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Centralizers on prime and semiprime rings

Joso Vukman

Abstract. The purpose of this paper is to investigate identities satisfied by centralizers on
prime and semiprime rings. We prove the following result: Let R be a noncommutative
prime ring of characteristic different from two and let S and T be left centralizers on R.
Suppose that [S(x), T (x)]S(x) + S(x)[S(x), T (x)] = 0 is fulfilled for all x ∈ R. If S 6= 0
(T 6= 0) then there exists λ from the extended centroid of R such that T = λS (S = λT ).
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This research has been inspired by the work of B. Zalar [11]. Throughout,
R will represent an associative ring with center Z(R). A ring R is 2-torsion
free if 2x = 0, x ∈ R implies x = 0. We write [x, y] for xy − yx and make
extensive use of basic commutator identities [xy, z] = [x, z]y + x[y, z], [x, yz] =
[x, y]z+y[x, z]. An additive mapping D : R → R is called a derivation if D(xy) =
D(x)y + xD(y) holds for all x, y ∈ R and is called a Jordan derivation in case
D(x2) = D(x)x+ xD(x) is fulfilled for all x ∈ R. A derivation D is inner if there
exists a ∈ R such that D(x) = [a, x] holds for all x ∈ R. An additive mapping
T : T → R is left (right) centralizer if T (xy) = T (x)y (T (xy) = xT (y)) holds for
all x, y ∈ R. A centralizer is an additive mapping which is both left and right
centralizer. An additive mapping T : R → R is Jordan left (right) centralizer in
case T (x2) = T (x)x (T (x2) = xT (x)) holds for all x ∈ R. For any fixed element
a ∈ R the mapping T (x) = ax (T (x) = xa) is left (right) centralizer. Recall that
a ring R is prime in case aRb = (0) implies that either a = 0 or b = 0 and is
semiprime if aRa = (0) implies a = 0. Any derivation is a Jordan derivation.
The converse is in general not true. A classical result of Herstein [7] asserts that
every Jordan derivation on a prime ring of characteristic different from two is a
derivation. A brief proof of Herstein theorem can be found in [1]. Cusak [6] has
extended Herstein theorem on 2-torsion free semiprime rings (see also [2]). Any
left (right) centralizer is a Jordan left (right) centralizer. Zalar [11] has proved
that every left (right) Jordan centralizer on a 2-torsion free semiprime ring is a
left (right) centralizer. We shall restrict our attention on left centralizers since all
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results presented in this paper are true also for right centralizers because of left-
right symmetry. We shall denote by C the extended centroid of a prime ring R.
First we list few lemmas.

Lemma 1. Suppose that the elements ai, bi in the central closure of a prime

ring R satisfy
∑

aixbi = 0 for all x ∈ R. If bi 6= 0 for some i then ai’s are

C-dependent.

The explanation of the notions of the extended centroid and the central closure
of a prime ring, as well as the proof of Lemma 1, can be found in [8, pp. 20–23]
or [9].

Lemma 2. Let R be a noncommutative prime ring and let T : R → R be a left

centralizer. If T (x) ∈ Z(R) holds for all x ∈ R, then T = 0.

Proof: Since [T (x), y] = 0 for all x, y ∈ R we have, putting xz for x, 0 =
[T (x)z, y] = [T (x), y]z + T (x)[z, y] = T (x)[z, y]. Thus we have T (x)[z, y] = 0,
which gives T (x)w[z, y] = 0 for all x, y, z, w ∈ R whence it follows T = 0, otherwise
R would be commutative. �

Lemma 3. Let R be a noncommutative prime ring and let S : R → R, T : R → R

be left centralizers. Suppose that [S(x), T (x)] = 0 holds for all x ∈ R. If T 6= 0
then there exists λ ∈ C such that S = λT .

Proof: The linearization (i.e. putting x+y for x) of the relation [S(x), T (x)] = 0
gives

(1) [S(x), T (y)] + [S(y), T (x)] = 0.

Putting in (1) yz for y we obtain 0 = [S(x), T (y)z]+ [S(y)z, T (x)] = [S(x), T (y)]z
+T (y)[S(x), z]+[S(y), T (x)]z+S(y)[z, T (x)] = T (y)[S(x), z]+S(y)[z, T (x)]. Thus
we have

T (y)[S(x), z] + S(y)[z, T (x)] = 0.

Putting in the above relation yw for y we obtain

(2) T (y)w[S(x), z] + S(y)w[z, T (x)] = 0.

Since we have assumed that T 6= 0 it follows from Lemma 2 that there exist x, z ∈

R such that [T (x), z] 6= 0. Now (2) and Lemma 1 imply that S(y) = λ(y)T (y)
where λ(y) is from C. Putting in (2) λ(y)T (y) for S(y) and λ(x)T (x) for S(x)
we obtain (λ(x)−λ(y))T (y)w[T (x), z] = 0 for all pairs y, w ∈ R whence it follows
(λ(x) − λ(y))T (y) = 0 since [T (x), z] 6= 0. Thus we have λ(x)T (y) = λ(y)T (y)
which completes the proof of the lemma. �

We are now able to prove the first theorem of this paper.
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Theorem 4. Let R be a noncommutative 2-torsion free semiprime ring and
S : R → R, T : R → R left centralizers. Suppose that [S(x), T (x)]S(x) +
S(x)[S(x), T (x)] = 0 holds for all x ∈ R. In this case we have [S(x), T (x)] = 0 for
all x ∈ R. In case R is a prime ring and S 6= 0 (T 6= 0) then there exists λ ∈ C

such that T = λS (S = λT ).

Proof: We have the relation

(3) [S(x), T (x)]S(x) + S(x)[S(x), T (x)] = 0, x ∈ R.

Putting in (3) x+ y for y we obtain

(4)

[S(x), T (x)]S(y) + S(y)[S(x), T (x)] + [S(x), T (y)]S(x) + S(x)[S(x), T (y)]+

[S(y), T (x)]S(x) + S(x)[S(y), T (x)] + [S(y), T (y)]S(x) + S(x)[S(y), T (y)]+

[S(y), T (x)]S(y) + S(y)[S(y), T (x)] + [S(x), T (y)]S(y)+

S(y)[S(x), T (y)] = 0.

Putting in the above relation −x for x we obtain

(5)

[S(x), T (x)]S(y) + S(y)[S(x), T (x)] + [S(x), T (y)]S(x) + S(x)[S(x), T (y)]+

[S(y), T (x)]S(x) + S(x)[S(y), T (x)]− [S(y), T (y)]S(x)− S(x)[S(y), T (y)]−

[S(y), T (x)]S(y)− S(y)[S(y), T (x)]− [S(x), T (y)]S(y)−

S(y)[S(x), T (y)] = 0.

Combining (4) with (5) we obtain 2[S(x), T (x)]S(y) + 2S(y)[S(x), T (x)] +
2[S(x), T (y)]S(x)+2S(x)[S(x), T (y)]+2[S(y), T (x)]S(x)+2S(x)[S(y), T (x)] = 0
whence it follows

(6)
[S(x), T (x)]S(y) + S(y)[S(x), T (x)] + [S(x), T (y)]S(x) + S(x)[S(x), T (y)]+

[S(y), T (x)]S(x) + S(x)[S(y), T (x)] = 0

since we have assumed that R is 2-torsion free. Putting in the above relation xy

for y we obtain

0 = [S(x), T (x)]S(x)y + S(x)y[S(x), T (x)] + [S(x), T (x)y]S(x)+

S(x)[S(x), T (x)y] + [S(x)y, T (x)]S(x) + S(x)[S(x)y, T (x)] =

[S(x), T (x)]S(x)y + S(x)y[S(x), T (x)] + [S(x), T (x)]yS(x) + T (x)[S(x), y]S(x)+

S(x)[S(x), T (x)]y + S(x)T (x)[S(x), y] + [S(x), T (x)]yS(x) + S(x)[y, T (x)]S(x)+

S(x)[S(x), T (x)]y + S(x)2[y, T (x)].

According to (6) the above calculation reduces to

(7)

S(x)y[S(x), T (x)] + 2[S(x), T (x)]yS(x) + T (x)[S(x), y]S(x)+

S(x)T (x)[S(x), y] + S(x)[y, T (x)]S(x) + S(x)[S(x), T (x)]y+

S(x)2[y, T (x)] = 0.
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Putting in the above relation yS(x) for y we obtain
S(x)yS(x)[S(x), T (x)] + 2[S(x), T (x)]yS(x)2 + T (x)[S(x), y]S(x)2+
S(x)T (x)[S(x), y]S(x) + S(x)[y, T (x)]S(x)2 + S(x)y[S(x), T (x)]S(x)+
S(x)[S(x), T (x)]yS(x) +S(x)2[y, T (x)]S(x) +S(x)2y[S(x), T (x)] = 0 which leads
according to (7) to

(8) S(x)yS(x)[S(x), T (x)] + S(x)2y[S(x), T (x)] = 0.

Putting in (8) T (x)y for y we obtain

(9) S(x)T (x)yS(x)[S(x), T (x)] + S(x)2T (x)y[S(x), T (x)] = 0.

Left multiplication by T (x) gives

(10) T (x)S(x)yS(x)[S(x), T (x)] + T (x)S(x)2y[S(x), T (x)] = 0.

From (9) and (10) we obtain [S(x), T (x)]yS(x)[S(x), T (x)]+
[S(x)2, T (x)]y[S(x), T (x)] = [S(x), T (x)]yS(x)[S(x), T (x)] + ([S(x), T (x)]S(x) +
S(x)[S(x), T (x)])y[S(x), T (x)] = [S(x), T (x)]yS(x)[S(x), T (x)] = 0. Thus we
have

[S(x), T (x)]yS(x)[S(x), T (x)] = 0.

Left multiplication of the above relation by S(x) gives

(11) S(x)[S(x), T (x)]yS(x)[S(x), T (x)] = 0

for all pairs x, y ∈ R. From (11) it follows

(12) S(x)[S(x), T (x)] = 0.

From (3) and (10) we obtain also

(13) [S(x), T (x)]S(x) = 0.

From (12) one obtains the relation

(14) S(y)[S(x), T (x)] + S(x)[S(y), T (x)] + S(x)[S(x), T (y)] = 0

(see the proof of (6)). Putting in (14) xy for y we obtain

0 = S(x)y[S(x), T (x)] + S(x)[S(x)y, T (x)] + S(x)[S(x), T (x)y] =

S(x)y[S(x), T (x)] + S(x)[S(x), T (x)]y + S(x)2[y, T (x)] + S(x)[S(x), T (x)]y+

S(x)T (x)[S(x), y] = S(x)y[S(x), T (x)] + S(x)2[y, T (x)] + S(x)T (x)[S(x), y].
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Thus we have the relation S(x)y[S(x), T (x)] + S(x)2[y, T (x)]+
S(x)T (x)[S(x), y] = 0 which can be written in the form S(x)y[S(x), T (x)] +
S(x)2yT (x)− S(x)T (x)yS(x) + S(x)[T (x), S(x)]y = 0 whence it follows

(15) S(x)y[S(x), T (x)] + S(x)2yT (x)− S(x)T (x)yS(x) = 0

according to (12). Left multiplication of (15) by T (x) gives

(16) T (x)S(x)y[S(x), T (x)] + T (x)S(x)2yT (x)− T (x)S(x)T (x)yS(x) = 0.

The substitution T (x)y for y in (15) gives

(17) S(x)T (x)y[S(x), T (x)] + S(x)2T (x)yT (x)− S(x)T (x)2yS(x) = 0.

From (16) and (17) one obtains

0 = [S(x), T (x)]y[S(x), T (x)] + [S(x)2, T (x)]yT (x) + [T (x), S(x)]T (x)yS(x) =

[S(x), T (x)]y[S(x), T (x)] + ([S(x), T (x)]S(x) + S(x)[S(x), T (x)])yT (x)+

[T (x), S(x)]T (x)yS(x)

which reduces to

(18) [S(x), T (x)]y[S(x), T (x)] + [T (x), S(x)]T (x)yS(x) = 0.

The substitution yS(x)z for y in (18) gives

(19) [S(x), T (x)]yS(x)z[S(x), T (x)] + [T (x), S(x)]T (x)yS(x)zS(x) = 0.

On the other hand, right multiplication of (18) by zS(x) leads to

(20) [S(x), T (x)]y[S(x), T (x)]zS(x) + [T (x), S(x)]T (x)yS(x)zS(x) = 0.

From (19) and (20) we obtain

(21) [S(x), T (x)]yA(x, z) = 0,

where A(x, z) stands for [S(x), T (x)]zS(x)− S(x)z[S(x), T (x)]. The substitution
zS(x)y for y in (21) gives

(22) [S(x), T (x)]zS(x)yA(x, z) = 0.

Left multiplication of (21) by S(x)z leads to

(23) S(x)z[S(x), T (x)]yA(x, z) = 0.
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Combining (22) with (23) we arrive at

A(x, z)yA(x, z) = 0

for all x, y, z ∈ R whence it follows A(x, z) = 0. In other words

(24) [S(x), T (x)]zS(x) = S(x)z[S(x), T (x)].

The substitution z = T (x)y in (24) gives

(25) [S(x), T (x)]T (x)yS(x) = S(x)T (x)y[S(x), T (x)].

The relation (25) makes it possible to replace in (18) [S(x), T (x)]T (x)yS(x) by
S(x)T (x)y[S(x), T (x)]. Thus we have [S(x), T (x)]y[S(x), T (x)]−
S(x)T (x)y[S(x), T (x)] = 0, which reduces to

(26) T (x)S(x)y[S(x), T (x)] = 0.

Putting in (26) T (x)y for y we obtain

(27) T (x)S(x)T (x)y[S(x), T (x)] = 0.

Multiplying (26) from the left side by T (x) we obtain

(28) T (x)2S(x)y[S(x), T (x)] = 0.

Subtracting (28) from (27) we obtain T (x)[S(x), T (x)]y[S(x), T (x)] = 0 which
gives putting yT (x) for y

T (x)[S(x), T (x)]yT (x)[S(x), T (x)] = 0

for all pairs x, y ∈ R whence it follows

(29) T (x)[S(x), T (x)] = 0.

The substitution yT (x) for y in (25) gives because of (29)

(30) [S(x), T (x)]yT (x)S(x) = 0.

From (13) we obtain the relation

[S(x), T (x)]S(y) + [S(x), T (y)]S(x) + [S(y), T (x)]S(x) = 0

(see the proof of (6)). Putting in the above relation xy for y we obtain 0 =
[S(x), T (x)]S(x)y + [S(x), T (x)y]S(x) + [S(x)y, T (x)]S(x) = [S(x), T (x)]yS(x) +
T (x)[S(x), y]S(x) + [S(x), T (x)]yS(x) + S(x)[y, T (x)]S(x). Thus we have
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2[S(x), T (x)]yS(x)+T (x)[S(x), y]S(x)+S(x)[y, T (x)]S(x) = 0 which can be writ-
ten after some calculation in the form

(31) [S(x), T (x)]yS(x) + S(x)yT (x)S(x) − T (x)yS(x)2 = 0.

The relation (24) makes it possible to replace in (31) [S(x), T (x)]yS(x) by
S(x)y[S(x), T (x)]. Thus we have 0 = S(x)y[S(x), T (x)] + S(x)yT (x)S(x) −
T (x)yS(x)2 = S(x)yS(x)T (x)− T (x)yS(x)2. We have therefore

(32) S(x)yS(x)T (x) = T (x)yS(x)2.

Putting in the above relation T (x)y for y we obtain

(33) S(x)T (x)yS(x)T (x) = T (x)2yS(x)2.

Left multiplication of (32) by T (x) leads to

(34) T (x)S(x)yS(x)T (x) = T (x)2yS(x)2.

Combining (33) with (34) we arrive at

[S(x), T (x)]yS(x)T (x) = 0

which gives together with (30)

[S(x), T (x)]y[S(x), T (x)] = 0

for all pairs x, y ∈ R whence it follows

(35) [S(x), T (x)] = 0.

In case R is a prime ring the relation (35) and Lemma 3 complete the proof of
the theorem. �

Corollary 5. Let R be a 2-torsion free semiprime ring and T : R → R a left

centralizer. Suppose that [T (x), x]x + x[T (x), x] = 0 holds for all x ∈ R. In this

case T is a centralizer.

Proof: Since the assumptions of Theorem 4 are fulfilled we have

[T (x), x] = 0

for all x ∈ R. According to the above relation we have T (x2) = T (x)x = xT (x).
Thus we have T (x2) = xT (x) for all x ∈ R. In other words, T is a Jordan right
centralizer. By Proposition 1.4 in [11] T is a right centralizer which completes the
proof. �

Similarly, putting in Theorem 4 T (x) = x and applying again Proposition 1.4
from [11], we obtain the following result.
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Corollary 6. Let R be a 2-torsion free semiprime ring and T : R → R a left

centralizer. Suppose that [T (x), x]T (x) + T (x)[T (x), x] = 0 holds for all x ∈ R.

In this case T is a centralizer.

The above corollaries characterize centralizers among all left centralizers on
2-torsion free semiprime rings. Both of these results as well as Corollaries 8 and 9
at the end of the paper are contributions to the theory of so-called commuting
and centralizing mappings. A mapping F : R → R is centralizing on a ring R if
[F (x), x] ∈ Z(R) for all x ∈ R. In a special case when [F (x), x] = 0 for all x ∈ R,
a mapping F is called commuting on R. The study of centralizing and commuting
mappings was initiated by the classical result of Posner [10], which states that
the existence of a nonzero centralizing derivation on a prime ring forces the ring
to be commutative. A lot of work has been done during the last twenty years in
the field. The work of Brešar [3], [4], [5], where further references can be found,
should be mentioned.

We are ready for our next result.

Theorem 7. Let R be a 2-torsion free noncommutative semiprime ring and let
S : R → R, T : R → R be left centralizers. Suppose that [[S(x), T (x)], S(x)] = 0
is fulfilled for all x ∈ R. In this case we have [S(x), T (x)] = 0 for all x ∈ R.

In case R is a prime ring and S 6= 0 (T 6= 0) then there exists λ ∈ C such that

T = λS (S = λT ).

Proof: The relation

(36) [[S(x), T (x)], S(x)] = 0,

gives (see the proof of Theorem 4)

(37) [[S(x), T (x)], S(y)] + [[S(x), T (y)], S(x)] + [[S(y), T (x)], S(x)] = 0.

Putting in (37) xy for y we obtain

0 = [[S(x), T (x)], S(x)y] + [[S(x), T (x)y], S(x)] + [[S(x)y, T (x)], S(x)] =

[[S(x), T (x)], S(x)]y + S(x)[[S(x), T (x)], y]+

[[S(x), T (x)]y + T (x)[S(x), y], S(x)] + [[S(x), T (x)]y + S(x)[y, T (x)], S(x)] =

S(x)[[S(x), T (x)], y] + [[S(x), T (x)], S(x)]y + [S(x), T (x)][y, S(x)]+

[T (x), S(x)][S(x), y] + T (x)[[S(x), y], S(x)] + [[S(x), T (x)], S(x)]y+

[S(x), T (x)][y, S(x)] + S(x)[[y, T (x)], S(x)].

We have therefore

(38)
S(x)[[S(x), T (x)], y] + 3[S(x), T (x)][y, S(x)] + T (x)[[S(x), y], S(x)]+

S(x)[[y, T (x)], S(x)] = 0.
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Putting in the above relation yS(x) for y we obtain

0 = S(x)[[S(x), T (x)], yS(x)] + 3[S(x), T (x)][yS(x), S(x)]+

T (x)[[S(x), yS(x)], S(x)] + S(x)[[yS(x), T (x)], S(x)] =

S(x)[[S(x), T (x)], y]S(x) + S(x)y[[S(x), T (x)], S(x)]+

3[S(x), T (x)][y, S(x)]S(x) + T (x)[[S(x), y]S(x), S(x)]+

S(x)[[y, T (x)]S(x) + y[S(x), T (x)], S(x)] = S(x)[[S(x), T (x)], y]S(x)+

3[S(x), T (x)][y, S(x)]S(x) + T (x)[[S(x), y], S(x)]S(x)+

S(x)[[y, T (x)], S(x)]S(x) + S(x)[y, S(x)][S(x), T (x)] + S(x)y[[S(x), T (x)], S(x)].

Thus we have according to (36) and (38) S(x)[y, S(x)][S(x), T (x)] = 0 which can
be written in the form

(39) S(x)yS(x)[S(x), T (x)] = S(x)2y[S(x), T (x)].

Putting in the above calculation T (x)y for y we obtain

(40) S(x)T (x)yS(x)[S(x), T (x)] = S(x)2T (x)y[S(x), T (x)].

On the other hand, left multiplication of (39) by T (x) gives

(41) T (x)S(x)yS(x)[S(x), T (x)] = T (x)S(x)2y[S(x), T (x)].

Subtracting (41) from (40) we obtain

0 = [S(x), T (x)]yS(x)[S(x), T (x)] − [S(x)2, T (x)]y[S(x), T (x)] =

[S(x), T (x)]yS(x)[S(x), T (x)]−

([S(x), T (x)]S(x) + S(x)[S(x), T (x)])y[S(x), T (x)].

According to the requirement of the theorem one can replace in the above calcu-
lation [S(x), T (x)]S(x) by S(x)[S(x), T (x)] which gives

[S(x), T (x)]yS(x)[S(x), T (x)] = 2S(x)[S(x), T (x)]y[S(x), T (x)].

Left multiplication of the above relation by S(x) gives

(42) S(x)[S(x), T (x)]yS(x)[S(x), T (x)] = 2S(x)2[S(x), T (x)]y[S(x), T (x)].

On the other hand, putting [S(x), T (x)]y for y in (39) we arrive at

(43) S(x)[S(x), T (x)]yS(x)[S(x), T (x)] = S(x)2[S(x), T (x)]y[S(x), T (x)].
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Combining (42) with (43) we obtain S(x)[S(x), T (x)]yS(x)[S(x), T (x)] = 0 for all
pairs x, y ∈ R, whence it follows

(44) S(x)[S(x), T (x)] = 0,

by semiprimeness of R. From (44) and the assumption of the theorem we have
also

[S(x), T (x)]S(x) = 0.

The rest of the proof goes through in the same way as in the proof of Theorem 4.
�

Theorem 7 gives together with Proposition 1.4 from [11] the following charac-
terizations of centralizers among all left centralizers on 2-torsion free semiprime
rings.

Corollary 8. Let R be a 2-torsion free semiprime ring and T : R → R a left

centralizer. Suppose that [[T (x), x], x] = 0 holds for all x ∈ R. In this case T is a

centralizer.

Corollary 9. Let R be a 2-torsion free semiprime ring and T : R → R a left

centralizer. Suppose that [[T (x), x], T (x)] = 0 holds for all x ∈ R. In this case T

is a centralizer.
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62000 Maribor, Slovenia

(Received January 23, 1996)


