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On two results of Singhof

Augustin-Liviu Mare

Abstract. For a compact connected semisimple Lie group G we shall prove two results
(both related with Singhof’s paper [13]) on the Lusternik-Schnirelmann category of the
adjoint orbits of G, respectively the 1-dimensional relative category of a maximal torus
T in G. The techniques will be classical, but we shall also apply some basic results
concerning the so-called A-category (cf. [14]).
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The following results were proved in [13] by methods which combine in an inge-
nious manner the classical theories of Lie groups and of Lusternik-Schnirelmann-
type categories.

Theorem A. Let G be a compact connected Lie group and T a maximal torus
of G. Then

cat G/T =
1

2
dimG/T + 1.

For an arbitrary finitely generated Abelian group π, denote by ϕ(π) the smallest
number n such that π is the direct sum of n cyclic groups.

Theorem B. Let G be a compact connected Lie group and T a maximal torus
of G. Then

catG T = ϕ(π1G) + 1.

Consider now g the Lie algebra of G. Take X ∈ g and denote by GX the Ad-
stabilizer ofX (note thatX is regular iffGX is a maximal torus in G). The adjoint
orbits AdG.X were during the last years frequently considered and studied, both
from the topological point of view (mention only the detailed descriptions of the
cohomology ring given in [1] or [2]) and from differential perspective (they repre-
sent fundamental examples of the so-called theory of isoparametric submanifolds,
recently initiated by R. Palais and C.L. Terng). In connection with Theorem A
we shall prove:

Theorem 1. Let G be a compact connected semisimple Lie group and X an

element of its Lie algebra. Then

cat(AdG.X) =
1

2
dim(AdG.X) + 1.



380 A.-L.Mare

In [6] Fox considers for the first time the so-called q-dimensional relative
(homotopical) category associated to an inclusion. Many other developments
were obtained afterwards; among them, the notion of A-category (cf. [4, Exam-
ples 1.2(3)]). The following result concerning the 1-dimensional category will be
proved in the second section.

Theorem 2. Let G be a compact connected semisimple Lie group and T a ma-
ximal torus. Then

π1 − catG T = ϕ(π1G) + 1.

1. The Lusternik-Schnirelmann category of G/GX

Recall that the Lusternik-Schnirelmann category of a topological space M is
the number catM equal to the least number of sets in an open finite covering ofM
with subsets contractible inM ; if such a covering does not exist, take catM =∞.
Both homotopical and differential aspects are concentrated in this notion; on the
one hand, it is a homotopical invariant, and on the other hand, when M is a
compact differentiable manifold, the number of critical points of a real function
on M cannot be less than catM .
Let us consider G a compact connected Lie group, T ⊆ G a maximal torus and

t ⊆ g their Lie algebras.

Proposition 1. For any X belonging to g, the adjoint orbit AdG.X is simply
connected. Equivalently the stabilizer GX is connected.

Proof: Lt X0 ∈ t be regular. Its orbit AdG.X0 is a full isoparametric sub-
manifold of g, with uniform multiplicity 2. The orbit foliation {AdG.X |X ∈ t}
is just the parallel foliation of AdG.X0 on g (cf. [9, Example 6.5.6]). Since all
multiplicities are greater than 1, by Theorem 5.7 of [8], any leaf AdG.X is simply
connected, and the proof is finished. �

The following result is mentioned in A. Borel’s work [1]: the quotients of two
locally isomorphic compact connected Lie groups G and G′ by maximal tori T
and T ′ are homeomorphic (see p. 188). We shall generalize it as follows:

Proposition 2. Let p : G̃ → G be the universal group covering of the compact

connected Lie group G of Lie algebra g, X an element of g, G̃X and GX the

stabilizers of X . Then

(a) p(G̃X ) = GX ,

(b) the induced map ̺ : G̃/G̃X → G/GX is a homeomorphism.

Proof: (a) One can easily see that p(G̃X) ⊆ GX . It follows that p | eGX
: G̃X →

GX is a local isomorphism and becauseGX is connected, it is generated by p(G̃X ).

So p(G̃X) = GX .
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(b) By the classical facts: ker p ⊆ Z(G̃) (cf. [11, Lemma 6, p. 195]), Z(G̃) ⊆ T

(cf. [3, Theorem 2.3, Chapter IV]) and T ⊆ G̃X , the injectivity of ̺ is clear. So
̺ is a homeomorphism. �

Remark that the homogeneous space G/GX depends only on g and X , but not
on the involved connected Lie group G. This fact offers the possibility to deduce
informations about the cohomology ring of G/GX from Theorem III

′′ of [2], even
without the hypothesis G simply connected.

Proposition 3. Let G be a compact connected semisimple Lie group of Lie
algebra g and X an element of G. Then the ring H∗(G/GX , Q) is generated by
1 and H2(G/GX , Q).

Notice that the above mentioned orbit G/GX is of dimension n = dimG −
rank G− 2m, where m is the number of hyperplanes of the infinitesimal diagram
containing X ; it is also orientable (being simply connected) and so Hn(G/GX , Q)
= Q. The Q-cohomological length will be then cuplength (G/GX ) ≥

n
2 , and so

cat G/GX ≥ n
2 + 1.

On the other hand, G/GX being simply connected, by Corollary 3.3 of [7] one
obtains cat(G/GX ) ≤

n
2 + 1.

In the end of the section, let us take for instance the homogeneous space of
the form G/GX from [12] and calculate their Lusternik-Schnirelmann category
(n, n1, . . . , nk will be positive integers,

∑
nj = n).

(a) The complex flag manifold W (n1, . . . , nk) = U(n)/U(n1)×· · ·×U(nk) has

the Lusternik-Schnirelmann category equal to 12
(
n2 −

∑
j n2j

)
+1. Consequently,

for the complex Grassmann manifold Gk,n = U(n)/U(k) × U(n − k), we have
cat Gk,n = k(n − k) + 1.

(b) cat SO(2n)/U(n1) × · · · × U(nk) =
1
2

[
n(2n − 1) −

∑
n2j

]
+ 1 and so the

symmetric space SO(2n)/U(n) will have cat SO(2n)/U(n) = 12n(n − 1) + 1.

(c) cat SO(2n+ 1)/U(n1)× · · · × U(nk)× 1 =
1
2

[
n(2n+ 1)−

∑
n2j

]
+ 1.

(d) cat Sp(n)/U(n1)× · · · × U(nk) =
1
2

[
n(2n+ 1)−

∑
n2j

]
+ 1.

The symmetric space Sp(n)/U(n) will have cat Sp(n)/U(n) =
n(n+1)
2 + 1.

2. The 1-dimensional category of T in G

By technical reasons, we prefer to transpose the general definition ofA-category
and some basic results concerning it (cf. [4]) to the older 1-dimensional category
(see [6] or [5]).
Denote by C1 the class of 1-connected CW-complexes. Define the C1-category

of a map f : N → M to be the number C1 − cat(f), the smallest cardinality k
of a finite numerable covering {N1, . . . , Nk} of N such that for each j = 1, . . . , k
the restriction f |Nj : Nj → M factors through some space in C1 up to homotopy
(i.e. there exist Cj ∈ C1 and maps αj : Nj → Cj , βj : Cj → M such that βjαj
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is homotopic to f |Nj
). For a subspace N of M , the relative 1-dimensional

category of N in M will be π1 − catM N = C1 − cat(N →֒ M).
Let G be again a compact connected Lie group and T ⊆ G a maximal torus.

Consider the decomposition of π1G as π1G = F ⊕q ⊕primeTq , where F is the free
part and Tq the subgroup of all order q

m (m ≥ 1) elements; denote by r = rank F ,
rq = rank Tq. A classical result says that the inclusion i : T →֒ G induces i# :

π1T → π1G surjective. It then follows that i∗ : H1(G, Zq)→ H1(T, Zq) is injec-

tive, for any prime q. By the Hurewicz isomorphism, H1(G, Zq) ∼= Hom(π1G, Zq)
is isomorphic to a finite direct sum ⊕Zq with r + rq terms. Since H∗(T, Zq) is

an exterior algebra, there exist in H1(G, Zq) a number of r + rq elements whose
product does not go to zero under i∗. One can now use Proposition 3.1 of [4]:
for any C ∈ C1 and any f : C → G, the map f∗ : H1(G, Zq) → H1(C, Zq) is
identically zero, and so

π1 − catG T = C1 − cat(T →֒ G) ≥ r + rq + 1.

But choosing q with rq maximal, r + rq will be the minimal number of terms
for a decomposition of π1G in a direct sum of cyclic groups, the number that
Singhof denotes by ϕ(π1G). We have just proved:

Lemma 1. Let G be a compact connected Lie group and T ⊆ G a maximal
torus. Then π1 − catG T ≥ ϕ(π1G) + 1.

It remains to show that:

Lemma 2. Let G be a compact connected semisimple Lie group and T ⊆ G
a maximal torus. If π1G admits a decomposition as a direct sum of k cyclic
groups, then π1 − catG T ≤ k + 1.

The proof is based on the relation between the 1-dimensional and sectional
categories (see Section 4 of [4] for the definition and basic properties concerning
the sectional category).

Let G̃ be the universal covering group of G. One can consider G = G̃/C,

with C ⊆ Z(G̃) a finite central subgroup; moreover π1G ∼= C (cf. [3, Chapter V,

Remark 7.13]). Any maximal torus of G is of the form T̃ /C, T̃ maximal torus

in G̃.
The map p : G̃ → G is C1-universal (in the sense of [4]). Consequently π1 −

catG T̃ /C = secat(p′), where p′ : U ′ → T̃ /C is the pullback over i : T̃ /C →֒ G of

the Hurewicz fibration associated to p. Here U ′ = {(g, α, tC) ∈ G̃ × Top(I, G) ×

T̃ /C |α(0) and α(1) = tC} and p′(g, α, tC) = tC. But considering h : T̃ → U ′,
h(t) = (t, etC , tC), where etC is the constant loop in G, we have secat(p′) ≤

secat(p′h) (notice that g = p′h : T̃ → T̃ /C is the natural map). Because C is

a direct sum of k cyclic subgroups of T̃ , one can find a torus T̃C , embedded as a

subgroup of T̃ , dim T̃C ≤ k. There also exist an another toral subgroup T̃ ′ ⊆ T̃ ,

T̃ = T̃C×T̃ ′. It follows that T̃ /C = T̃C/C×T̃ ′ and g′×1 eT ′
: T̃C×T̃ ′ → T̃C/C×T̃ ′,
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g′ : T̃C → T̃C/C the natural map. Conclude by secat(g′ × 1 eT ′
) = secat(g′) ≤

1 + dim T̃C/C ≤ k + 1 (cf. [4, Corollary 4.7]).
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