space ([7, Theorem 4.1.15]), the inequality

dX ≥ sup
n∈N

|Un|

is obviously true. We have to show the opposite inequality.
First of all, supn |Un| cannot be finite. By contradiction, suppose it is finite,

and let n be an index for which the supremum is attained. Take a point z ∈ X\Un

(such a point exists by our global assumption that X is infinite) and let k be a

suitable integer greater than or equal to n such that rk < min{12rn, 12d(z, Un)}.
For every x ∈ Un there exists by the rk-density of Uk an element φ(x) ∈ Uk

such that d(x, φ(x)) < rk. The map φ : Un → Uk is injective because if y ∈ Un

satisfies φ(x) = φ(y) then

d(x, y) ≤ d(x, φ(x)) + d(φ(y), y) < rk + rk <
rn

2
+

rn

2
= rn

and this implies x = y by the rn-uniform discreteness of Un. As |Uk| ≤ |Un| (by
the choice of n) and both sets are finite, φ is bijective.
Furthermore, rk-density of Uk also implies the existence of u ∈ Uk such that

d(z, u) < rk. We have

2rk < d(z, Un) ≤ d(z, φ−1(u)) ≤ d(z, u) + d(u, φ−1(u)) < rk + rk = 2rk,

which is a contradiction. We have then proved that supn∈N |Un| ≥ ℵ0.
Now, consider the set U =

⋃

n∈N
Un : clearly U is dense in X , and by

supn∈N |Un| ≥ ℵ0 we easily obtain that |U | = supn∈N |Un|. �
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Corollary 3. If cof (dX) > ℵ0 then there exists U ∈ UD with |U | = dX .

Proof: Let us use the notations of the preceding lemma with, for instance,
rn =

1
n . If for every n it were |Un| < dX , then by the definition of cofinality and

the lemma it would follow that cof (dX) = ℵ0. This contradicts the hypothesis
and so there exists an n for which |Un| = dX . �

Definition. A metric space (X, d) is said totally bounded in the generalized
sense or simply GTB iff for every ε > 0 there exists an ε-dense subset N ⊂ X

with |N | < dX .
A totally bounded metric space is a GTB space, as such a space is separable

(i.e. has density ℵ0) and so the condition |N | < dX means that N is finite.
An equivalent definition of generalized total boundedness is given by the fol-

lowing theorem. In practice, it says that uniformly discrete subsets of a GTB
space cannot achieve the highest cardinality.

Theorem 4. A metric space X is GTB iff U ∈ UD implies |U | < dX .

Proof: Let X be GTB, and U ∈ UDε with ε > 0. Consider a ε
2 -dense subset N

with |N | < dX ; then for every x ∈ U there exists φ(x) ∈ N such that d(x, φ(x)) <
ε
2 . With computations analogous to those performed in Lemma 2 it can be shown
that the application φ is injective. Then |U | ≤ |N | < dX and one implication is
thus proved. The other implication is easily proved using the fact that any set in
UDmaxε is ε-dense. �

Corollary 5. If X is a GTB space then cof (dX) = ℵ0.

Proof: Apply the theorem with Corollary 3. �

Example 6. If ν is a cardinal with cof (ν) = ℵ0 then there exists a GTB space
X with dX = ν.

Proof: Let ν be a cardinal with countable cofinality. Assume ν > ℵ0 as the case
ν = ℵ0 is trivial. Then there exists an ascending sequence of infinite cardinals νn

with νn < ν and ν = supn∈N νn. For every n let Xn be a set with cardinality νn

(we can suppose the Xn mutually disjoint). Consider the set X =
⋃

n∈N
Xn, and

for every x ∈ X define the “level” l(x) as the unique n ∈ N such that x ∈ Xn.
Endow X with the metric

d(x, y) =











0 if x = y,
1
n if x 6= y and l(x) = l(y) = n,

1 if l(x) 6= l(y).

This metric induces the discrete topology on X and so dX = |X | = ν. On the
other hand, if U is an ε-uniformly discrete subset of X , then it is easily seen

that U splits up into two parts, whose one is contained in some
⋃N

n=1Xn for a
large enough N , and the other one has at most countably many elements. Hence
|U | < ν, and using Theorem 3 we have that X is a GTB space. �
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The notion of GTB space leads us in a natural way to introduce a generalization
of compact spaces. We will say that a topological space X is compact in the
generalized sense (briefly, GK) if for every open cover U of X , there exists a
subcover V such that |V| < dX . We will consider only metrizable GK spaces.
The next characterization generalizes the well-known result that a metrizable

space is compact if and only if it has no closed and discrete subset of cardinality
ℵ0, and will prove to be extremely useful in the following.

Theorem 7. A metrizable space X is GK if and only if it has no closed and

discrete subset of cardinality equal to dX .

Proof: First, suppose that there exists a closed and discrete subset D of X with
|D| = dX = ν. By Hausdorff’s extension theorem, there exists a compatible
metric d on X which agrees with the 0 − 1 metric on D. With that metric,
D ∈ UD1 and hence we can find D̃ ∈ UDmax1 with D ⊆ D̃; clearly, the cardinality

of D̃ is still equal to ν. Thus the collection {Sd(x, 1) | x ∈ D̃} is a minimal open
cover of X of cardinality ν, and X is not GK.
Conversely, suppose that X is not GK. Then there exists an open cover U of

X which does not admit any subcover of cardinality less than dX . By paracom-
pactness we may assume that U is locally finite.
Let dX = ν, and define simultaneously by transfinite induction a ν-sequence

(xα)α∈ν of elements of X and a ν-sequence (Vα)α∈ν of elements of U , such that
both α 7→ xα and α 7→ Vα are one-to-one, and xα ∈ Vα for every α ∈ ν; this is
possible as for every α ∈ ν,

⋃

β<α Vβ 6= X . Now, the local finiteness of U implies

that the set D = {xα | α ∈ ν} is closed and discrete. �

As an easy consequence of the preceding result, we obtain the following theorem
which generalizes the property that a metrizable space is compact if and only if
every compatible metric on it is totally bounded.

Theorem 8. A metrizable space X is GK if and only if every compatible metric

on X is GTB.

Proof: If X is GK with dX = ν and d is a compatible metric on X , then given
any ε > 0, the open cover {Sd(x, ε) | x ∈ X} (where Sd(x, ε) = {y ∈ X | d(x, y) <

ε}) admits a subcover V having cardinality less than ν; taking the central point
from each element of V gives an ε-dense subset of X , whose cardinality is less
than ν.
Conversely, suppose thatX is not GK. Then there exists a setD = {xα | α ∈ ν}

which is closed and discrete in X . Again, by Hausdorff’s extension theorem there
exists a compatible metric d on X which agrees with the 0− 1 metric on D. It is
clear that d is not GTB, since no 12 -dense subset with cardinality less than ν can
be found in X . �

Example 9. If ν is a cardinal number with cof (ν) = ℵ0, then there exists a GK
metrizable space X with dX = ν.



On the density of the hyperspace of a metric space 353

Proof: Consider the topological space constructed in Example 5, and add a point
(say “∞”) provided with the fundamental system of neighbourhoods {Vn | n ∈ N}
where Vn = {∞} ∪ (

⋃

n′≥n Xn′) for every n ∈ N.

It is easily checked that X̃ = X ∪{∞} is a metrizable space whose density is ν.

Furthermore, given any open cover U of X , there exists Ã ∈ U such that ∞ ∈ Ã,
and hence we have that

⋃

n′≥n Xn′ ⊆ Ã for a suitable n ∈ N; thus it is clear that
we can obtain a subcover with cardinality at most νn−1 < ν.
Notice that the metrizability of X can be easily checked by observing, for

instance, that X has a σ-discrete base. Nevertheless, we give here an explicit
compatible metric d̃ for X . Put:

l̃(x) =

{

l(x) if x ∈ X,

+∞ if x =∞,

(where l(x) is the function defined in Example 6) and

d̃(x, y) =

{

0 if x = y,
1

min{l̃(x),l̃(y)}
if x 6= y.

The metric d on X does not coincide on X with the metric d of Example 5.
Indeed, the latter cannot be extended to the whole of X̃. �

With a slight modification to the preceding example, it is possible to construct
a GK space which is also connected (see [7, Exc 4.1.H(b)]).
Let us investigate more deeply the structure of a GK space. Such spaces present

a sort of “core” of points with high local density which happens to be non-empty,
compact (in the classical sense).

Definition. If x is a point of a topological space X , we call local density of x in
X the cardinal number:

ld(x, X) := min{dV | V is an (open) nbhd of x in X}.

Define the “core” of X as:

∆(X) = {x ∈ X | ld(x, X) = ν}.

Lemma 10. Let X be an infinite GK metrizable space, and let dX = ν. Then

∆(X) is compact.

Proof: By contradiction, suppose ∆(X) is not compact. Then there exists a
closed discrete subset M of X with |M | = ℵ0. Write M as {xn |n ∈ N}, where
n 7→ xn is one-to-one; then fix a compatible metric d on X , and for every n ∈ N

put εn = d(xn, M \ {xn}). It follows that the family M = {Sd(xn, εn

4 ) |n ∈ N}
is discrete. Indeed, given any x ∈ X , if x is some xn̄ then it is easily shown that
Sd(xn̄, 34εn̄) ∩ SD(xn, εn

4 ) = ∅ for n 6= n̄. If, on the contrary, x 6= xn for every
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n ∈ N, put δ = d(x, M) : the open ball Sd(x, δ
2 ) misses all but at most one element

ofM.
As cof (ν) = ℵ0, there exists a strictly increasing sequence (νn)n∈N of cardinals

whose supremum is ν. For every n ∈ N, we have that dSd(xn, εn) = ν > νn,
and hence there exists a closed and discrete subset Dn of Sd(xn, εn) such that
|Dn| = νn; clearly, each Dn is closed in X too, and the family {Dn |n ∈ N} is
discrete. It follows easily that D =

⋃

n∈N
Dn is a closed and discrete subset of X .

This is impossible, as |D| = ν and X is GK. �

Lemma 11. If X is an infinite GK metrizable space, then ∆(X) 6= ∅.

Proof: Let ν = dX and (νn)n∈N be as in the preceding lemma. By contra-
diction, suppose ld(x, X) < ν for every x ∈ X : let us associate to every x ∈ X

two open nbhds Vx and Wx of x such that dVx = ld(x, X), and Wx ⊆ Vx. By
paracompactness, there exists a locally finite open cover A of X which refines
{Wx |x ∈ X}. For every A ∈ A, the set A is contained in some Wx, which is in
turn contained in Vx : therefore dA ≤ dVx = ld(x, X) < ν. We have two possible
cases.

1st case: there exists n̄ ∈ N such that ∀A ∈ A : dA ≤ dA ≤ νn̄.

As X is GK, there exists a subcover A′ of A such that |A′| < ν. For every
A ∈ A′, fix a dense subset DA of A with |DA| = dA ≤ νn̄, and put D =
⋃

A∈A′ DA : it is easily shown that D is dense in X , what is impossible, as clearly

|D| ≤ νn̄ · |A′| < ν.

2nd case: for every n ∈ N, there exists An ∈ A such that dAn > νn. This implies
that for every n ∈ N, there exists a closed and discrete subset Dn of An, with
|Dn| = νn.
Observe that, for every A ∈ A, the set {n ∈ N |An = A} must be finite (as

every A with A ∈ A has density less that ν, but the density of the sets An tends
to ν); this implies — as A is locally finite — that the indexed family {An}n∈N is
in turn locally finite (in the sense that every x ∈ X has a nbhd V such that the
set {n ∈ N |V ∩ An 6= ∅} is finite), and the same is true for the indexed family
{Dn}n∈N. Since every Dn is closed in An — and hence in X — and discrete, we
easily obtain that the set D =

⋃

n∈N
Dn is in turn closed and discrete in X ; this

is impossible because |D| = ν and X is GK. �

Remark 12. If X is a metrizable GK space with dX = ν > ℵ0, then the subset
∆(X) of X has empty interior. Indeed, let x be any point of ∆(X) and V any
(open) nbhd of x : we have that dV ≥ ld(x, X) = ν > ℵ0. Thus V cannot be
contained in ∆(X), as ∆(X) is compact and hence d∆(X) ≤ ℵ0.

Remark 13. If X is a metrizable GK space with dX = ν > ℵ0, X is not
homogeneous (recall that a topological space X is said to be homogeneous if
for every x, y ∈ X there exists an auto-homeomorphism φ : X → X such that
φ(x) = y). As a matter of fact, since the local density of a point is invariant
under homeomorphisms, and since ∆(X) is nonempty by Lemma 11, if X were
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homogeneous then we would have ∆(X) = X . The latter would imply that X is
compact by Lemma 10, and so dX = ℵ0.

3. The density of the Hausdorff and the locally finite hypertopologies

Let (X, d) be a metric space, the hyperspace c0(X) is the set of all closed and
non-empty subsets of X . On c0(X) the well known Hausdorff (extended) metric
Hd is defined as

Hd(A, B) := max(ed(A, B), ed(B, A))

where
ed(A, B) := sup

a∈A
d(a, B).

The topology Hd generated by Hd on c0(X) is called the Hausdorff metric
hypertopology. The purposes of this section is to compute the density of the
hyperspace c0(X) endowed with Hd in terms of the density of X and, possibly,
some additional hypotheses on the metric d. To avoid trivialities, we will always
assume that X is infinite. The result we are looking for is already known in the
separable case [1], [2]:

Theorem 14. If X is a separable metric space then:

d(c0(X),Hd) =

{

ℵ0 if X is totally bounded,

2ℵ0 if X is not totally bounded.

To deal with the general case, we first state two cardinal inequalities. The next
lemma gives an upper bound for the density of any topology on c0(X), as it only
depends on set-theoretical considerations about the hyperspace.

Lemma 15 (Upper bound). For every metric space (X, d) and every topology τ

on c0(X), we have that d(c0(X), τ) ≤ 2
dX .

Proof: As X is a metric space, its density equals its weight. Thus X admits a
base with dX elements, and then at most 2dX subsets of X are closed. Hence
d(c0(X), τ) ≤ |c0(X)| ≤ 2

dX . �

Lemma 16. If U ∈ UD, then d(c0(X),Hd) ≥ 2
|U |.

Proof: U ∈ UDε for some positive real ε. If A and B are distinct subsets of U ,
then it is easy to see that Hd(A, B) ≥ ε. So the power set ℘(U) is an (ε-uniformly)
discrete subset of c0(X). As the density of a space cannot be strictly less than the
cardinality of a discrete subset (see [7, Theorem 4.1.15]) we have the estimate.

�

As is usual in set theory, we denote with the symbol 2<ν the quantity supξ<ν 2
ξ

for every cardinal ν.
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Theorem 17. If X is a metric space then

d(c0(X),Hd) =

{

2<dX if X is GTB,

2dX if X is not GTB.

Proof: Let us consider first the case when X is not GTB. By Theorem 4 there
exists a ε-uniformly discrete subset U ofX with |U | = dX . Using both Lemmas 15
and 16 we have

2dX = 2|U | ≤ d(c0(X),Hd) ≤ 2
dX

and so equality holds.
LetX be GTB and for every positive integer n choose Un ∈ UDmax1/n . If ξ < dX ,

then by Lemma 2 there exists an integer n0 such that ξ ≤ |Un0 |. Then Lemma 16
above gives

2ξ ≤ 2|Un0
| ≤ d(c0(X),Hd).

As ξ is arbitrary, we proved that 2<dX ≤ d(c0(X),Hd).
Consider the subset of (c0(X),Hd) given by

U =
⋃

n∈N

(℘(Un) \ {∅}).

Let us compute |U|:

|U| ≤
∑

n∈N

|℘(Un)| =
∑

n∈N

2|Un|

≤ ℵ0 · sup
n∈N

2|Un|

≤ ℵ0 · 2
<dX = 2<dX .

As the other inequality is an immediate consequence of Lemma 2, we have that
|U| = 2<dX . The thesis will now follow if we show that U is dense in c0(X).

Let F ∈ c0(X) and δ > 0, choose n0 such that
1
n0

< δ and consider the set

H =
{

x ∈ Un0 | d(x, F ) <
1

n0

}

.

Clearly H ∈ U and by construction, ed(H, F ) ≤ 1
n0
. For every x ∈ F there exists,

by maximality of Un0 , a u ∈ Un0 such that d(x, u) < 1
n0
. But necessarily u ∈ H

and so d(x, H) < 1
n0
; passing to the supremum, we have that ed(F, H) ≤ 1

n0
.

Then Hd(H, F ) ≤ 1
n0

< δ and so U is dense in (c0(X),Hd). �

The interpretation of this result raises an interesting set-theoretic question.
The key point is to decide when, in the relation

(1) 2<ν ≤ 2ν

which is always true under ZFC, we can distinguish the equality from the strict
inequality.
We have the following result:



On the density of the hyperspace of a metric space 357

Theorem 18. The following statements are equivalent in ZFC:

(i) 2<ν < 2ν for every cardinal ν;

(ii) ξ < ν implies 2ξ < 2ν for every couple of cardinals ξ and ν.

Proof: Suppose that (ii) holds, then, by definition of cofinality

cof (2<ν) = cof (sup
ξ<ν
2ξ) = cof (ν) ≤ ν.

But in ZFC we always have that cof (2ν) > ν (see [8, Corollary 10.41]) and so (i)
necessarily holds.
Suppose that (ii) does not hold, so there exist ξ and ν with ξ < ν and 2ξ = 2ν .

Then
2ν = 2ξ ≤ 2<ν ≤ 2ν

then 2<ν = 2ν and (i) does not hold. �

Let us say that A holds if one (hence both) of the statements of Theorem 18
holds. It is known that both A and ¬A are consistent with ZFC, and A is implied
by GCH.

(ZFC) If ν = ℵ0, then 2
<ν = ℵ0. We already noticed that GTB coincides with

total boundedness in the separable case, so we have old Theorem 14 without
additional set-theoretic axioms.

(ZFC +A) In this case the two conditions

(d1) d(c0(X),Hd) = 2
<dX ;

(d2) d(c0(X),Hd) = 2
dX ;

are always mutually exclusive. Then they give necessary and sufficient conditions
for the base space X to be GTB or not.
Furthermore, we have the additional result:

Theorem 19. If (X, d) is GTB then (c0(X),Hd) is GTB.

Proof: For every ε > 0 consider in X an ε
2 -dense subset N with |N | < dX . As

cof (dX) = ℵ0 by Corollary 5, dX is a limit cardinal and so there exists a cardinal
ξ with |N | < ξ < dX . We want to show that the family

N = {ClA | ∅ 6= A ⊆ N}

is ε-dense in (c0(X),Hd). To do that, choose an F ∈ c0(X) and call H the closure
of the set {x ∈ N | d(x, F ) < ε

2}. By the same calculations of Theorem 17 it can
be shown that Hd(F, H) ≤ ε

2 < ε that establishes our claim.
It remains to prove that N has not the highest cardinality, but using axiom A

we have
|N | ≤ |℘(N)| = 2|N | < 2ξ ≤ 2<dX
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as required. �

(ZFC +¬A) By the assumption, there exists a cardinal ν with 2<ν = 2ν . Then
conditions (d1) and (d2) coincide for every space with density ν.
Furthermore, we may assume that ν is regular, as if it were singular then we

could replace it by ℵα+1, where ℵα is any cardinal less than ν with 2ℵα = 2ν . Let
X be a metric space with density ν (e.g. the 0 − 1 space with cardinality ν); X
cannot be a GTB space by Corollary 5 and the regularity of ν (of course ν > ℵ0),
nevertheless (c0(X),Hd) has density 2

<ν . Thus we have a case where condition
(d1) is not sufficient to prove that X is GTB.
To obtain a case where condition (d2) is not sufficient to infer that X is not

a GTB space, we need to assume something more than ¬A, i.e. that there exists
a cardinal µ with both 2<µ = 2µ and cof (µ) = ℵ0. In that case the GTB space
given by Example 6 will do the job. The additional assumption is consistent with
ZFC as, for example, we can pose (see [6, Theorem 1]) for every ordinal α

2ℵα =

{

ℵω+1 if α ≤ ω

ℵα+1 if α > ω

and choose µ = ℵω : then 2
<ℵω = ℵω+1 = 2

ℵω . In this framework, Theorem 19
is false, as if X is GTB with density µ then

cof
(

d(c0(X),Hd)
)

= cof (2µ) > µ > ℵ0

and so c0(X) cannot be GTB.

Definitions. Let X be a topological space and M any subset of X ; we put

M+ := {C ∈ c0(X) | C ⊆ M} and M− := {C ∈ c0(X) | C ∩ M 6= ∅}.

Also, if F is a collection of subsets of X , put

F− :=
⋂

F∈F

F− = {C ∈ c0(X) | ∀F ∈ F : C ∩ F 6= ∅}.

The locally finite topology LF on c0(X) is that generated by the subbase

∆LF := {A+ | A is open in X}∪

∪ {F− | F is a locally finite collection of open subsets of X}.

For every C ∈ c0(X), a generic basic LF-neighbourhood of C is of the form
A+ ∩ F−, where A is open in X with C ⊆ A, and F is a locally finite collection
of open subsets of X such that ∀F ∈ F : F ∩ C 6= ∅. It is easily checked that
we are allowed to consider only basic LF-neighbourhoods of the form F− ∩ A+,
where ∀F ∈ F : F ⊆ A.
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Lemma 20. Let (X, d) be a GK metrizable space with dX = ν > ℵ0, and let F
be a locally finite collection of open nonempty subsets of X : then there exists a

suitable m ∈ N such that for every F ∈ F , we have that F \ Sd(∆(X),
1
m) 6= ∅.

Proof: By the above remark, no element of F can be contained in ∆(X): thus
we can associate to every F ∈ F a point xF ∈ F \∆(X). As F is locally finite, the
set C = {xF |F ∈ F} is closed. Put r = Dd(C,∆(X)): then r > 0 (as ∆(X) is

compact), and choosing m ∈ N with 1m < r, we have that C ∩ Sd(∆(X),
1
m ) = ∅.

Therefore, such an m satisfies the thesis. �

Lemma 21. If X is an infinite GK metrizable space, with dX = ν, then

d(c0(X),LF) ≤ 2
<ν .

Proof: The case ν = ℵ0 is immediate, as if X is compact, then the locally
finite topology on c0(X) coincides with the Hausdorff topology relative to any
compatible metric on X . Therefore, suppose ν > ℵ0. Observe that, for every
m ∈ N, the set Ym = X \ Sd(∆(X),

1
m) has density less than ν: indeed, if there

exists m ∈ N such that dYm = ν, then Ym — as a closed subset of X — is GK,
and hence by Lemma 11 there exists ȳ ∈ Ym such that ν = ld(ȳ, Ym) ≤ ld(ȳ, X),
whence ȳ ∈ ∆(X), what is impossible by the definition of Ym.
For every m ∈ N, take a dense subset Dm of Ym with |Dm| = dYm and

put Dm = {D′ ⊆ Dm |D′ is closed in X}; also, let D =
⋃

m∈N
Dm. Clearly,

|Dm| ≤ 2|Dm| ≤ 2<ν . We will complete the proof showing that the collection D
is dense in (c0(X),LF).
Let F−∩A+ be a basic nonempty LF-open set, where A is open in X and F is

a locally finite collection of open subsets of X ; as already observed, we may also
suppose that ∀F ∈ F : F ⊆ A. By Lemma 20, there exists an m ∈ N such that
∀F ∈ F : F \ Sd(∆(X),

1
m ) 6= ∅, that is ∀F ∈ F : F ∩ Ym̄ 6= ∅. For every F ∈ F ,

choose a point xF ∈ F ∩ Dm̄: as F is locally finite, the set D = {xF |F ∈ F} is
closed, and hence D ∈ Dm̄ ⊆ D. On the other hand, it is clear that D ∈ F−, and
by the property that ∀F ∈ F : F ⊆ A we obtain as well that D ∈ A+. Therefore
(F− ∩ A+) ∩ D 6= ∅. �

We can now get the desired result about the density of the locally finite hyper-
topology, whose symmetry with Theorem 17 is apparent.

Theorem 22. If X is a metric space then

d(c0(X),LF) =

{

2<dX if X is GK,

2dX if X is not GK.

Proof: Suppose first that X is not GK. Then there exists a compatible metric
d on X such that (X, d) is not GTB; as d(c0(X),Hd) = 2

dX and Hd ≤ LF
(more exactly LF is the supremum of all topologies Hρ, as ρ varies among the

compatible metrics on X [4, Theorem 3.3.12]), we have that d(c0(X),LF) ≥ 2
dX .

The opposite inequality is the upper bound proved in Lemma 15.
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Suppose now X is GK. The inequality d(c0(X),LF) ≤ 2<dX follows from
Lemma 21, and the opposite inequality is easily obtained fixing any compatible
metric d on X and observing that d(c0(X),LF) ≥ d(c0(X),Hd) = 2

<dX by
Theorem 17. �
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