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A note on lattice renormings

Marián Fabian∗, Petr Hájek, Václav Zizler

Abstract. It is shown that every strongly lattice norm on c0(Γ) can be approximated by
C∞ smooth norms. We also show that there is no lattice and Gâteaux differentiable
norm on C0[0, ω1].
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It has been recently shown in [1] and [2] that every equivalent norm on the
classical separable Banach spaces c0 or ℓp, p even, (as well as on many other
spaces) can be uniformly approximated on bounded sets by a sequence of C∞-
Fréchet smooth norms.
Although the method of construction requires some technical conditions on the

space to be satisfied (in particular the existence of a Schauder basis), it seems to
suggest that perhaps the following statement should be valid:
Suppose X is a separable Banach space that admits an equivalent Ck-Fréchet

smooth norm. Then every equivalent norm on X can be approximated uniformly
on bounded sets by a sequence of Ck-Fréchet smooth norms.
On the other hand, we do not know of any example of a nonseparable Banach

space where a similar statement would be valid for k ≥ 2.
In the present note we give a partial solution to this problem for the space c0(Γ)

and k = ∞. More precisely we show that on c0(Γ), Γ uncountable, every equiv-
alent strongly lattice norm can be approximated by a sequence of C∞-Fréchet
smooth norms.

In the second part of our paper, we show that there exists no lattice Gâteaux
differentiable norm on C0([0, ω1]), the space of continuous functions on the ordi-
nal segment [0, ω1] that vanish at ω1 (where ω1 is the first uncountable ordinal
and [0, ω1] is in its normal topology as in [4]). More information on the space
C0([0, ω1]) can be found e.g. [3, p. 259]. Proposition 2 of this paper is of interest
when compared with some results of Haydon [5]–[6]. In [5], a lattice norm on
C0[0, ω1]⊕ c0[0, ω1] is constructed, which is C∞-Fréchet differentiable and locally
dependent on finitely many coordinates when restricted to a rather large open
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subset of C0[0, ω1] ⊕ c0[0, ω1]. This norm is then used to obtain C∞-Fréchet
smooth (necessarily non-lattice) renormings of C0[0, ω1].

The notation and terminology we use are mostly standard, as in [3].

By a strongly lattice norm on c0(Γ) we mean an equivalent norm ‖ ·‖ such that
‖

∑

γ∈Γ
yγeγ‖ ≥ ‖

∑

γ∈Γ
xγeγ‖ whenever

∑

γ∈Γ
yγeγ ,

∑

γ∈Γ
xγeγ ∈ c0(Γ) are such that for

every γ ∈ Γ |yγ | ≥ |xγ | is satisfied.

Theorem 1. Every equivalent strongly lattice norm on c0(Γ) can be approxi-
mated (uniformly on bounded sets) by C∞-Fréchet smooth norms.

Proof: Denote the given strongly lattice norm by ‖ · ‖. We first introduce an
auxiliary function f∆. For arbitrary 1 > ∆ > 0 and

∑

γ∈Γ
xγeγ ∈ c0(Γ) denote by

f∆
(

∑

γ∈Γ

xγeγ
)

= sup

{

‖
∑

γ∈Γ

yγeγ‖,

where yγ = xγ if |xγ | > ∆ and |yγ | ≤ ∆ if |xγ | ≤ ∆

}

.

Clearly, f∆(·) ≥ ‖ · ‖ on c0(Γ).
In fact, f∆(·) is a Lipschitz function on (c0(Γ), ‖ · ‖∞) with the Lipschitz con-

stant less than or equal to the Lipschitz constant of ‖ · ‖ (on (c0(Γ), ‖ · ‖∞)).
It is standard to check the following elementary properties of f∆(·):

(i) f∆(
∑

γ∈Γ
xγeγ) = f∆(

∑

γ∈{α∈Γ,|xα|>∆}

xγeγ). In other words, the value of

f∆(x) depends only on those coordinates of x that are in absolute value
larger than ∆.

(ii) f∆(
∑

γ∈Γ
xγeγ) ≤ f∆(

∑

γ∈Γ
yγeγ)

whenever we have ‖yγ‖ ≥ ‖xγ‖ for every γ ∈ Γ.

The property (ii) is a “strongly lattice” property of f∆(·) and follows directly
from the strongly lattice property of ‖ · ‖.

We now proceed with our construction of approximating C∞-norm.
Given ε > 0, from the equivalence of ‖ · ‖ and ‖ · ‖∞ it follows that there exists

1 > ∆ > 0 such that
‖ · ‖ ≤ f∆(·) ≤ ‖ · ‖+ ε

for every x ∈ c0(Γ).
Put F∆(x) = f2∆(x).
Then F∆(·) shares properties (i), (ii) and satisfies:

‖ · ‖2 ≤ F∆(·) ≤ (‖ · ‖+ ε)2 = ‖ · ‖2 + 2ε‖ · ‖+ ε2.
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Thus the convex function C∆(·) defined by:

C∆(x) = inf

{ n
∑

i=1

λiF∆(xi), x =

n
∑

i=1

λixi,

n
∑

i=1

λi = 1, λi > 0

}

also satisfies ‖·‖2 ≤ C∆(·) ≤ (‖·‖+ε)2, because ‖·‖2 is convex and C∆(·) ≤ F∆9(·).
It is straightforward to show that also the strongly lattice property for C∆(·) is
preserved, i.e. C∆(x) ≥ C∆(y) for x, y ∈ c0(Γ), such that for every γ ∈ Γ either
‖yγ‖ ≥ ‖xγ‖. We will now show that for 1 > ε > 0 we have

C∆(x) = inf

{ n
∑

i=1

λiF∆(xi), x =

n
∑

i=1

λixi,

n
∑

i=1

λi = 1, λi > 0 and ‖xi‖ ≤ 100

}

for every x ∈ c0(Γ) with ‖x‖ ≤ 2.

To this end, it is enough to find for every {xi}
n
i=1, λi > 0,

n
∑

i=1
λi = 1, x =

n
∑

i=1
λixi another system {yi}

m
i=1, λ

′
i > 0,

m
∑

i=1
λ′i = 1, x =

m
∑

i=1
λ′iyi, where ‖yi‖ ≤

100 and such that
m

∑

i=1

λ′iF∆(yi) ≤

n
∑

i=1

λiF∆(xi).

Suppose without loss of generality that ‖xi‖ ≤ 100 for 1 ≤ i ≤ j and ‖xi‖ > 100
for j < i ≤ n. We may assume that j ≥ 1, since otherwise F∆(xi) ≥ 100

2 for
every 1 ≤ i ≤ n, and then F∆(x) ≤ 3

2 < 1002 would give us a better estimate.

Put

v1 =

j
∑

i=1
λixi

j
∑

i=1
λi

, v2 =

n
∑

i=j+1
λixi

n
∑

i=j+1
λi

,

ξ1 =

j
∑

i=1

λi, ξ2 = 1− ξ1.

Clearly, x = ξ1v1 + ξ2v2.

We may assume that F∆(v1) ≥
1
ξ1

j
∑

i=1
λiF∆(xi) and

F∆(v2) ≥
1
ξ2

n
∑

i=j+1
λiF∆(xi).
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Indeed, if for example F∆(v1) < 1
ξ1

j
∑

i=1
λiF∆(xi), we obtain that x = ξ1v1 +

n
∑

i=j+1
λixi, ξ1 +

n
∑

i=j+1
λi = 1, ξ1 ≥ 0, λi ≥ 0 and

ξ1F∆(v1) +

n
∑

i=j+1

F∆(xi) <

n
∑

i=1

λiF∆(xi)

gives us even a better estimate of C∆(x).

By assumption, F∆(xi) ≥ 100
2 for j + 1 ≤ i ≤ n. Thus 1ξ2

n
∑

i=j+1
λiF∆(xi) ≥

1002. The trivial estimate for C∆(x) is F∆(x) ≤ 3
2 = 9. Thus 1ξ1

j
∑

i=1
λiF∆(xi) ≤

9 (otherwise the trivial estimate would give us a smaller value than
n
∑

i=1
λiF∆(xi) =

ξ1
(

1
ξ1

j
∑

i=1
λiF∆(xi)

)

+ ξ2
(

1
ξ2

n
∑

i=j+1
λiF∆(xi)

)

.

Consequently, ‖v1‖
2 ≤ C∆(v1) ≤ 9 and we have ‖v1‖ ≤ 3. Similarly,

(

‖v2‖ +

ε
)2

≥ F∆(v2) ≥ 100
2 and we have ‖v2‖ ≥ 99.

Thus there exists v3 ∈ c0(Γ), ‖v3‖ = 50, v3 = α1v1 +α2v2 where α1 + α2 = 1,
αi ≥ 0. Since v3 − α1v1 = α2v2, we have 47 ≤ α2‖v2‖. Thus

α1
1

ξ1

j
∑

i=1

λiF∆(xi) + α2
1

ξ2

n
∑

i=j+1

λiF∆(xi) ≥ α2‖v2‖
2 ≥ 47‖v2‖ ≥ 47 · 99.

Moreover the trivial estimate gives us

F∆(v3) ≤
(

‖v3‖+ ε
)2

≤ 512 < 47 · 99.

Therefore

F∆(v3) ≤ α1
1

ξ1

j
∑

i=1

λiF∆(xi) + α2
1

ξ2

n
∑

i=j+1

λiF∆(xi),

ξ2

α2
F∆(v3) ≤

ξ2

α2

α1

ξ1

j
∑

i=1

λiF∆(xi) +

n
∑

i=j+1

λiF∆(xi),

j
∑

i=1

λiF∆(xi)−
ξ2

α2

α1

ξ1

j
∑

i=1

λiF∆(xi) +
ξ2

α2
F∆(v3) ≤

n
∑

i=1

λiF∆(xi),

j
∑

i=1

(

1−
ξ2

α2

α1

ξ1

)

λiF∆(xi) +
ξ2

α2
F∆(v3) ≤

n
∑

i=1

λiF∆(xi).
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However,

(

1−
ξ2

α2

α1

ξ1

)

j
∑

i=1

λixi +
ξ2

α2
v3 = ξ1v1 + ξ2

( v3

α2
−

α1

α2
v1

)

= ξ1v1 + ξ2v2 = x.

It is easy to verify that
j
∑

i=1

(

1− ξ2
α2

α1
ξ1

)

λi +
ξ2
α2
= 1. It follows that α2 > ξ2, since

‖v3‖ = 50 while ‖x‖ ≤ 2. Therefore (1− ξ2
α2

α1
ξ1
)λi ≥ 0 for every 1 ≤ i ≤ j.

Thus the system {xi}
j
i=1 ∪ {v3}, {

(

1− ξ2
α2

α1
ξ1

)

λi}
j
i=1 ∪ { ξ2

α2
} gives us a smaller

estimate of C∆(x) than the original one {xi}
n
i=1, {λi}. Clearly, all ‖xi‖ ≤ 100,

1 ≤ i ≤ j, ‖v3‖ ≤ 100.
Since ‖·‖ and ‖·‖∞ are equivalent norms on c0(Γ), it follows from our previous

considerations that there exists a constant k such that

C∆(x) = inf

{ j
∑

i=1

λiF∆(xi), x =

j
∑

i=1

λixi,

j
∑

i=1

λi = 1, λi > 0 and ‖xi‖∞ ≤ k

}

for every ‖x‖ ≤ 2.
We proceed by proving that there exists δ > 0 such that

C∆
(

∑

γ∈Γ

xγeγ
)

= C∆
(

∑

γ∈{α,|xα|>δ}

xγeγ
)

for every x =
∑

γ∈Γ
xγeγ ∈ c0 such that ‖x‖ ≤ 2.

In fact, we will show that choosing δ < ∆2

2k+2+∆ is sufficient.

Since C∆ is upper semi-continuous (as the infimum of a family of continuous
functions - F∆ is continuous as the square of a Lipschitz function f∆), and,
moreover, from the strongly lattice property of C∆ it is enough to prove that

C∆(
∑

γ∈Γ

xγeγ) = C∆(
∑

γ∈Γ
γ 6=γ0

xγeγ),

whenever |xγ0 | ≤ δ.
We will proceed as follows. Given x =

∑

γ∈Γ
xγeγ , for arbitrary {yi}

n
i=1 ⊂ c0(Γ),

{λi}
n
i=1, λi > 0,

n
∑

i=1
λi = 1, ‖yi‖∞ ≤ k such that

n
∑

i=1
λiyi =

∑

γ∈Γ
γ 6=γ0

xγeγ , we

will construct {xi}
n
i=1 ⊂ c0(Γ) such that (xi)γ = (yi)γ for 1 ≤ i ≤ n, γ 6= γ0,

n
∑

i=1
λixi = x and in addition

n
∑

i=1

λiF∆(xi) ≤

n
∑

i=1

λiF∆(yi).
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Consequently,
C∆(

∑

γ∈Γ

xγeγ) ≤ C∆(
∑

γ∈Γ
γ 6=γ0

xγeγ).

This implies our claim, since C∆(·) shares the strongly lattice property, so the
opposite inequality is satisfied.

Without loss of generality assume that, δ ≥ xγ0 > 0 and

k ≥ (yi)γ0 > ∆ for 1 ≤ i ≤ j1,

∆ ≥ (yi)γ0 ≥ 0 for j1 < i ≤ j2,

0 > (yi)γ0 ≥ −∆ for j2 < i ≤ j3,

−∆ > (yi)γ0 ≥ −k for j3 < i ≤ n.

Put s1 =
j1
∑

i=1
λi, s2 =

j2
∑

i=j1+1
λi, s3 =

j3
∑

i=j2+1
λi, s4 =

n
∑

i=j3+1
λi.

If (s3 + s4)∆ ≥ δ, then

j2
∑

i=1

λi(yi)γ0 +

n
∑

i=j2+1

λi∆ ≥

n
∑

i=j2+1

λi∆ ≥ (s3 + s4)∆ ≥ δ.

Therefore for every j2 < i ≤ n we can find numbers ỹi, such that ∆ ≥ ỹi ≥ (yi)γ0
and

j2
∑

i=1

λi(yi)γ0 +

n
∑

i=j2+1

λiỹi = xγ0 .

We define xi = yi for 1 ≤ i ≤ j2, and xi =
∑

γ∈Γ
γ 6=γ0

(yi)γeγ + ỹieγ0 for j2 < i ≤ n. It

follows that
F∆(xi) = F∆

(

∑

γ∈Γ
γ 6=γ0

(yi)γeγ
)

≤ F∆(yi).

Thus
n
∑

i=1
λiF∆(xi) ≤

n
∑

i=1
λiF∆(yi) and the claim is established.

If (s3 + s4)∆ < δ, we obtain 0 =
(

n
∑

i=1
λi(yi)

)

γ0
≥ s1∆− (s3 + s4)k. Therefore

s1 ≤
δk
∆2

. Thus s2 = 1 − s1 − s3 − s4 ≥ 1 −
δ(k+1)
∆2
. We can find numbers ỹi for

j1 < i ≤ j2, such that (yi)γ0 ≤ ỹi ≤ ∆ and

j1
∑

i=1

λi(yi)γ0 +

n
∑

i=j2+1

λi(yi)γ0 +

j2
∑

i=j1+1

λiỹi = xγ0 .
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Indeed,
∣

∣

n
∑

i=j2+1
λi(yi)γ0

∣

∣ ≤ (s3 + s4)k ≤ δk
∆ . Consequently, s2∆ − δk

∆ ≥ ∆ −

δ(k+1)
∆ − δk

∆ > δ by our choice of δ.
Putting (xi)γ = ỹi for j1 < i ≤ j2, γ = γ0 and (xi)γ = (yi)γ for any other

choices of i and γ, we obtain again
n

∑

i=1

λiF∆(xi) =

n
∑

i=1

λiF∆(yi).

Hence we proved that C∆(·) is a convex function on c0(Γ), ‖ · ‖2 ≤ C∆(·) ≤
(

‖ · ‖ + ε
)2
and, for ‖x‖ ≤ 2, C∆(x) depends only on those coordinates xγ of x

for which |xγ | ≥ δ. More precisely,

C∆
(

∑

γ∈Γ

xγeγ
)

= C∆
(

∑

γ∈Γ1

xγeγ
)

,

where Γ1 = {γ ∈ Γ, |xγ | ≥ δ}.

We will now construct a C∞-Fréchet smooth convex function on the set {x ∈
c0(Γ), ‖x‖ < 2}, which uniformly approximates C∆(·). To this end, choose

a C∞-smooth bump function b(t) on R, 0 ≤ b(t) = b(−t), supp b ⊂ [− δ
4 ,

δ
4 ],

∞
∫

−∞
b(t) dt = 1.

It is elementary to check that from the symmetry condition on b and the
convexity of f it follows that

f(r) ≤

∞
∫

−∞

f(t)b(r − t) dt

for arbitrary convex continuous function defined on R.
It is standard to check that for arbitrary γ0 ∈ Γ, the function

C
γ0
∆

(

∑

γ∈Γ

xγeγ
)

=

∞
∫

−∞

C∆
(

∑

γ∈Γ
γ 6=γ0

xγeγ + teγ0

)

b(xγ0 − t) dt

is convex and C
γ0
∆ (·) ≥ C∆(·).

Put Π =
{

π = {γ1, . . . , γn}, n ∈ N, γi ∈ Γ
}

to be the set of all finite subsets
of Γ. For π = {γ1, . . . , γn} ∈ Π define

Cπ
∆

(

∑

γ∈Γ

xγeγ
)

=

=

∞
∫

−∞

· · ·

∞
∫

−∞

C∆
(

∑

γ∈Γ
γ /∈π

xγeγ +

n
∑

i=1

tieγi

)

b(xγ1 − t1) . . . b(xγn − tn) dt1 . . . dtn.



270 M.Fabian, P.Hájek, V. Zizler

For every π ∈ Π, Cπ
∆ is a convex function satisfying Cπ2

∆ (·) ≥ Cπ1
∆ (·) whenever

π1 ⊂ π2.
Define C̃∆(x) = sup{C

π
∆(x), π ∈ Π}.

Suppose x =
∑

γ∈Γ
xγeγ , ‖x‖ ≤ 2 − δ

2 , Γ1 = {γ ∈ Γ, |xγ | ≤
δ
4}, Γ2 = Γ \ Γ1.

Clearly Γ2 ∈ Π. For every y ∈ c0(Γ) such that ‖y − x‖∞ < δ
4 , we have |yγ | ≤

δ
2

for γ ∈ Γ1. For such y the following formula is satisfied:

C̃∆(y) = CΓ2∆ (y) =

=

∞
∫

−∞

· · ·

∞
∫

−∞

C∆
(

∑

γ∈Γ
γ /∈Γ2

yγeγ +

n
∑

i=1

tieγi

)

b(yγ1 − t1) . . . b(yγn − tn) dt1 . . . dtn,

where Γ2 = {γ1, . . . , γn}.
Indeed, for every Γ3 = {γ1, . . . , γm}, Γ2 ⊂ Γ3 we have

CΓ3∆ (y) =

∞
∫

−∞

· · ·

∞
∫

−∞

C∆
(

∑

γ∈Γ
γ /∈Γ3

yγeγ+

m
∑

i=1

tieγi

)

b(yγ1−t1) . . . b(yγn−tn) dt1 . . . dtm,

and thus

CΓ3∆ (y)

=

∞
∫

−∞

· · ·

∞
∫

−∞

C∆
(

∑

γ∈Γ
γ /∈Γ2

yγeγ +

n
∑

i=1

tieγi

)

b(yγ1 − t1) . . . b(yγn − tn) dt1 . . . dtn

= CΓ2(y),

because the function φ(t1, . . . , tm) = C∆
(

∑

γ∈Γ
γ /∈Γ3

yγeγ +
m
∑

i=1
tieγi

)

is for any given

t1, . . . , tn constant in variables tn+1, . . . , tm satisfying |tn+1 − yγn+1 | ≤
δ
4 , . . . ,

|tm − yγm | ≤ δ
4 . The function C̃∆(·) restricted to B‖·‖∞

(

x, δ
4

)

thus depends only

on the coordinates {yγ1 , . . . , yγn} of y and is easily observed to be C∞-Fréchet
smooth. The trivial estimate gives us

‖x‖2 ≤ C∆(x) ≤ C̃∆(x) ≤ sup{C∆(x + v), ‖v‖∞ <
δ

2
}

≤ sup{
(

‖x+ v‖+ ε
)2

, ‖v‖∞ <
δ

2
}.
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By the standard argument of choosing ε and δ small enough, we obtain, via
the implicit function theorem, that the C∞-Fréchet smooth norm defined as the
Minkowski functional of the set {x, C̃∆(x) ≤ 1} approximates arbitrary well (on
bounded sets) the original norm ‖ · ‖.

We say that a norm ‖| · ‖| defined on a C(K) space depends locally on finitely
many coordinates if for every f ∈ C(K) there exist a finite set {k1, . . . , kn} ⊂
K, ε > 0 and φ : Rn → R such that

|||g||| = φ
(

g(k1), . . . , g(kn)
)

,

whenever ‖g − f‖ < ε. �

Proposition 2. There exists no lattice and Gâteaux differentiable (not neces-
sarily equivalent) norm C0([0, ω1]). There exists no lattice (not necessarily equiv-
alent) norm on C0([0, ω1]) that depends locally on finitely many coordinates.

Proof: Assume that ‖ · ‖ is a given norm on C0([0, ω1]). Let us first define, for
a given non-limit ordinal α < ω1, ϕα on [α, ω1) by

ϕα(β) = ‖χ[α,β]‖ for β a nonlimit ordinal,

ϕα(β) = sup{ϕα(γ), γ < β, γ nonlimit} for β a limit ordinal.

The function ϕα is well defined since χ[α,β] ∈ C0[0, ω1] whenever α, β are nonlimit

ordinals. By the lattice condition on ‖ · ‖, ϕα is a nondecreasing function defined
on [0, ω1). Thus for some nonlimit βα > α we have

ϕα(βα) = ϕα(γ) for every γ ∈ [βα, ω1].

Similarly, by the lattice assumption, whenever α1 < α2 are nonlimit ordinals,
ϕα1(βα1) ≤ ϕα2(βα2). Therefore, there exists α0 ∈ ω1 such that

ϕα0(βα0) ≥ ϕα(β) whenever β ≥ α ≥ α0.

Let us define, by induction, a sequence {αi}
∞
i=0 as follows: α0 comes from the

above consideration, αi+1 = βαi + 1.
Choose a closed and open countable interval [α0, β] ⊂ [0, ω1) such that β ≥ αi

for every i ∈ N. Clearly, χ[α0,β] ∈ C0([0, ω1]) and

0 < ‖χ[α0,β]‖ = ‖χ[αi,βαi
]‖ for every i ∈ N.

Also,

‖χ[α0,β] + t χ[αi,βαi
]‖ ≥ ‖(1 + t)χ[αi,βαi

]‖ = (1 + t)‖χ[α0,β]‖ for every t ≥ 0.
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Thus, the directional derivative of ‖ · ‖ at χ[α0,β] in direction of vi = χ[αi,βαi
]

satisfies:
∂‖χ[α0,β]‖

∂vi
≥

∂‖χ[αi,βαi
]‖

∂vi
≥ ‖χ[αi,βαi

]‖ = ‖χ[α0,β]‖.

However, assuming the existence of the Gâteaux derivative ‖χ[α0,β]‖
′, we estimate

∥

∥

∥
‖χ[α0,β]‖

′
∥

∥

∥

1
≥

〈‖χ[α0,β]‖
′,

n
∑

i=0
vi〉

n
∑

i=0
vi

=

n
∑

i=0

∂‖χ[α0,β]‖

∂vi

‖χ[α0,β]‖
≥ n

for all n ∈ N. (‖
n
∑

i=0
vi‖ = ‖χ[α0,β]‖ by the lattice property of ‖ · ‖.) This is a

contradiction. �

This proves the first half of Proposition 2. The proof for the second part
requires only minor modifications.
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