Sets of determination for solutions of the Helmholtz equation

Jarmila Ranošová

Abstract. Let $\alpha > 0$, $\lambda = (2\alpha)^{-1/2}$, S^{n-1} be the (n-1)-dimensional unit sphere, σ be the surface measure on S^{n-1} and $h(x) = \int_{S^{n-1}} e^{\lambda \langle x, y \rangle} d\sigma(y)$.

We characterize all subsets M of \mathbb{R}^n such that

$$\inf_{x \in \mathbb{R}^n} \frac{u(x)}{h(x)} = \inf_{x \in M} \frac{u(x)}{h(x)}$$

for every positive solution u of the Helmholtz equation on \mathbb{R}^n . A closely related problem of representing functions of $L_1(S^{n-1})$ as sums of blocks of the form $e^{\lambda\langle x_k, . \rangle}/h(x_k)$ corresponding to points of M is also considered. The results provide a counterpart to results for classical harmonic functions in a ball, and for parabolic functions on a slab, see References.

Keywords: Helmholtz equation, set of determination, decomposition of L^1 Classification: 35J05, 31B10

Preliminaries

In this paper the following notation is used: Small letters, such as x, y, will denote points in \mathbb{R}^n , S^{n-1} the (n-1)-dimensional unit sphere and σ the surface measure on S^{n-1} .

Consider, for $\alpha > 0$ fixed, the Helmholtz equation

$$\Delta u - 2\alpha u = 0 \quad \text{on } \mathbb{R}^n.$$

Theorem A. A function u on \mathbb{R}^n is a difference of two positive solutions of the Helmholtz equation if and only if there is a signed measure μ_u on S^{n-1} such that for all $x \in \mathbb{R}^n$

$$\int_{S^{n-1}} e^{\lambda \langle x, y \rangle} \, d|\mu_u|(y) < \infty$$

and

Support of the Charles University Grant Agency (GAUK 186/96) is gratefully acknowledged

 $u(x) = \int\limits_{S^{n-1}} e^{\lambda \langle x, y \rangle} \, d\mu_u(y),$

where $\lambda = (2\alpha)^{-1/2}$.

The solution u is positive if and only if μ_u is a measure.

PROOF: This representation theorem can be proved by means of Martin boundary, see [8]. For a different proof, see [6]. \Box

The solution corresponding to σ will be denoted by h.

For $\nu \in \mathbb{R}$ the function I_{ν} is "the Bessel function with an imaginary argument" of the order ν regular at zero. (For details see any book about Bessel functions, for example [14, p. 17].)

Then

$$h(x) = C\lambda^{(2-n)/2} \|x\|^{(2-n)/2} I_{(n-2)/2}(\lambda \|x\|)$$

with C chosen so that $h(0) = \omega_n$, the area of the unit sphere in \mathbb{R}^n . (See [6, p. 261].)

For f, g two functions on \mathbb{R}^n , $f \sim g$ will mean that $\lim_{\|x\|\to\infty} \frac{f(x)}{g(x)} = 1$.

As $I_{\nu}(||x||) \sim (2\pi ||x||)^{-1/2} e^{||x||}$ (see for example [14, pages 17 and 203]), we have that

$$\lim_{\|x\|\to\infty} \frac{h(x)\|x\|^{(n-1)/2}}{e^{\lambda}\|x\|} = C\lambda^{(2-n)/2}(2\pi)^{-1/2}$$

this constant will be denoted by κ .

A solution u of the Helmholtz equation will be called h-bounded if there exist real constants c_1 and c_2 such that $c_1h(x) \leq u(x) \leq c_2h(x)$ for all $x \in \mathbb{R}^n$.

Moreover, a solution u of the Helmholtz equation will be called simple if there exists a σ -measurable subset A of S^{n-1} such that $u(x) = \int_{A} e^{\lambda \langle x, y \rangle} d\sigma(y)$ for any $x \in \mathbb{R}^n$.

Definition. For $y \in S^{n-1}$, $b \in \mathbb{R}^+$, $k \in \mathbb{R}^+$ define the admissible region A(y, b) to be

$$\{x \in \mathbb{R}^n; \|x - \|x\|y\| < b\|x\|^{\frac{1}{2}}\}\$$

and the truncated admissible region $A^k(y, b)$ to be

$$A(y,b) \cap \{x \in \mathbb{R}^n; \|x\| > k\}.$$

Let $M \subset \mathbb{R}^n$ and $y \in S^{n-1}$. The point y will be called a b-admissible limit point of M if for any $k \in \mathbb{R}^+$ the set $M \cap A^k(y, b)$ is not empty. The point y will be called an admissible limit point of M if there exists $b \in \mathbb{R}^+$ such that y is a b-admissible limit point of M.

A function f on \mathbb{R}^n is said to converge admissibly at y if, for all b > 0, f restricted to A(y, b) has a limit at ∞ .

We will write $\operatorname{A-lim}_{x \to y} f(x)$.

The space \mathbb{R}^n endowed with the sheaf of solutions of the Helmholtz equation is a strong harmonic space in the sense of Bauer, see [2, p. 86].

Terms as harmonic functions, superharmonic functions and reduced functions are related to this harmonic space and have a standard meaning.

This harmonic space satisfies conditions (1)-(10) in [13], see [13], and so minimal thinness at points of S^{n-1} is well defined and the Fatou-Naïm-Doob theorem holds. For the reader's convenience the basic facts are presented here.

Definition. Let $M \subset \mathbb{R}^n$, v positive superharmonic function on D. The reduction of v on M is defined as

 $R_v^M = \inf\{u; u \ge v \text{ on } M, u \text{ is positive superharmonic function on } \mathbb{R}^n\}.$

Let $M \subset \mathbb{R}^n$ and $y \in S^{n-1}$. The set M is minimal thin at y if

$$R^M_{e^{\lambda\langle.,y\rangle}} \neq e^{\lambda\langle.,y\rangle}.$$

The minimal fine filter at y is filter: $\mathcal{F}(y) = \{M \subset \mathbb{R}^n; \mathbb{R}^n \setminus M \text{ is minimal thin at } y\}.$

A function f converging along $\mathcal{F}(y)$ is said to have a minimal fine limit at y. This limit will be denoted mf-lim f(x).

Theorem B (Limit theorems). Let u be a positive solution and v be a strictly positive solution of the Helmholtz equation defined on all \mathbb{R}^n and μ_u , μ_v be their representing measures on S^{n-1} .

Then the following equalities hold:

$$\operatorname{A-lim}_{x \to y} \frac{u(x)}{v(x)} = \frac{d\mu_u}{d\mu_v}(y)$$

for μ_v -almost all points y of S^{n-1} (admissible convergence);

$$\inf_{x \to y} \lim_{v(x)} \frac{u(x)}{v(x)} = \frac{d\mu_u}{d\mu_v}(y)$$

for μ_v -almost all points y of S^{n-1} (the Fatou-Naïm-Doob limit theorem).

PROOF: See [9, p. 85] and [13].

Remark. For v = h, the admissible convergence follows from the minimal fine convergence (even in a more general situation); see [9, p. 84].

Let $x \in \mathbb{R}^n$, $b, c, k \in \mathbb{R}^+$ and $M \subset \mathbb{R}^n$. In this paper, the following subsets of \mathbb{R}^n will be of special interest:

$$\begin{split} B(x,c) &= \{ z \in \mathbb{R}^n; \| z - x \| \leq c \}, \\ S(x,b,k) &= \{ z \in \mathbb{R}^n; \| z \| = k \| x \| \text{ and } \| z - kx \| < k^{\frac{1}{2}} b \| x \|^{\frac{1}{2}} \}, \\ M_{S,b,k} &= \cup_{x \in M} S(x,b,k), \\ S(x,b) &= S(x,b,1), \\ M_{S,b} &= \cup_{x \in M} S(x,b), \\ cM &= \{ z \in \mathbb{R}^n; \text{ there exists } x \in M \text{ such that } z = c.x \}. \\ \text{Let } x, y \in \mathbb{R}^n, \, \alpha_{x,y} \text{ will denote the angle between } x \text{ and } y. \end{split}$$

The main results

Theorem. Let $M \subset \mathbb{R}^n$. Then the following statements are equivalent: (i)

$$\inf_{x \in \mathbb{R}^n} \frac{u(x)}{h(x)} = \inf_{x \in M} \frac{u(x)}{h(x)}$$

for all simple solutions u of the Helmholtz equation;

(ii)

$$\inf_{x \in \mathbb{R}^n} \frac{u(x)}{h(x)} = \inf_{x \in M} \frac{u(x)}{h(x)}$$

for all h-bounded solutions u of the Helmholtz equation;

(iii)

$$\inf_{x \in \mathbb{R}^n} \frac{u(x)}{h(x)} = \inf_{x \in M} \frac{u(x)}{h(x)}$$

for all positive solutions u of the Helmholtz equation;

(iv) the set of points of S^{n-1} which are not admissible limit points of M has σ -measure zero;

(v) for any $b \in \mathbb{R}^+$, the set of points of S^{n-1} which are not b-admissible limit points of M has σ -measure zero;

(vi) there exist $b, k \in \mathbb{R}^+$, such that the set of points of S^{n-1} at which $M_{S,b,k}$ is minimal thin has σ -measure zero;

(vii) for any $b, k \in \mathbb{R}^+$, the set of points of S^{n-1} at which $M_{S,b,k}$ is minimal thin has σ -measure zero;

(viii) if ν is a countably finite Borel measure with $\operatorname{supp}(\nu) = \overline{M}$, then for every $f \in L_1(S^{n-1})$ there exists $\Phi \in L_1(\nu)$ such that

(1)
$$f(y) = \int_{\mathbb{R}^n} \Phi(x) \frac{e^{\lambda \langle x, y \rangle}}{h(x)} d\nu(x)$$

for σ -almost all y and

$$||f||_{L_1(S^{n-1})} = \inf \{ ||\Phi||_{L_1(\nu)}; (1) \text{ holds for some } \Phi \in L_1(\nu) \}$$

(ix) for every $f \in L_1(S^{n-1})$, there is a sequence $\{x_k\}$, $x_k \in M$ and $\{\lambda_k\} \in l_1$ such that

(2)
$$f(y) = \sum_{k=1}^{\infty} \lambda_k \frac{e^{\lambda \langle x_k, y \rangle}}{h(x_k)}$$

for σ -almost all y and

$$||f||_{L_1(S^{n-1})} = \inf\{\sum_{k=1}^{\infty} |\lambda_k|; (2) \text{ holds for some } \{x_k\} \text{ in } M\};$$

(x) if ν is a countably finite Borel measure with $\operatorname{supp}(\nu) = \overline{M}$, then for every $f \in L_1(S^{n-1})$ there exists $\Phi \in L_1(\nu)$ such that

(3)
$$f(y) = \kappa^{-1} \int_{\mathbb{R}^n} \Phi(x) e^{\lambda \|x\| (\cos \alpha_{x,y} - 1)} \|x\|^{(n-1)/2} \, d\nu(x)$$

for σ -almost all y;

moreover for any $c \in \mathbb{R}^+$ there exists a function Φ satisfying (3), such that $\Phi = 0$ on B(0, c), and

 $\|f\|_{L_1(S^{n-1})} = \inf\{\|\Phi\|_{L_1(\nu)}; (3) \text{ holds for some } \Phi \in L_1(\nu), \Phi = 0 \text{ on } B(0, c)\};$

(xi) for every $f \in L_1(S^{n-1})$ and for any $c \in \mathbb{R}^+$, there is a sequence $\{x_k\}$, $x_k \in M$, $||x_k|| > c$ and $\{\lambda_k\} \in l_1$ such that

(4)
$$f(y) = \kappa^{-1} \sum_{k=1}^{\infty} \lambda_k e^{\lambda \|x_k\| (\cos \alpha_{x,y} - 1)} \|x\|^{(n-1)/2}$$

for σ -almost all y; such that

$$||f||_{L_1(S^{n-1})} = \inf\{\sum |\lambda_k|; (4) \text{ holds for some } \{x_k\} \text{ in } M \setminus B(0, c)\}.$$

Remark. A set satisfying the condition (i) will be called a set of determination.

Proof of Theorem

We will need the following theorem:

Theorem 1. Let u be a positive solution of the Helmholtz equation on \mathbb{R}^n and μ_u its representing measure on S^{n-1} . Then

$$\inf_{x \in \mathbb{R}^n} \frac{u(x)}{h(x)} = \operatorname{ess\,inf}_{y \in S^{n-1}} \frac{d\mu_u}{d\sigma}(y).$$

If u is an h-bounded function then

$$\sup_{x \in \mathbb{R}^n} \frac{u(x)}{h(x)} = \operatorname{ess\,sup}_{y \in S^{n-1}} \frac{d\mu_u}{d\sigma}(y) \qquad \text{and} \qquad \sup_{x \in \mathbb{R}^n} \frac{|u(x)|}{h(x)} = \operatorname{ess\,sup}_{y \in S^{n-1}} |\frac{d\mu_u}{d\sigma}(y)|.$$

PROOF: By the Lebesgue-Radon-Nikodym theorem the existence of measures μ_a and μ_s , such that $\mu_u = \mu_a + \mu_s$, $\mu_a \leq \sigma$ and $\mu_s \perp \sigma$, is guaranteed.

Let
$$f_u = \frac{d\mu_u}{d\sigma}$$
. Denote $k_1 = \inf_{x \in \mathbb{R}^n} \frac{u(x)}{h(x)}$ and $k_2 = \operatorname{ess\,inf}_{y \in S^{n-1}} f_u(y)$

Obviously,

$$u(x) = \int_{S^{n-1}} e^{\lambda \langle x, y \rangle} d(f_u \sigma + \mu_s)(y) = \int_{S^{n-1}} f_u(y) e^{\lambda \langle x, y \rangle} d\sigma(y) + \int_{S^{n-1}} e^{\lambda \langle x, y \rangle} d\mu_s(y)$$

and, as the last term is positive,

$$u(x) \ge \int_{S^{n-1}} f_u(y) e^{\lambda \langle x, y \rangle} \, d\sigma(y) \ge k_2 \int_{S^{n-1}} e^{\lambda \langle x, y \rangle} \, d\sigma(y) = k_2 h(x)$$

for all $x \in \mathbb{R}^n$. This gives $k_1 \geq k_2$.

On the other hand $u(x)-k_1h(x)$ is a positive solution of the Helmholtz equation and thus $\mu_u - k_1\sigma$ is a measure, so $(f_u - k_1)\sigma + \mu_s$ is a measure. Since $\mu_s \perp \sigma$, $(f_u - k_1)\sigma$ is a measure and consequently essimf $f_u(y) \ge k_1$, or $k_2 \ge k_1$.

The proof of the rest of the theorem is analogous.

Proof of equivalence of (i), (ii), (iii), (iv) and (v).

As the implications $(v) \Rightarrow (iv)$, $(ii) \Rightarrow (i)$ and $(iii) \Rightarrow (ii)$ are trivial (in the last implication just take $u - c_1 h$ instead of u), we will prove $(iv) \Rightarrow (iii)$ and $(i) \Rightarrow (v)$.

Theorem 2. Let M be a subset of \mathbb{R}^n and σ -almost every point $y \in S^{n-1}$ be an admissible limit point of M. Then

$$\inf_{x \in \mathbb{R}^n} \frac{u(x)}{h(x)} = \inf_{x \in M} \frac{u(x)}{h(x)}$$

for every positive solution u of the Helmholtz equation on \mathbb{R}^n and

$$\sup_{x \in \mathbb{R}^n} \frac{|u(x)|}{h(x)} = \sup_{x \in M} \frac{|u(x)|}{h(x)}$$

for every h-bounded solution u of the Helmholtz equation on \mathbb{R}^n .

PROOF: The assertion follows immediately from the previous theorem and the limit theorem. \Box

Lemma 1. Let b be a positive number and $x \in \mathbb{R}^n$. Denote C(x, b) the set of all $y \in S^{n-1}$ such that $x \in A(y, b)$. Then

$$C(x,b) = \{ y \in S^{n-1}; \|y - \frac{x}{\|x\|} \| < \frac{b}{\sqrt{\|x\|}} \}$$

and there exists a positive number c such that

$$\int_{C(x,b)} e^{\lambda \langle x, y \rangle} \, d\sigma(y) \ge c.h(x),$$

whenever $x \in \mathbb{R}^n \setminus \{0\}$.

PROOF: See [9, p. 84].

Theorem 3. Let $M \subset \mathbb{R}^n$ and $b \in \mathbb{R}^+$. If

$$\inf_{x \in \mathbb{R}^n} \frac{u(x)}{h(x)} = \inf_{x \in M} \frac{u(x)}{h(x)}$$

for all simple solutions of the Helmholtz equation, then σ -almost every point $y \in S^{n-1}$ is a b-admissible limit point of M.

PROOF: Suppose that it is not true.

Denote the set $M \cap \{x \in \mathbb{R}^n; \|x\| > k\}$ by M^k and the set of all *b*-admissible limit points of M by M_b . As $M_b = \bigcap_{k \in \mathbb{N}} (\bigcup_{x \in M^k} C(x, b))$ is a G_δ set, it is a σ -measurable subset of S^{n-1} . Then its complement M'_b is also measurable and by our assumption $\sigma(M'_b) > 0$.

Recall that for $k \in \mathbb{N}$ and $y \in S^{n-1}$, $A^k(y, b)$ denotes the truncated admissible region $A(y, b) \cap \{x \in \mathbb{R}^n; \|x\| > k\}$. Then, for every $y \in M'_b$, there is $k_y \in \mathbb{N}$ such that $A^{k_y}(y, b) \cap M$ is empty. Denote by D_k the set of $y \in M'_b$ for which $A^k(y, b) \cap M$ is empty.

As D_k is a complement of $\bigcup_{x \in M^k} C(x, b)$, it is a σ -measurable subset of S^{n-1} .

Since $\bigcup_{k=1}^{\infty} D_k = M'_b$, the Lebesgue measure of at least one of the sets D_k , say of D_{k_0} , is strictly positive. Denote this set by D and its complement $(S^{n-1}) \setminus D$ by D'.

It is clear that $C(x,b) \subset D'$, whenever $x \in M^k$.

For any measurable set $A \subset S^{n-1}$ we define

$$u_A(x) = \int_A e^{\lambda \langle x, y \rangle} \, d\sigma(y), \ x \in \mathbb{R}^n.$$

So u_A is a simple solution of the Helmholtz equation. By Theorem 1 we get that if $\sigma(A) > 0$, then $\sup_{x \in \mathbb{R}^n} \frac{u_A(x)}{h(x)} = 1$ and if $\sigma(A') > 0$, then $\inf_{x \in \mathbb{R}^n} \frac{u_A(x)}{h(x)} = 0$.

315

The set D has a positive measure, so the function u_{D^\prime} is a simple solution of the Helmholtz equation and

$$\inf_{x \in \mathbb{R}^n} \frac{u_{D'}(x)}{h(x)} = 0.$$

But C(x, b) is a subset of D' for every $x \in M^k$. Now from the above lemma there exists a constant c such that

$$\frac{u_{D'}(x)}{h(x)} \ge \frac{u_{C(x,b)}(x)}{h(x)} \ge c$$

for every $x \in M^k$.

We arrive at

$$\inf_{x \in M^k} \frac{u_{D'}(x)}{h(x)} \ge c.$$

Now it will be shown that

$$\inf_{x \in M \setminus M^k} \frac{u_{D'}(x)}{h(x)} > 0.$$

As h is positive and continuous and B(0,k) is compact, there exists $c_1 \in \mathbb{R}^+$ such that $h(x) \leq c_1$ for all $x \in B(0,k)$.

It follows

$$u_{D'}(x) = \int_{D'} e^{\lambda \langle x, y \rangle} \, d\sigma(y) \ge \int_{D'} e^{-\lambda \|x\| \cdot \|y\|} \, d\sigma(y) = \int_{D'} e^{-\lambda \|x\|} \, d\sigma(y) = \sigma(D') \cdot e^{-\lambda \|x\|} \ge \sigma(D') \cdot e^{-\lambda k}.$$

Let us denote this positive constant by c_2 .

Thus

$$\inf_{x \in B(0,k)} \frac{u_{D'}(x)}{h(x)} \ge \frac{c_2}{c_1}.$$

Consequently,

$$\inf_{x \in M} \frac{u_{D'}(x)}{h(x)} \ge \min(c, \frac{c_2}{c_1}) > 0,$$

contradicting our assumption.

Proof of (vi) and (vii).

The implication $(vii) \Rightarrow (vi)$ is trivial. Now it will be proved, that $(vi) \Rightarrow (iii)$ and $(v) \Rightarrow (vii)$.

316

Theorem 4. Let $n \in \mathbb{N}$, $b \in \mathbb{R}^+$. Then there exists a positive constant c, such that for every $x \in \mathbb{R}^n$, for every $z \in S(x, b, \frac{1}{2})$ and for every positive solution u of the Helmholtz equation on \mathbb{R}^n ,

$$\frac{u(z)}{h(z)} \ge c\frac{u(x)}{h(x)},$$

and for any $M \subset \mathbb{R}^n$

$$\inf_{x \in M_{S,b,\frac{1}{2}}} \frac{u(x)}{h(x)} \ge c \inf_{x \in M} \frac{u(x)}{h(x)}.$$

PROOF: For the first part, see [9, p. 83]. The second part immediately follows.

Theorem 5. Let $M \subset \mathbb{R}^n$ such that the set of points of S^{n-1} at which M is minimal thin is of σ -measure zero.

Then

$$\inf_{x \in \mathbb{R}^n} \frac{u(x)}{h(x)} = \inf_{x \in M} \frac{u(x)}{h(x)}$$

for all positive solutions u of the Helmholtz equation on \mathbb{R}^n .

PROOF: It follows from Theorem 1 and from the Fatou-Naïm-Doob limit theorem. $\hfill \Box$

Theorem 6. Let $M \subset \mathbb{R}^n$ and $b \in \mathbb{R}^+$ such that the set of points of S^{n-1} at which $M_{S,b,\frac{1}{\alpha}}$ is minimal thin is of σ -measure zero.

Then there exists a constant c depending only on b and n such that

$$\inf_{x \in \mathbb{R}^n} \frac{u(x)}{h(x)} \ge c \inf_{x \in M} \frac{u(x)}{h(x)}$$

for all positive solutions u of the Helmholtz equation on \mathbb{R}^n .

PROOF: This theorem is obtained by combining Theorems 4 and 5.

Theorem 7. Let $M \subset \mathbb{R}^n$. Then the following statements are equivalent: (i)

$$\inf_{x \in \mathbb{R}^n} \frac{u(x)}{h(x)} = \inf_{x \in M} \frac{u(x)}{h(x)}$$

for all positive solutions u of the Helmholtz equation on \mathbb{R}^n ;

(ii) there exists c > 0 such that

$$\inf_{x \in \mathbb{R}^n} \frac{u(x)}{h(x)} \ge c \inf_{x \in M} \frac{u(x)}{h(x)}$$

 \square

 \square

for all positive solutions u of the Helmholtz equation on \mathbb{R}^n .

PROOF: (i) \Rightarrow (ii) is clear, put c = 1.

(ii) \Rightarrow (i) Let us suppose that there exists a set M satisfying (ii), but not (i). Then c in (ii) belongs to (0, 1).

Let u be a positive solution of the Helmholtz equation for which (i) is not true.

Denote
$$\inf_{x \in \mathbb{R}^n} \frac{u(x)}{h(x)} = c_1$$
 and $\inf_{x \in M} \frac{u(x)}{h(x)} = c_2$.

Thus by our assumptions, $c_2 > c_1 \ge c.c_2$.

Let $v(x) = u(x) - c_1 h(x)$ for $x \in \mathbb{R}^n$.

Then v is a positive solution of the Helmholtz equation and

$$\inf_{x \in \mathbb{R}^n} \frac{v(x)}{h(x)} = c_1 - c_1 = 0, \quad \text{and} \quad \inf_{x \in M} \frac{v(x)}{h(x)} = c_2 - c_1 > 0,$$

which is a contradiction with (ii).

Theorem 8. Let $M \subset \mathbb{R}^n$ and $b \in \mathbb{R}^+$ such that the set of points of S^{n-1} at which $M_{S,b,\frac{1}{2}}$ is minimal thin has σ -measure zero.

 \square

Then

$$\inf_{x \in \mathbb{R}^n} \frac{u(x)}{h(x)} = \inf_{x \in M} \frac{u(x)}{h(x)}$$

for all positive solution u of the Helmholtz equation on \mathbb{R}^n .

PROOF: The result is obtained by combining two previous theorems.

Theorem 9. Let $M \subset \mathbb{R}^n$, $y \in S^{n-1}$ and $b \in \mathbb{R}^+$. If y is an admissible limit point of M, then $M_{S,b}$ is not minimal thin at y.

PROOF: Let $\{x_k\}$ be a sequence of points of M converging to y admissibly — it means that there exists $b_1 \in \mathbb{R}^+$ such that $\{x_k\}$ converges b_1 -admissibly.

Then a straightforward calculation gives that $S(x_k, b) \subset A(y, b_1 + b)$.

Since the Helmholtz equation is invariant with respect to linear isometries of \mathbb{R}^n , the harmonic measure μ_0 (for the notion of the harmonic measure, see [2, p. 120]) on $\partial B(0, r)$ corresponding to 0, is invariant with respect to isometries of $\partial B(0, r)$ and hence it is a multiple of the surface measure σ_n on $\partial B(0, r)$.

As $\mu_0(\partial B(0,r)) = \frac{h(0)}{h(r,e_1)}$ and $h(0) = \omega_n$ we have that for any σ -measurable subset E of $\partial B(0,r)$

$$\mu_0(E) = \frac{h(0)\sigma_n(E)}{h(r.e_1)\omega_n r^{n-1}} = \frac{\sigma(r^{-1}E)}{h(r.e_1)}.$$

The proof of the theorem is finished in the same way as the proof of Proposition 2.2 in [9, p. 82]; for the reader's convenience it is given here.

Let us denote u_k the solution of the Dirichlet problem on $B(0, ||x_k||)$ with boundary value 1 on $S(x_k, b)$ and 0 on the rest of the boundary.

Hence $u_k(0) = h(||x_k||)^{-1} \sigma(||x_k||^{-1} S(x_k, b)) \sim b^{(n-1)/2} ||x_k||^{-(n-1)/2} h(||x_k||)^{-1}.$ As $h(x) \sim \frac{\kappa e^{\lambda \|x\|}}{\|x\|^{(n-1)/2}}$ (see Preliminaries),

$$u_k(0) \sim \kappa \ b^{(n-1)/2} e^{-\lambda \|x_k\|}$$

Now denote v_k the solution of the Dirichlet problem on $B(0, ||x_k||)$ with boundary value $e^{\lambda \langle x, y \rangle}$ on $S(x_k, b)$ and 0 on the rest of the boundary.

For any $b_0 \in \mathbb{R}^+$ there is a positive constant c_1 such that for all $x \in A(y, b_0)$ $c_1^{-1}e^{\lambda ||x||} \leq e^{\lambda \langle x, y \rangle} \leq c_1 e^{\lambda ||x||}$ whenever $x \in A(y, b_0)$. (Indeed, $0 \leq \lambda(\|x\| - \langle x, y \rangle) = \lambda \|x\| (1 - \langle x', y \rangle) = \frac{1}{2} \lambda \|x\| \|x' - y\|^2 \leq \frac{1}{2} \lambda b_0^2$) where $x' = \frac{x}{\|x\|}$.)

As $S(x_k, b) \subset A(y, b_1 + b)$, for the boundary values of u_k and v_k holds

$$c_1^{-1} e^{\lambda \|x_k\|} u_k(x) \leq v_k(x) \leq c_1 e^{\lambda \|x_k\|} u_k(x)$$

for $x \in \partial B(0, ||x_k||)$ and hence for any $x \in B(0, ||x_k||)$.

Namely this is true for 0 and so, using the above relation for $u_k(0)$, the existence of a positive constant c_2 such that

$$c_2^{-1} \le v_k(0) \le c_2$$

for any $k \in \mathbb{N}$ is guaranteed.

Let $S = \bigcup_{k \in \mathbb{N}} S(x_k, b)$. The Perron-Wiener-Brelot method of solving the Dirichlet problem shows that, for any $k \in \mathbb{N}$, the inequality $v_k \leq R_{e^{\lambda(.,y)}}^S$ holds on $B(0, ||x_k||)$. As $\{v_k\}$ is bounded in 0, it has by virtue of the Harnack inequality a converging subsequence. Denoting its limit by v, it is easy to see that v is a positive solution of the Helmholtz equation, $v(0) \ge c_2^{-1}$ and $v \le R_{e^{\lambda(.,y)}}^S$. Hence its representing measure $\mu_v \leq \delta_y$ and thus $R^S_{e^{\lambda\langle ., y \rangle}} = e^{\lambda\langle ., y \rangle}$, it means that S is not minimal thin at y and hence $M_{S,b}$ is not minimal thin at y.

So far we have proved the implication (vi) \Rightarrow (iii) for $k = \frac{1}{2}$ and the implication $(v) \Rightarrow (vii)$ for k = 1. The conditions for k will be removed using the following lemma.

Lemma 2. Let $M \subset \mathbb{R}^n$, $c \in \mathbb{R}^+$, $y \in S^{n-1}$. The point y is an admissible limit point of the set M if and only if y is a admissible limit point of cM.

Let $x \in \mathbb{R}^n$ and $b, k \in \mathbb{R}^+$. Then

$$S(x, b, k) = S(kx, b) = S(2kx, b, \frac{1}{2})$$

and

$$M_{S,b,k} = (kM)_{S,b} = (2kM)_{S,b,\frac{1}{2}}.$$

PROOF: A straightforward calculation.

Now, it si easy to finish the proof of (vi) and (vii).

Let $k \in \mathbb{R}^+$. Using the first part of the lemma and equivalence of (i) and (v) it follows that M is a set of determination if and only if kM is a set of determination.

From that and from $(kM)_{S,b} = M_{S,b,k}$ it immediately follows that (vii) is true for any positive k.

From $M_{S,b,k} = (2kM)_{S,b,\frac{1}{2}}$ it follows that if (vi) holds for some k then 2kM is a set of determination, so M is a set of determination.

Proof of (viii) and (ix).

The implication $(viii) \Rightarrow (ix)$ is trivial. (Take a countable subset of M and the counting measure on it.) We will prove $(v) \Rightarrow (viii)$ and $(ix) \Rightarrow (ii)$.

Theorem 10. Let M be a subset of \mathbb{R}^n and ν be a countably-finite measure on \mathbb{R}^n such that $\operatorname{supp}(\nu) = \overline{M}$. Let

$$\sup_{x \in \mathbb{R}^n} \frac{|u(x)|}{h(x)} = \sup_{x \in M} \frac{|u(x)|}{h(x)}$$

for every *h*-bounded solution u of the Helmholtz equation on \mathbb{R}^n .

Then, for any f in $L_1(S^{n-1})$, there exists Φ in $L_1(\nu)$ such that

(1)
$$f = \int_{\mathbb{R}^n} \Phi(x) \frac{e^{\lambda(x,.)}}{h(x)} d\nu(x)$$

 σ -almost everywhere and

 $||f||_{L_1(S^{n-1})} = \inf \{ ||\Phi||_{L_1(\nu)}; (1) \text{ holds for some } \Phi \in L_1(\nu) \}.$

We will need the following version of the closed range theorem (see [12, p. 97]). Let \mathcal{X} and \mathcal{Y} be Banach spaces, T a bounded linear mapping of \mathcal{X} into \mathcal{Y} . If there exists a constant c > 0 such that $||T^*y^*|| \geq c||y^*||$ for all $y^* \in \mathcal{Y}^*$ then $T\mathcal{X} = \mathcal{Y}$. In our situation, $\mathcal{X} = L_1(\nu)$, $\mathcal{Y} = L_1(S^{n-1})$ and for $\Phi \in L_1(\nu)$ we define

$$T_{\nu}\Phi = \int_{S^{n-1}} \Phi(x) \frac{e^{\lambda\langle x, \cdot\rangle}}{h(x)} d\nu(x).$$

320

Lemma 3. The mapping T_{ν} is a bounded linear mapping of $L_1(\nu)$ into $L_1(S^{n-1})$, $||T_{\nu}|| = 1$; T_{ν}^* is the bounded mapping $L_{\infty}(S^{n-1})$ into $L_{\infty}(\nu)$ such that

$$T_{\nu}^{*}g(x) = \frac{1}{h(x)} \int_{S^{n-1}} e^{\lambda \langle x, y \rangle} g(y) \, d\sigma(y).$$

PROOF: Using the Fubini theorem we arrive at

$$\begin{split} \|T_{\nu}\Phi\|_{L_{1}(S^{n-1})} &= \int_{S^{n-1}} |T_{\nu}\Phi| \, d\sigma = \int_{S^{n-1}} |\int_{\mathbb{R}^{n}} \Phi(x) \frac{e^{\lambda\langle x, y \rangle}}{h(x)} \, d\nu(x)| \, d\sigma(y) \leq \\ &\int_{S^{n-1}} (\int_{\mathbb{R}^{n}} |\Phi(x)| \frac{e^{\lambda\langle x, y \rangle}}{h(x)} \, d\nu(x)) \, d\sigma(y) = \int_{\mathbb{R}^{n}} (\int_{S^{n-1}} |\Phi(x)| \frac{e^{\lambda\langle x, y \rangle}}{h(x)} \, d\sigma(y)) \, d\nu(x) = \\ &\int_{\mathbb{R}^{n}} \frac{|\Phi(x)|}{h(x)} (\int_{S^{n-1}} e^{\lambda\langle x, y \rangle} \, d\sigma(y)) \, d\nu(x) = \int_{\mathbb{R}^{n}} \frac{|\Phi(x)|}{h(x)} h(x) \, d\nu(x) = \|\Phi\|_{L_{1}(\nu)}. \end{split}$$

So the first part of Lemma is proved.

Let $g \in L_{\infty}(S^{n-1})$ and $\Phi \in L_1(\nu)$. Using again the Fubini theorem we have

$$\begin{split} [\Phi, T_{\nu}^{*}g] &= [T_{\nu}\Phi, g] = \int_{S^{n-1}} g.T_{\nu}\Phi \, d\sigma = \int_{S^{n-1}} g(y) (\int_{\mathbb{R}^{n}} \Phi(x) \frac{e^{\lambda\langle x, y \rangle}}{h(x)} \, d\nu(x)) \, d\sigma(y) = \\ \int_{\mathbb{R}^{n}} \frac{\Phi(x)}{h(x)} (\int_{S^{n-1}} g(y) e^{\lambda\langle x, y \rangle} \, d\sigma(y)) \, d\nu(x) = [\Phi, \frac{1}{h} \int_{S^{n-1}} e^{\lambda\langle ., y \rangle} g(y) \, d\sigma(y)]. \end{split}$$

Proof of Theorem. We shall prove the existence of a constant c > 0 such that $||T_{\nu}^*g||_{L_{\infty}(\nu)} \geq c||g||_{L_{\infty}(S^{n-1})}$ for all $g \in L_{\infty}(S^{n-1})$ and the first part of the theorem will be proved.

The function $h.(T^*_{\nu}g)$ is an *h*-bounded solution of the Helmholtz equation on \mathbb{R}^n . Then, by hypothesis,

$$\sup_{x \in M} |(T_{\nu}^*g)(x)| = \sup_{x \in \mathbb{R}^n} |(T_{\nu}^*g)(x)| = ||g||_{L_{\infty}(S^{n-1})}.$$

Since $T^*_{\nu}g$ is a continuous function on \mathbb{R}^n and $\operatorname{supp}(\nu) = \overline{M}$,

$$||T_{\nu}^*g||_{L_{\infty}(\nu)} = \sup_{x \in M} |(T_{\nu}^*g)(x)|.$$

Consequently,

$$||T_{\nu}^*g||_{L_{\infty}(\nu)} = ||g||_{L_{\infty}(S^{n-1})}.$$

So we can take c = 1. The first part of Theorem is proved.

To prove the other part define the space

$$\mathcal{Z} = L_1(\nu) / \ker T_{\nu}.$$

For $z \in \mathcal{Z}$ and $\Phi \in z$ put $Sz = T_{\nu}\Phi$.

Then S is an invertible bounded linear mapping of \mathcal{Z} into $L_1(S^{n-1})$ and so its adjoint S^* is an invertible bounded linear mapping of $L_{\infty}(S^{n-1})$ into \mathcal{Z}^* (see [12, p. 94]).

Let $z \in \mathcal{Z}$, $\Phi \in z$ and $g \in L_{\infty}(S^{n-1})$. Then we have

$$(S^*g)(z) = [Sz,g] = [T_{\nu}\Phi,g] = [\Phi,T_{\nu}^*g].$$

If $\varepsilon > 0$, there exists $\Phi_0 \in L_1(\nu)$ with $\|\Phi_0\|_{L_1(\nu)} = 1$ and

$$|[\Phi_0, T_{\nu}^*g]| > ||T_{\nu}^*g||_{L_{\infty}(\nu)} - \varepsilon.$$

Let z_0 denote the coset of Φ_0 in \mathcal{Z} . Then

$$|(S^*g)(z_0)| > ||T^*_{\nu}g||_{L_{\infty}(\nu)} - \varepsilon$$

and

$$||z_0||_{\mathcal{Z}} \leq ||\Phi_0||_{L_1(\nu)} = 1.$$

Therefore, the norm of the functional S^*g satisfies

$$\|S^*g\|_{\mathcal{Z}^*} > \|T^*_{\nu}g\|_{L_{\infty}(\nu)} - \varepsilon = \|g\|_{L_{\infty}(S^{n-1})} - \varepsilon.$$

Since ε was arbitrary, we proved that

$$\|S^*g\|_{\mathcal{Z}^*} \ge \|g\|_{L_\infty(S^{n-1})}$$

for any $g \in L_{\infty}(S^{n-1})$, and so, using the fact that the norm of any operator is the same as the norm of its adjoint (see [1, p. 93]) and the obvious fact that $(S^*)^{-1} = (S^{-1})^*$, we have

$$||S^{-1}|| = ||(S^*)^{-1}|| \le 1.$$

Fix $f \in L_1(S^{n-1})$ and put $z = S^{-1}f$. Then

$$||z||_{\mathcal{Z}} \leq ||f||_{L_1(S^{n-1})},$$

that is

$$\inf\{\|\Phi\|_{L_1(\nu)}; T_{\nu}\Phi = f\} \leq \|f\|_{L_1(S^{n-1})}.$$

By Lemma we have

$$||f||_{L_1(S^{n-1})} = ||T_{\nu}\Phi||_{L_1(S^{n-1})} \leq ||T_{\nu}|| \cdot ||\Phi||_{L_1(\nu)} = ||\Phi||_{L_1(\nu)}.$$

So the opposite inequality holds as well.

Theorem 11. Let ν be a countably finite measure on \mathbb{R}^n and $\operatorname{supp}(\nu) = \overline{M}$. Assume that for every function $f \in L_1(S^{n-1})$ there exists Φ in $L_1(\mathbb{R}^n)$ such that

(1)
$$f = \int_{\mathbb{R}^n} \Phi(x) \frac{e^{\lambda(x,.)}}{h(x)} d\nu(x)$$

 σ -almost everywhere and

 $||f||_{L_1(S^{n-1})} = \inf \{ ||\Phi||_{L_1(\nu)}; (1) \text{ holds for some } \Phi \text{ in } L_1(\nu) \}.$

Then

$$\sup_{x \in \mathbb{R}^n} \frac{u(x)}{h(x)} = \sup_{x \in M} \frac{u(x)}{h(x)}$$

for any h-bounded positive solution u of the Helmholtz equation on \mathbb{R}^n .

PROOF: Put $c = \sup_{x \in M} \frac{u(x)}{h(x)}$. We have $c < \infty$. Let $\varepsilon > 0$. If we fix $x_0 \in \mathbb{R}^n$, then $e^{\lambda \langle x_0, \cdot \rangle} \in L_1(S^{n-1})$ and $\|e^{\lambda \langle x_0, \cdot \rangle}\|_{L_1(S^{n-1})} =$ $h(x_0)$. By our assumptions there is a function $\Phi \in L_1(\nu)$ such that

$$e^{\lambda\langle x_0, \cdot\rangle} = \int_{\mathbb{R}^n} \Phi(x) \frac{e^{\lambda\langle x, \cdot\rangle}}{h(x)} \, d\nu(x) \leq \int_{\mathbb{R}^n} |\Phi(x)| \frac{e^{\lambda\langle x, \cdot\rangle}}{h(x)} \, d\nu(x)$$

and

$$\|\Phi\|_{L_1(\nu)} < h(x_0) + \varepsilon.$$

As u is an h-bounded positive solution of the Helmholtz equation, we can integrate the first inequality with respect to $f_u d\sigma$. Using the Fubini theorem and the fact that $u \leq ch$ on $\operatorname{supp}(\nu)$, we have

$$\begin{aligned} u(x_0) &= \int\limits_{S^{n-1}} e^{\lambda \langle x_0, y \rangle} f_u(y) \, d\sigma(y) &\leq \int\limits_{S^{n-1}} (\int\limits_{\mathbb{R}^n} |\Phi(x)| e^{\lambda \langle x, y \rangle} \, d\nu(x)) f_u(y) \, d\sigma(y) = \\ &\int\limits_{\mathbb{R}^n} |\Phi(x)| (\int\limits_{S^{n-1}} e^{\lambda \langle x, y \rangle} f_u(y) \, d\sigma(y)) \, d\nu(x) = \int\limits_{S^{n-1}} |\Phi(x)| u(x) \, d\nu(x) \leq \\ &\int\limits_{S^{n-1}} c. |\Phi(x)| \, d\nu(x) = c \|\Phi\|_{L_1(\nu)} \leq c(h(x_0) + \varepsilon). \end{aligned}$$

Since x_0 and ε were arbitrary, we have $\sup_{x \in \mathbb{R}^n} \frac{u(x)}{h(x)} = c$.

Of course, the following special form of Theorem 11 holds:

Theorem 12. Let M be a subset of \mathbb{R}^n . Assume that for every function $f \in L_1(S^{n-1})$ there exist $\{\lambda_k\}_{k=1}^{\infty} \in l_1$ and a sequence $\{x_k\}_{k=1}^{\infty}$ of points in M such that

(2)
$$f = \sum_{k=1}^{\infty} \lambda_k \frac{e^{\lambda \langle x_k, . \rangle}}{h(x_k)}$$

 σ -almost everywhere and

$$||f||_{L_1(S^{n-1})} = \inf \{ \sum_{k=1}^{\infty} |\lambda_k|; (2) \text{ holds for some } \{x_k\} \text{ in } M \}.$$

Then

$$\sup_{x \in \mathbb{R}^n} \frac{u(x)}{h(x)} = \sup_{x \in M} \frac{u(x)}{h(x)}$$

for any bounded positive solution u of the Helmholtz equation.

Proof of the conditions (x) and (xi).

We will prove the equivalence of (viii) and (x). The equivalence of (ix) and (xi) is just a special form of it.

Proof of (viii) \Rightarrow (x)

Let us denote

$$K_1(x,y) = \frac{e^{\lambda \langle x,y \rangle}}{h(x)} \quad \text{and} \quad K_2(x,y) = \frac{e^{\lambda \langle x,y \rangle} ||x||^{(n-1)/2}}{\kappa e^{\lambda ||x||}}.$$

Then we have

$$||K_1(x,.)||_{L_1(S^{n-1})} = \int_{S^{n-1}} |\frac{e^{\lambda \langle x,y \rangle}}{h(x)}| \, d\sigma(y) = 1$$

and

$$\begin{split} \|K_{1}(x,.) - K_{2}(x,.)\|_{L_{1}(S^{n-1})} &= \int_{S^{n-1}} |\frac{e^{\lambda\langle x,y\rangle}}{h(x)} - \frac{e^{\lambda\langle x,y\rangle} \|x\|^{(n-1)/2}}{\kappa e^{\lambda\|x\|}} |\, d\sigma(y) = \\ \int_{S^{n-1}} e^{\lambda\langle x,y\rangle} |\frac{1}{h(x)} - \frac{\|x\|^{(n-1)/2}}{\kappa e^{\lambda\|x\|}} |\, d\sigma(y) = \\ |\frac{1}{h(x)} - \frac{\|x\|^{(n-1)/2}}{\kappa e^{\lambda\|x\|}} |\int_{S^{n-1}} e^{\lambda\langle x,y\rangle} \, d\sigma(y) = |1 - \frac{h(x)\|x\|^{(n-1)/2}}{\kappa e^{\lambda\|x\|}} |, \end{split}$$

from the asymptotic behaviour of the function h (see Preliminaries) it follows, that to every positive ε , there exists a positive number c_{ε} such that

$$||K_1(x,.) - K_2(x,.)||_{L_1(S^{n-1})} < \varepsilon$$

and

$$||K_2(x,.)||_{L_1(S^{n-1})} < 1 + \varepsilon,$$

whenever $||x|| > c_{\varepsilon}$.

Let $f \in L_1(S^{n-1})$ and c > 1. Then there exists $\Phi_0 \in L_1(\nu)$, such that

$$f = \int_{\mathbb{R}^n} \Phi_0(x) K_1(x, .) \, d\nu(x), \quad \text{and} \quad \|f\|_{L_1(S^{n-1})} \le \|\Phi_0\|_{L_1(\nu)} \le c \|f\|_{L_1(S^{n-1})},$$

and moreover, as (viii) is equivalent to (v) and (v) holds for M, if and only if it holds for $M \setminus B(0, c_{\varepsilon})$, Φ_0 can be chosen to be zero on $B(0, c_{\varepsilon})$.

Put $f_0 = f$. Now, functions $f_k \in L_1(S^{n-1})$ and $\Phi_k \in L_1(\nu)$ for any $k = 1, 2, \ldots$, will be defined.

$$f_{k+1} = f_k - \int_{\mathbb{R}^n} \Phi_k(x) K_2(x, .) \, d\nu(x), \text{ for } k = 0, 1, \dots;$$

 Φ_{k+1} is, for $k = 0, 1, \ldots$, a function for which

$$f_{k+1} = \int_{\mathbb{R}^n} \Phi_{k+1}(x) K_1(x, .) \, d\nu(x),$$

$$\|f_{k+1}\|_{L_1(S^{n-1})} \le \|\Phi_{k+1}\|_{L_1(\nu)} \le c \|f_{k+1}\|_{L_1(S^{n-1})}$$

and Φ_{k+1} is zero on $B(0, c_{\varepsilon})$.

We have $f_0 \in L_1(S^{n-1})$ and $\Phi_0 \in L_1(\nu)$ and above relations are satisfied. Suppose, it is true for $0, 1, \ldots, k$, and prove it for k + 1:

$$\begin{split} \|f_{k+1}\|_{L_1(S^{n-1})} &= \|f_k - \int_{\mathbb{R}^n} \Phi_k(x) K_2(x, .) \, d\nu(x)\|_{L_1(S^{n-1})} = \\ \|\int_{\mathbb{R}^n} \Phi_k(x) K_1(x, y) \, d\nu(x) - \int_{\mathbb{R}^n} \Phi_k(x) K_2(x, y) \, d\nu(x)\|_{L_1(S^{n-1})} \leq \\ &\int_{S^{n-1}} \int_{\mathbb{R}^n} |\Phi_k(x) (K_1(x, y) - K_2(x, y))| \, d\nu(x) \, d\sigma(y) \end{split}$$

using Fubini theorem

$$= \int_{\mathbb{R}^n} |\Phi_k(x)| \int_{S^{n-1}} |K_1(x,y) - K_2(x,y)| \, d\sigma(y) \leq \varepsilon \|\Phi_k\|_{L_1(\nu)}.$$

So $f_{k+1} \in L_1(S^{n-1})$ and by this fact and (v) and (viii) the existence of a function Φ_{k+1} with required properties is guaranteed.

Combining the above estimates for $\|\Phi_k\|_{L_1(\nu)}$ and $\|f_{k+1}\|_{S^{n-1}}$ we obtain

$$||f_{k+1}||_{S^{n-1}} \leq c\varepsilon ||f_k||_{L_1(S^{n-1})}$$
 for all $k = 0, 1, 2, \dots$

and from that

$$||f_k||_{S^{n-1}} \leq (c\varepsilon)^k ||f_0||_{L_1(S^{n-1})}$$
 for all $k = 1, 2, \dots$

Put $\Phi = \sum_{k=0}^{\infty} \Phi_k$. From the previous estimates it follows

$$\begin{split} \|\Phi\|_{L_1(\nu)} &\leq \sum_{k=0}^{\infty} \|\Phi_k\|_{L_1(\nu)} \leq \sum_{k=0}^{\infty} c \|f_k\|_{L_1(S^{n-1})} \leq \\ c \|f_0\|_{L_1(S^{n-1})} + \sum_{k=1}^{\infty} (c\varepsilon)^k \|f_0\|_{L_1(S^{n-1})} = (c + \frac{c\varepsilon}{1 - c\varepsilon}) \|f_0\|_{L_1(S^{n-1})}. \end{split}$$

The constant $(c + \frac{c\varepsilon}{1-c\varepsilon})$ can be chosen arbitrarily close to 1.

We have proved that $\Phi \in L_1(\nu)$ and the required relation between $||f||_{L_1(S^{n-1})}$ and $||\Phi||_{L_1(\nu)}$, and we have proved as well that $\sum_{k=1}^{\infty} |\Phi_k| \in L_1(\nu)$.

As $\Phi_k = 0$ on $B(0, c_{\varepsilon})$ for any k = 0, 1, ..., the same is true for Φ (what was to be proved) and $\sum_{k=1}^{\infty} |\Phi_k|$.

From these facts and the fact that $||K_2(x,.)||_{L_1(S^{n-1})} < 1+\varepsilon$ whenever $||x|| > c_{\varepsilon}$ we get (using the Fubini theorem) that

$$\int_{\mathbb{R}^n} (\sum_{k=0}^\infty |\Phi_k(x)|) K_2(x, .) \, d\nu(x) \in L_1(S^{n-1}).$$

From here it follows that for σ -almost all y

$$\sum_{k=0}^{\infty} |\Phi_k(.)| K_2(.,y) \in L_1(\nu).$$

Using the Lebesgue Dominated Convergence Theorem with the above sum as dominating function we arrive to

$$\int_{\mathbb{R}^n} \Phi(x) K_2(x, y) \, d\nu(x) = \int_{\mathbb{R}^n} (\sum_{k=0}^\infty \Phi_k(x)) K_2(x, y) \, d\nu(x) =$$
$$\sum_{k=0}^\infty \int_{\mathbb{R}^n} \Phi_k(x) K_2(x, y) \, d\nu(x) = \sum_{k=0}^\infty (f_k(y) - f_{k+1}(y)) = f_0(y) = f(y)$$

for σ -almost all $y \in S^{n-1}$.

 So

$$f = \int_{\mathbb{R}^n} \Phi(x) K_2(x, .) \, d\nu(x)$$

and the proof is finished.

The implication $(x) \Rightarrow (viii)$ can be proved in the same way.

Remark

Similar problems have been recently investigated for classical harmonic functions on a ball in [3], [4], [5], [7] and for more general domains in [1], and for parabolic functions on a slab in [10] and [11]. In the present paper methods of proofs adopted in [7] and [5] turned out to be useful.

References

- Aikawa H., Sets of determination for harmonic functions in an NTA domains, J. Math. Soc. Japan, to appear.
- [2] Bauer H., Harmonische Räume und ihre Potentialtheorie, Springer-Verlag, Berlin-Heidelberg-New York, 1966.
- Bonsall F.F., Decomposition of functions as sums of elementary functions, Quart J. Math. Oxford (2) 37 (1986), 129–136.
- [4] Bonsall F.F., Domination of the supremum of a bounded harmonic function by its supremum over a countable subset, Proc. Edinburgh Math. Soc. 30 (1987), 441–477.
- [5] Bonsall F.F., Some dual aspects of the Poisson kernel, Proc. Edinburgh Math. Soc. 33 (1990), 207–232.
- [6] Caffarelli L.A., Littman W., Representation formulas for solutions to $\Delta u u = 0$ in \mathbb{R}^n , Studies in Partial Differential Equations, Ed. W. Littman, MAA Studies in Mathematics 23, MAA (1982).
- [7] Gardiner S.J., Sets of determination for harmonic function, Trans. Amer. Math. Soc. 338 (1993), 233-243.
- [8] Korányi A., A survey of harmonic functions on symmetric spaces, Proc. Symposia Pure Math. XXV, part 1 (1979), 323 –344.
- Korányi A., Taylor J.C., Fine convergence and parabolic convergence for the Helmholtz equation and the heat equation, Illinois J. Math. 27.1 (1983), 77–93.
- [10] Ranošová J., Sets of determination for parabolic functions on a half-space, Comment. Math. Univ. Carolinae 35 (1994), 497–513.

- [11] Ranošová J., Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness, Comment. Math. Univ. Carolinae **37** (1996), 707–723.
 [12] Rudin W., Functional analysis, McGraw-Hill Book Company, 1973.
- [13] Taylor J.C., An elementary proof of the theorem of Fatou-Naüm-Doob, 1980 Seminar on Harmonic Analysis (Montreal, Que., 1980), CMS Conf. Proc., vol.1, Amer. Math. Soc., Providence, R.I (1981), 153–163.
- [14] Watson G.N., Theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1944.

MATHEMATICAL INSTITUTE, FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVERSITY, SOKOLOVSKÁ 83, 186 00 PRAHA 8, CZECH REPUBLIC

E-mail: ranosova@karlin.mff.cuni.cz

(Received April 11, 1996)