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Monotone homogeneity of dendrites

Janusz J. Charatonik, W lodzimierz J. Charatonik

Abstract. Sufficient as well as necessary conditions are studied for a dendrite or a den-
droid to be homogeneous with respect to monotone mappings. The obtained results
extend ones due to H. Kato and the first named author. A number of open problems
are asked.
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All spaces considered in this paper are assumed to be metric and all mappings
are continuous. By a continuum we mean a compact connected space.
We shall use the notion of order of a point in the sense of Menger-Urysohn (see

e.g. [14, § 51, I, p. 274]), and we denote by ord(p, X) the order of the continuum X
at a point p ∈ X . Points of order 1 in a continuum X are called end points of X ;
the set of all end points of X is denoted by E(X). Points of order at least 3 are
called ramification points of X ; the set of all ramification points of X is denoted
by R(X).
A dendrite means a locally connected continuum containing no simple closed

curve. We denote by D3 the standard universal dendrite of order 3, i.e. a dendrite
X characterized by the following two conditions (see e.g. [3, Section 3, pp. 167–
169]):

(1) each ramification point of X is of order 3, and

(2) for each arc A ⊂ X we have cl(A ∩ R(X)) = A.

It is known that if a dendrite X satisfies (1), then it can be embedded into D3.
A dendroid means an arcwise connected and hereditarily unicoherent contin-

uum. A dendroid is locally connected if and only if it is a dendrite. A dendroid
X is said to be smooth at a point p ∈ X provided that for every point x ∈ X
and for every sequence {xn} of points converging to x the sequence of arcs pxn

converges to the arc px. A dendroid is said to be smooth if there is a point at
which it is smooth.
Let X and Y be continua. A mapping f : X → Y is said to be

– monotone provided that f−1(y) is connected for each y ∈ Y ;
– light if f−1(y) has one-point components for each y ∈ Y (note that if the
inverse images of points are compact, this condition is equivalent to the
property that they are zero-dimensional);
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– open if f maps each open set in X onto an open set in Y ;
– confluent if for each subcontinuum Q of Y and for each component C of

f−1(Q) the equality f(C) = Q holds.

Thus each monotone mapping is confluent. Also each open mapping is confluent
([21, (7.5), p. 148]).
LetM be a class of mappings between continua. A mapping f : X → Y is said

to be hereditarily M provided that for every subcontinuum Z ⊂ X the partial
mapping f |Z : Z → f(Z) ⊂ Y is inM. The following statement is known (see
[17, Theorem 6.7, p. 51 and (6.10), p. 53]).

3. Statement. Let X and Y be dendroids, and let f : X → Y be a surjection.
Then the following conditions are equivalent:

(i) f is monotone;
(ii) f is hereditarily monotone;
(iii) f is hereditarily confluent.

Let M be a class of mappings. A continuum X is said to be homogeneous
with respect to the class M, or shortlyM-homogeneous , provided that for every
two points p and q of X there exists a surjective mapping f : X → X such that
f(p) = q and f ∈ M. IfM is a class of homeomorphisms, then X is simply called
homogeneous . ContinuaX and Y are said to beM-equivalent provided that there
are inM surjective mappings f : X → Y and g : Y → X . A classM of mappings
is said to be neat if all homeomorphisms are in M and the composition of any
two mappings inM is also inM. Note that monotone, open, confluent and light
mappings between continua form neat classes of mappings ([13, Remark, p. 220],
[17, Chapter 5, Part A, (5.1) and (5.4), p. 27]).
In the University of Houston Mathematics Problem Book H. Cook posed the

following problem (see [7, Problem 150, p. 388]).
LetM be a neat class of mappings. It is evident that

(4) if a continuum isM-equivalent to a homogeneous continuum,
then it isM-homogeneous.

For what classesM of mappings the converse implication holds true, i.e.

5. Problem (Cook). If a continuum X isM-homogeneous, is there a homoge-
neous continuum Y such that X isM-equivalent to Y ?

In Section 2 of [3] H. Kato has given a negative answer to this problem for
the classesM of monotone mappings (as well as for any class of mappings that
comprises monotone ones, e.g. of confluent ones — see [17, Sections 3 and 4,
pp. 12–28], in particular Table II on p. 28) by showing the following proposition
([13, Proposition 2.4, p. 223] and [12, Example 2.4, p. 59]; compare also Remark 2.8
of [12], p. 62).

6. Proposition (Kato). The standard universal dendrite D3 of order 3 is ho-
mogeneous with respect to monotone mappings.
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The answer follows because each continuum which is monotone equivalent to
(in particular which is a monotone image of) a dendrite is a dendrite (compare e.g.
[4, Proposition 4.19, p. 11]), while no dendrite, being locally connected and planar
([21, Chapter 4, (7.32), p. 77]) is homogeneous (since the only locally connected
planar homogeneous continuum is the simple closed curve, [18]). In the light of
the above remarks it is clear that

7. Proposition. Every monotone homogeneous dendrite can be taken as a coun-

terexample to the implication mentioned in Problem 5 for the classM of mono-

tone mappings between continua.

Therefore it would be interesting to answer the following question (compare [3,
Question 7.2, p. 186]).

8. Question. What dendrites are monotone homogeneous?

The next result is closely related to the above question.

9. Theorem. A dendrite is confluently homogeneous if and only if it is monotone

homogeneous.

Proof: Let X be a dendrite. Since each monotone mapping is confluent, one
implication is obvious. Assume X is confluently homogeneous. Let p, q ∈ X and
let a confluent mapping f : X → X be given with f(p) = q. Then there is a unique
factorization f = f2 ◦ f1 into confluent mappings such that f1 : X → f1(X) is
monotone and f2 : f1(X)→ X is open and light ([4, Lemma 5.4, p. 14]). Note that
the intermediate space f1(X) is a dendrite ([4, Proposition 4.19, p. 11]). Since f2
is open and light, it follows from Whyburn’s theorem on the lifting of dendrites
under light open mappings ([21, Theorem 2.4, p. 188]; compare [4, Lemma 5.5,
p. 14] and [9, Theorem I.3, p. 410]) that there exists a dendrite A ⊂ f1(X) such
that f1(p) ∈ A and f2 |A : A → f2(A) = X is a homeomorphism. Let B =

f−1
1 (A) ⊂ X . Thus B is a dendrite, and p ∈ B. Since by Statement 3 any
monotone mapping on a dendrite is hereditarily monotone, the partial mapping
f1 |B : B → f1(B) = A ⊂ f1(X) is monotone. Hence

f |B = (f2 |A) ◦ (f1 |B) : B → f(B) = f2(f1(B)) = X

is monotone. Further, since every subcontinuum of a dendrite is its monotone
retract ([15, Theorem 2.1, p. 332]; compare [11, Theorem, p. 157]), there exists a
monotone retraction r : X → B. Then the composite g = (f |B) ◦ r : X → X is a
monotone surjection. Finally g(p) = f(r(p)) = f(p) = q. The proof is complete.

�

10. Remarks. A mapping f : X → Y between continua X and Y is said to be
semi-confluent provided that for each subcontinuum Q of Y and for every two
components C1 and C2 of f

−1(Q) either f(C1) ⊂ f(C2) or f(C2) ⊂ f(C1). It is
obvious that any confluent mapping is semi-confluent. One can ask if Theorem 9
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can be generalized to the equivalence between monotone homogeneity and semi-
confluent homogeneity of dendrites.
(1) First, note that the mapping f : [0, 1]→ [0, 1] defined by

f(x) =

{

2x for x ∈ [0, 1/2]

−x+ 3/2 for x ∈ [1/2, 1]

is semi-confluent and maps an inner point of [0, 1] to an end point (and vice
versa), whence it follows that [0, 1] is semi-confluently homogeneous, while it is
not monotone homogeneous (because any monotone self-mapping of [0, 1] maps
ends to ends, see [21, Chapter 9, (1.1), p. 165]). Thus one cannot put “semi-
confluently” in place of “confluently” in Theorem 9.
(2) Second, note also that the class of semi-confluent mappings is not neat, because
the composite of two semi-confluent mappings need not be semi-confluent, see [16,
Example 3.4, p. 254]; cf. [17, Example 5.10, p. 31].

11. Question. Is the equivalence of confluent and monotone homogeneities true
not only for dendrites (Theorem 9) but also for (a) smooth dendroids, (b) all
dendroids?

The following easy result, which is a strengthened form of (4), seems to play
an important role in answering Question 8.

12. Statement. Let M be a neat class of mappings. If a continuum X is

M-equivalent to anM-homogeneous continuum Y , then X isM-homogeneous.

Indeed, let p, q ∈ X and let surjections f : X → Y and g : Y → X be
inM. Since for any y ∈ g−1(q) there is inM a surjection h : Y → Y such that
h(f(p)) = y, the composite g ◦ h ◦ f : X → X is inM and maps p into q.
As a corollary to Proposition 6 and Statement 12 we get the following.

13. Proposition. If a dendrite X is monotone equivalent to the standard uni-
versal dendrite D3 of order 3, then X is monotone homogeneous.

However, in the monotone equivalence between X and D3 in (7) only one
mapping is essential, because for every dendrite X there is a monotone surjective
mapping ofD3 ontoX ([3, Corollary 6.5, p. 180]). Thus we have the next corollary.

14. Corollary. If there exists a monotone mapping of a dendrite X onto D3,
then X is monotone homogeneous.

As an application of Corollary 14 we obtain the following assertion.

15. Proposition. If for a dendrite X the set R(X) of its ramification points is
a dense subset of X , then X is monotone homogeneous.

Proof: In fact, it is shown in Proposition 3.2 of [3], p. 169, that if for a dendrite
X the condition cl R(X) = X is satisfied, then there exists a homeomorphism
h : D3 → h(D3) ⊂ X . Since every subcontinuum of a dendrite is a monotone
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retract of X (see [15, Theorem 2.1, p. 332]; compare also [11, Theorem, p. 157]),
there exists a monotone retraction r : X → h(D3). Then the composite h−1 ◦
r : X → D3 is a monotone surjection, and the conclusion is a consequence of
Corollary 14. �

As a generalization of the standard universal dendrite Dm of a fixed order
m ∈ {3, 4, . . . , ω} (see e.g. [3, Section 3, pp. 167–169]) a concept of a standard
universal dendrite DS of orders in S ⊂ {3, 4, . . . , ω} has been introduced in [6,
Definition 6.3, p. 230] as a dendrite X such that

(16) if p ∈ R(X), then ord(p, X) ∈ S;

(17) for each arc A contained in X and for every m ∈ S there is in A
a point p with ord(p, X) = m.

It is known that if two dendrites satisfy (16) and (17) with the same set S, then
they are homeomorphic ([6, Theorem 6.2, p. 229]). Since condition (17) implies
that cl(A ∩ R(X)) = A for each arc A ⊂ X , which is equivalent to cl R(X) = X
(see [3, Theorem 2.4, p. 167]), we get, as a consequence of Proposition 15, the
following result which generalizes Proposition 6 and its extension to all standard
universal dendrites Dm ([3, Theorem 7.1, p. 186]).

18. Proposition. For each nonempty set S ⊂ {3, 4, . . . , ω} the standard univer-
sal dendrite DS of orders in S is monotone homogeneous.

The converse to Proposition 15 is not true in general and, moreover, it can be
seen that the condition cl R(X) = X is far from being necessary for a dendrite
X to be monotone homogeneous. Namely a monotone homogeneous dendrite L0
is known having the set R(L0) of its ramification points discrete (thus nowhere
dense in L0). We recall its construction after [3, Example 6.9, p. 182], for the
reader’s convenience and for further purposes.

We start with the unit interval L1 in the plane. Divide it in three equal
parts, and in the middle of them, M , locate a thrice diminished copy C of the
Cantor ternary set. At the mid point of each contiguous interval K to C (i.e. of
a component K of M \C) we erect perpendicularly to L1 a straight line segment
whose length equals length of K. Denote by L2 the union of L1 and of all
erected segments (there are countably many of them). We perform the same
construction on each of the added segments: divide such a segment into three
equal subsegments, locate in the middle subsegment M a copy C of the Cantor
set properly diminished, and at the mid point of any component K of M \ C
construct a perpendicular to K segment as long as K is, and denote by L3 the
union of L2 and of all attached segments. Continuing in this manner we get an
increasing sequence of dendrites Ln. Then

(19) L0 = cl
(

⋃

{Ln : n ∈ N}
)

.

It is evident that is a dendrite having a discrete set R(L0) (i.e. each point p ∈
R(L0) has a neighborhood U such that U ∩ R(L0) = {p}). Decompose L0 into
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maximal free arcs (i.e. such arcs A = ab that A\{a, b} is an open subset of L0 and
that no arc containing A properly has this property) and into singletons. Then
the natural projection for this decomposition is a monotone mapping of L0 onto
the standard universal dendrite D3 of order 3. According to Corollary 14 the
dendrite L0 is monotone homogeneous.
It is shown in [3, Theorem 6.14, p. 185] that a dendrite is monotone equiv-

alent to D3 if and only if it contains a homeomorphic copy of L0. Therefore,
Proposition 13 can be restated as follows.

20. Proposition. If a dendrite contains a homeomorphic copy of the dendrite

L0 defined by (19), then it is monotone homogeneous.

It would be interesting to know whether the converses to Proposition 20 (or to
Corollary 14) are true. In other words, we have the following question.

21. Question. Does every monotone homogeneous dendrite contain a home-
omorphic copy of the dendrite L0 (equivalently, does it admit any monotone
mapping onto D3)?

Note that if an answer to Question 21 were yes, then containing a copy of L0
would be a characteristic property of monotone homogeneous dendrites.
By the Gehman dendrite G we mean a dendrite having the Cantor ternary set

in [0, 1] as the set E(G) of its end points, such that all ramification points of G are
of order 3 and are situated in G in such a way that E(G) = cl R(G)\R(G) (see [19,
pp. 422–423] for a detailed description, and [20, Figure 1, p. 203] for a picture).
The following two properties of the Gehman dendrite, which are consequences of
its definition, will be needed.

(22) The set R(G) of ramification points of the Gehman dendrite G is discrete.

(23) Every convergent sequence of distinct ramification points of the Gehman
dendrite G has an end point of G as its limit.

24. Proposition. For the Gehman dendrite G there is no monotone surjection
f : G → G which maps a ramification of G point to any of its end points.

Proof: Assume there are x ∈ R(G), y ∈ E(G) and a monotone surjection
f : G → G with f(x) = y. Then f−1(y) is a continuum and, since G \ {y} is
connected ([21, Chapter 5, (1.1), (iv), p. 88]), the set f−1(G\{y}) is connected, too
([21, Chapter 8, (2.2), p. 138]). Thus the continuum f−1(y) does not disconnectG,
whence it follows that bd f−1(y) is a singleton, say {b}, and

(25) ord(b, G) = 2

([21, Chapter 5, (1.1), (iv), p. 88]). Let a ∈ G \ f−1(y). Since by Statement 3
the partial mapping f | ab is monotone, we infer that f(ab) is an arc from f(a) to
f(b) = y ([21, Chapter 9, (1.1), p. 165]). Take a sequence of points yn ∈ xy∩R(G)
which has y as its limit. By the ramification point covering property (see [9,
Theorem I.1, p. 410]) there is a sequence of points xn ∈ R(G) such that f(xn) = yn
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for each n ∈ N. Since yn 6= y, we have xn ∈ G \ f−1(y). By compactness of G
we may assume that {xn} converges to a point p. Now (22) and (23) imply that
p ∈ E(G). By continuity of f we infer that f(p) = y, so p ∈ f−1(y). Thus
p ∈ bd f−1(y), i.e. p = b, a contradiction to (25) by (23). The proof is complete.

�

26. Corollary. The Gehman dendrite G is not monotone homogeneous.

If we enlarge the considered classes of continua from dendrites to dendroids, and
of mappings from monotone to confluent, then we get the following two analogs
of Question 8:

27. Question. What dendroids are monotone homogeneous?

28. Question. What dendroids are confluently homogeneous?

Only a partial answer to Question 28 is known that concerns open mappings
(see [2, Theorem, p. 409]).

(29) No dendroid is openly homogeneous.

To get more results connected with Questions 27 and 28 we recall some concepts
related to the structure of dendroids. Recall that an end point in a dendroid X
means a point p ∈ X being an end point of any arc A such that p ∈ A ⊂ X , and
that by a ramification point of a dendroid X we understand a point p being the
vertex of a simple triod contained in X . If X is a dendrite, then these concepts
coincide with the previous ones (i.e. end points are exactly points of order 1, and
vertices of triods contained in X are exactly points of order at least 3). The set
of all end points and of all ramification points in a dendroid X will be denoted
again by E(X) and R(X), respectively.
Given a dendroid X , we denote by ∆(X) the subdendroid of X which is irre-

ducible about R(X), i.e. such that R(X) ⊂ ∆(X) and no proper subdendroid of
∆(X) contains R(X). Recall that ∆(X) is uniquely determined (see [10, Theo-
rem 1, p. 3]).

30. Theorem. If a dendroid X is monotone homogeneous, then the subdendroid
∆(X) has infinitely many end points

Proof: Suppose on the contrary that the set E(∆(X)) of end points of ∆(X) is
finite (whence it follows that ∆(X) is a dendrite), and consider two cases.

Case 1. R(X) ∩ (∆(X) \ E(∆(X))) 6= ∅.

Let c ∈ R(X) ∩ (∆(X) \ E(∆(X))). Then there is a point d ∈ X such that
cd ∩ (∆(X) \ E(∆(X))) = {c}. Fix a point e ∈ E(∆(X)). Since X is monotone
homogeneous, there is a monotone surjection f : X → X such that f(e) =
d. Since f is monotone, it has the ramification point covering property (see
[9, Theorem I.1, p. 410]). Further, since f(X) = X and R(X) ⊂ ∆(X), we
obtain R(X) ⊂ f(R(X)) ⊂ f(∆(X)), so the continuum f(∆(X)) contains R(X).
Since ∆(X) is the minimal continuum containing R(X) (by its definition), we get
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∆(X) ⊂ f(∆(X)). Now e ∈ ∆(X) implies d = f(e) ∈ f(∆(X)), thus ∆(X) ∪
{d} ⊂ f(∆(X)). Therefore we infer that

(31) card E(∆(X)) < card E(f(∆(X))).

However, since by Statement 3 every monotone mapping on a dendrite is heredi-
tarily monotone, the partial mapping f |∆(X) : ∆(X)→ f(∆(X)) is monotone,
and thereby it has the end point covering property, that is,

E(f(∆(X))) ⊂ f(E(∆(X)))

(see [4, Proposition 4.20, p. 11]), whence it follows that

card E(f(∆(X))) ≤ card f(E(∆(X))) ≤ card E(∆(X)),

contrary to (31).

Case 2. R(X) ∩ (∆(X) \ E(∆(X))) = ∅.

Then each ramification point of X is an end point of ∆(X), and thus R(X)
is finite. This contradicts monotone homogeneity of X by Proposition 2.2 of
[12, p. 59] saying that if the set R(X) of ramification points of a dendroid X is
finite, then X is not confluently (hence not monotone) homogeneous. The proof
is complete. �

32. Remark. Proposition 5.45 of [4, p. 18] says that if a surjective mapping
f : X → Y between dendrites X and Y is monotone and if the set R(X) is
contained in an arc, then the set R(Y ) is also contained in an arc, whence it
follows that if for a dendrite X the continuum ∆(X) is an arc, then X is not
monotone homogeneous. Theorem 30 above can be seen as a strong generalization
of this result, as well as a generalization of the above quoted result of Kato
(Proposition 2.2 of [12, p. 59]; see the final part of the proof of Theorem 30) in its
part related to monotone mappings.

33. Remark. Note that the converse to Theorem 30 is not true. In fact, for
the Gehman dendrite G we have ∆(G) = G by construction, whence E(∆(G)) =
E(G) is the Cantor set, while G is not monotone homogeneous according to
Corollary 26.

34. Question. In the light of Statement 3 one can substitute either “hereditarily
monotone” or “hereditarily confluent” for “monotone” in Theorem 30. Can one
substitute “confluent” for “monotone” in Theorem 30 as well?

A more specific results concerning Question 27 can be obtained if we addition-
ally assume that the dendroid X under consideration is smooth. To this aim we
recall the following proposition (see [5, Corollary 10, p. 309]).
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35. Proposition. If a dendroid X is smooth at a point p and a surjective
mapping f : X → Y is monotone, then Y is a dendroid that is smooth at a point
f(p).

Thus, if a smooth dendroid is monotone homogeneous, then it is smooth at
each of its points, and therefore it is a dendrite ([5, Corollary 5, p. 299]). So, we
have the following assertion.

36. Proposition. If a smooth dendroid is monotone homogeneous, then it is

a dendrite.

37. Question. Is smoothness an essential assumption in Proposition 36?

Recall that a continuum X has the property of Kelley provided that for each
point x ∈ X , for each sequence of points xn ∈ X converging to X and for each
continuum K in X containing the point x there is in X a sequence of continua
Kn with xn ∈ Kn converging to K. Since each dendroid having the property of
Kelley is smooth ([8]), we get the following corollary to Proposition 36.

38. Corollary. If a dendroid having the property of Kelley is monotone homo-

geneous, then it is a dendrite.

It is known that if a continuum is openly homogeneous, then it has the property
of Kelley ([1, Statement, p. 380]), while confluent homogeneity does not imply the
property of Kelley even for curves (i.e. one-dimensional continua), as it has ben
shown by H. Kato in [12, pp. 55–58]. However, Kato’s example ([12, Figure 2,
p. 57]) is very far from being either a dendroid or a planar curve. Thus we have
the following two questions.

39. Questions. Does confluently homogeneity imply the property of Kelley for
(a) dendroids, (b) planar curves?

We close the paper with a question that was a starting point of our study
presented above.

40. Question. Does monotone homogeneity of continua imply the property of
Kelley?
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