Splitting ω -covers

WINFRIED JUST^{*}, ANDREAS TANNER

Abstract. The authors give a ZFC example for a space with $Split(\Omega, \Omega)$ but not $Split(\Lambda, \Lambda)$.

Keywords: ω -cover, λ -cover, $Split(\Omega, \Omega)$, $Split(\Lambda, \Lambda)$, ultrafilter Classification: 04A20, 54D20

In this paper, we give a ZFC example of a space satisfying property $Split(\Omega, \Omega)$ but not $Split(\Lambda, \Lambda)$. This solves Problem 6 of [1]. Finally we show that it is consistent with ZF not to have any space without $Split(\Omega, \Omega)$.

Let us first review the relevant definitions. We start with defining two special classes of open covers.

Definition 1. Let H be a topological space. An open cover $\mathcal{U} = \{U_{\alpha} : \alpha < \kappa\}$ is called a large cover or λ -cover, if $\{\alpha < \kappa : x \in U_{\alpha}\}$ is infinite for every point $x \in H$.

 \mathcal{U} is called an ω -cover, if $U \neq H$ for all $U \in \mathcal{U}$ and for every finite subset $F \subseteq H$, there exists some open set U in the cover \mathcal{U} which contains F.

Definition 2. A topological space H is said to satisfy property $Split(\Lambda, \Lambda)$ (resp. $Split(\Omega, \Omega)$), if one can split every large cover (resp. ω -cover) \mathcal{U} into two disjoint large covers (resp. ω -covers) $\mathcal{U}_1, \mathcal{U}_2$.

We say H satisfies $Split(\Lambda, \mathcal{O})$, if one can split every large cover \mathcal{U} into two disjoint open covers $\mathcal{U}_1, \mathcal{U}_2$.

In the following, let H denote the space

 $H = \{ (x_i : i < \omega) \in 2^{\omega} : x_i = 1 \text{ for infinitely many } i \in \omega \},\$

carrying the product topology, where $2 = \{0, 1\}$ is discrete.

We note that H is Lindelöf in every finite power.

This space is homeomorphic to the space ${}^{\omega}\omega$ with the product topology, where ω is discrete.

We will use the following two well-known lemmas. We write χ_M for the characteristic function of M.

* Partially supported by NSF grant DMS-9312363

Lemma 3. Let \mathcal{G} be a nonprincipal ultrafilter over ω . Then $\mathcal{G}^{\bullet} = \{\chi_M : M \in \mathcal{G}\} \subseteq 2^{\omega}$ does not have the Baire property. In particular, \mathcal{G}^{\bullet} is not Π_1^1 in 2^{ω} .¹

Lemma 4. Every continuous image of H is Σ_1^1 in H.²

Lemma 5. Let \mathcal{U} be an ω -cover of a topological space X. Then, whenever \mathcal{U} is the union of $\mathcal{U}_1, \ldots, \mathcal{U}_n$, at least one of the \mathcal{U}_i 's is an ω -cover of X.

PROOF: Suppose that none of the \mathcal{U}_i 's is an ω -cover. Fix for each \mathcal{U}_i some finite $F_i \subseteq \omega$ which is not covered by a set in \mathcal{U}_i . But then $F_1 \cup \ldots \cup F_n$ is not covered by any set in $\mathcal{U} = \mathcal{U}_1 \cup \ldots \cup \mathcal{U}_n$, a contradiction to the assumption that \mathcal{U} is an ω -cover.

Fact 6. *H* does not satisfy $Split(\Lambda, \mathcal{O})$ and thus not $Split(\Lambda, \Lambda)$.

PROOF: Consider the following "canonical" cover of H:

For $n \in \omega$, let $U(n) = \{p \in 2^{\omega} : p(n) = 1\}.$

Then $\mathcal{U} = \{U(n) : n \in \omega\}$ is a λ -cover of H. Suppose $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2$, where \mathcal{U}_1 and \mathcal{U}_2 are disjoint. This partition defines a partition of ω into disjoint A_1 and A_2 by $A_i = \{n \in \omega : U(n) \in \mathcal{U}_i\}$ for i = 1, 2. Assume, without loss of generality, that A_1 is infinite. But then the function $p \in H$ defined by $p(n) = \chi_{A_1}(n)$ is not covered by \mathcal{U}_2 , a contradiction.

Thus \mathcal{U} does not split into two disjoint open covers.

 \square

Lemma 7. *H* satisfies $Split(\Omega, \Omega)$.

In order to prove this lemma, we need a definition and an easy fact.

Definition 8. A space X is called ω -Lindelöf, if every ω -cover has a countable ω -subcover.

Fact 9. Suppose a space X is Lindelöf in every finite power. Then X is ω -Lindelöf.

PROOF: Suppose X^m is Lindelöf for each $m \in \omega$, and let \mathcal{U} be an ω -cover. Let $F = \{f_1, \ldots, f_n\} \subseteq X$ be finite of cardinality n. Now F is contained in some $U \in \mathcal{U}$. Thus, the point $(f_1, \ldots, f_n) \in H^n$ is contained in $U \times \ldots \times U$. It follows that $\{U \times \ldots \times U : U \in \mathcal{U}\}$ is a cover of X^n and has a countable subcover \mathcal{V} . Let $\mathcal{U}_n = \{U : U \times \ldots \times U \in \mathcal{V}\}$. Then \mathcal{U}_n is a cover of X with the property that every subset of X with cardinality n is contained in some element of \mathcal{U}_n . Thus $\bigcup_{n \in \omega} \mathcal{U}_n$ is a countable ω -subcover of \mathcal{U} .

PROOF OF LEMMA 7: Suppose that the cover \mathcal{U} does not split into two ω -covers. By Fact 9, we can assume without loss of generality that \mathcal{U} is countable, say $\mathcal{U} = \{U_n : n \in \omega\}$. By Lemma 5, this means that whenever we split \mathcal{U} into \mathcal{U}_1 and \mathcal{U}_2 , then exactly one of \mathcal{U}_1 and \mathcal{U}_2 is an ω -cover for H. Now every

¹See e.g. [2, Exercise 2H.5, p. 110], and [3, Theorem 4.1.1, p. 205].

 $^{^{2}}$ See [3, Exercise 1E.6, p. 43].

such partition yields a corresponding partition of ω into A_1 and A_2 defined by $A_i = \{n \in \omega : U_n \in \mathcal{U}_i\}$ for i = 1, 2. For a subset A of ω , let U_A denote the set $\{U_n : n \in A\}$.

Claim 10. $\mathcal{G} = \{A \subseteq \omega : U_A \text{ is an } \omega \text{-cover}\}$ is a nonprincipal ultrafilter over ω .

PROOF: By the choice of \mathcal{U} , we have for $A \subseteq \omega$ either A or $\omega \setminus A$ is in \mathcal{G} . Also, it is clear that \mathcal{G} is closed under supersets.

Thus the only thing we have to prove is that \mathcal{G} has the finite intersection property.

So suppose $A_1, \ldots, A_n \in \mathcal{G}$ and $A_1 \cap \ldots \cap A_n \notin \mathcal{G}$. Then the complement of the left hand side, $(\omega \setminus A_1) \cup \ldots \cup (\omega \setminus A_n)$, is in \mathcal{G} .

By Lemma 5 one of the $\omega \setminus A_i$'s must be in \mathcal{G} , a contradiction to the choice of \mathcal{U} .

This proves that \mathcal{G} has the *fip* and therefore \mathcal{G} is an ultrafilter. Furthermore, an ω -cover cannot consist of one single open set. Thus our ultrafilter is nonprincipal.

Now let us return to the proof of Lemma 7.

Using Lemma 3, we will reach a contradiction by proving that \mathcal{G}^{\bullet} is a Π_1^1 set.

Claim 11. \mathcal{G}^{\bullet} is Π^1_1 in the space 2^{ω} .

PROOF: A set M is in \mathcal{G} iff χ_M is in \mathcal{G}^{\bullet} iff

(1) for all finite subsets F of H, there is an $m \in M$ such that $F \subseteq U_m$,

where $\mathcal{U} = \{U_m : m \in \omega\}$ is our open cover which does not split into two ω -covers. Fix any linear order \leq on H, e.g. the lexicographical order.

Consider a set $F = \{f_1, \ldots, f_n\}$ of cardinality n and suppose, without loss of generality, that $f_1 \leq \cdots \leq f_n$. Then we can view F as a point (f_1, \ldots, f_n) in the product space H^n , and (1) becomes

$$(\forall n)(\forall F \in H^n)(\exists m \in M)(F \in (U_m)^n).$$

But this formula is clearly Π_1^1 .

This proves the claim and hence Lemma 7 is proved.

The following two observations are due to A. Arhangel'skii, who kindly permitted us to include them in this paper.

Lemma 12. The property $Split(\Omega, \Omega)$ is preserved under continuous surjections.

PROOF: Let $f: X \to Y$ be a continuous surjection from a topological space X onto a topological space Y. Suppose X satisfies $Split(\Omega, \Omega)$. Let \mathcal{V} be an ω -cover of Y. Then clearly $\mathcal{U} = \{f^{-1}[V] : V \in \mathcal{V}\}$ is an ω -cover of X. Split \mathcal{U} into two ω -covers \mathcal{U}_1 and \mathcal{U}_2 . Define $\mathcal{V}_i = \{f[U] : U \in \mathcal{U}_i\}$ for i = 1, 2. We claim that \mathcal{V}_1 and \mathcal{V}_2 are ω -covers of Y. Consider without loss of generality i = 1.

First note that \mathcal{V}_1 is an open cover because of its very definition and because f is onto.

 \square

 \square

Now let $G \subseteq Y$ be finite. Choose some finite $F \subseteq X$ whose image under f is G.

Now F is covered by some $U \in \mathcal{U}_1$. But then G = f[F] is covered by $V = f[U] \in \mathcal{V}_1$. Thus \mathcal{V}_1 is an ω -cover and similarly \mathcal{V}_2 is. We conclude that Y satisfies $Split(\Omega, \Omega)$.

we conclude that T satisfies $Spin(\Omega, \Omega)$.

Note that since H and $\omega \omega$ are homeomorphic, the continuous images of H are exactly the analytic spaces. Thus we get as an immediate consequence of Lemmas 4 and 12.

Corollary 13. Every analytic space satisfies $Split(\Omega, \Omega)$.

Let us note that the proof of Lemma 7 implies that

Lemma 14 ([ZF]). If X is a space and \mathcal{U} is an ω -cover of \mathcal{U} that cannot be split, then there exists a nonprincipal ultrafilter on \mathcal{U} .

Given the existence of an ultrafilter over ω , we can construct an example for a space not satisfying $Split(\Omega, \Omega)$.

Example 15. Let $\mathcal{F} \subseteq \wp(\omega)$ be a nonprincipal ultrafilter over ω . Then $F^{\bullet} = \{\chi_M : M \in \mathcal{F}\} \subseteq 2^{\omega}$ does not satisfy $Split(\Omega, \Omega)$.

PROOF: Let $U_n = \{b \in \mathcal{F} : n \in b\}$ and $\mathcal{U} = \{U_n : n \in \omega\}.$

Let $A = \{a_1, \ldots, a_k\}$ be a finite subset of \mathcal{F} . Then $a = a_1 \cap \ldots \cap a_k$ is nonempty. Pick $n \in a$. Then a_1, \ldots, a_k are in U_n . Thus \mathcal{U} is an ω -cover of \mathcal{F} .

Now suppose $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2$ is a disjoint partition of \mathcal{U} . Let $a = \{n \in \omega : U_n \in \mathcal{U}_1\}$. Either a or $\omega \setminus a$ is in \mathcal{F} . Without loss of generality suppose that a is. But a is not covered by \mathcal{U}_2 . This proves that \mathcal{U} does not split into two disjoint ω -covers and hence \mathcal{F} does not satisfy $Split(\Omega, \Omega)$.

Thus the Axiom of Choice implies the existence of a space without $Split(\Omega, \Omega)$.

On the other hand, Andreas Blass constructed in [4] a model of ZF without any nonprincipal ultrafilter. In this model, every topological space will satisfy $Split(\Omega, \Omega)$.

References

- Just W., Miller A., Scheepers M., Szeptycki P., The combinatorics of open covers, Topology and its Applications, to appear.
- [2] Moschovakis Y.N., Descriptive Set Theory, North Holland, 1980.
- [3] Bartoszyński T., Judah H., Set Theory, A.K. Peters, 1995.
- [4] Blass A., A model without ultrafilters, Bull. Acad. Polon. Sci. 25 (1977), no. 4, 329–331.

DEPARTMENT OF MATHEMATICS, OHIO UNIVERSITY, ATHENS, OH 45701-2979, USA

E-mail: just@bing.math.ohiou.edu tanner@bing.math.ohiou.edu

(Received June 30, 1996)