
Comment.Math.Univ.Carolin. 38,2 (1997)329–336 329

On differentiability properties of Lipschitz

functions on a Banach space with a Lipschitz

uniformly Gâteaux differentiable bump function

L. Zaj́ıček

Abstract. We improve a theorem of P.G. Georgiev and N.P. Zlateva on Gâteaux differ-
entiability of Lipschitz functions in a Banach space which admits a Lipschitz uniformly
Gâteaux differentiable bump function. In particular, our result implies the following
theorem: If d is a distance function determined by a closed subset A of a Banach space
X with a uniformly Gâteaux differentiable norm, then the set of points of X \A at which
d is not Gâteaux differentiable is not only a first category set, but it is even σ-porous in
a rather strong sense.
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1. Introduction

In [8] I formulated without a proof a theorem (Theorem 4) which asserts that
if a Banach space X admits a Lipschitz bump function which is uniformly dif-
ferentiable in each direction, then each Lipschitz function of a certain type is
Gâteaux differentiable at all points of a residual set. As an easy consequence of
this theorem the following result (Corollary 3 of [8]) was stated.

Theorem A. Let X be a Banach space with a uniformly Gâteaux differentiable

norm. Then, for an arbitrary closed set A, the distance function d(x) = dist(x, A)
is Gâteaux differentiable at each point of a residual subset of X .

Unfortunately, when after some time a sketch of the proof of the first mentioned
theorem (Theorem 4 of [8]) was written down, it appeared that it contains a gap.
However, Theorem A was obtained by P. Georgiev (see the last note in [3] and

[5]). Moreover, P. Georgiev has proved [4] a result (which also implies Theorem A)
on differentiability properties of general Lipschitz functions on a Banach space X

which admits a uniformly Gâteaux differentiable norm. Namely, he proved that
any such space X is a Λ-space (in the terminology of [12], see Definition 1 below).
A similar result was obtained in [6] also under a slightly weaker assumption that
X admits a Lipschitz uniformly Gâteaux differentiable bump function. (Note that
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the main result of the preprint [13] by Wee-Kee Tang says that the above “slightly
weaker assumption” is in fact an equivalent one.)
Recently I have observed that the gap in my original proof can be filled and

that this modified proof gives also the mentioned results of [4] and [6]. In the
present article this modified proof is given. There are two reasons for it:

(a) The proof is simpler and more elementary than these of [4] and [6]; it uses
no smooth variational principle but instead of it one simple lemma (Lemma 1
below).

(b) Our proof gives also, via a recent result of M. Zelený [11] on a modification
of the Banach-Mazur game, an improvement of results of [4] and [6]. Namely, it
gives that the corresponding exceptional set is not only of the first category, but
it is small in a more restrictive sense — it is σ-globally very porous.

To formulate the result precisely, we need some definitions. The definition of
a Λ-space in [12] and [2] is based on a notion of a “subgradient”. To distinguish
this (very weak) notion of subgradient from others, we will use in the article the
name (WD)-subgradient (weak Dini subgradient).

Definition 1. (i) Let X be a Banach space and let f be a locally Lipschitz
function on X . We shall say that x∗ ∈ X∗ is a (WD)-subgradient of f at x ∈ X

if

D+v f(x) := limh→0+
f(x+ hv)− f(x)

h
≥ (v, x∗) for every v ∈ X.

(ii) A Banach space X is said to be a Λ-space, if each Lipschitz function f on
X has a (WD)-subgradient at each point x of a residual subset of X .

Remark 1. (a) Of course, each (WD)-subgradient lies in the Clarke’s subdifferen-
tial ∂f(x).

(b) Let f be a Lipschitz function on X which has all one-sided directional
derivatives at a point x ∈ X . Suppose further that both f and −f have a (WD)-
subgradient at x. Then it is not difficult to prove that f is Gâteaux differentiable
at x. (It is clearly sufficient to suppose only that f has a (WD)-subgradient if we
know that f has all (two-sided) directional derivatives at x.)

Definition 2. Let P be a metric space and M ⊂ P . We say that

(i) M is globally very porous if there exists c > 0 such that for every open ball
B(a, r) there exists an open ball B(b, cr) ⊂ B(a, r) \ M and

(ii)M is σ-globally very porous if it is a countable union of globally very porous
sets.

Remark 2. Each globally very porous set is clearly nowhere dense and each σ-
globally very porous set is clearly of the first category. It is not difficult to prove
that in each Banach space there exists a first category set which is not σ-globally
very porous. (Corresponding more difficult results concerning the weaker notion
of a σ-porous set are proved in [10] in the case of a Banach space and stated in [9]
in the case of an arbitrary topologically complete space without isolated points.)
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Definition 3. (i) Let X be a Banach space and ‖.‖ be a norm on X . We say
that ‖.‖ is a uniformly Gâteaux differentiable norm (a UG-differentiable norm)
if, for each v ∈ X , ‖v‖ = 1, the limit

lim
t→0

‖x+ th‖ − ‖x‖

t

exists and is uniform on {x ∈ X : ‖x‖ = 1}.

(ii) Let X be a Banach space and let f be a real function on X . We say that f

is a uniformly Gâteaux differentiable (UG-differentiable) bump function if f is a
nonzero Gâteaux differentiable function with a bounded support and if, for each
v ∈ X , ‖v‖ = 1, the limit

lim
t→0

f(x+ tv)− f(x)

t

is uniform on X .

Now we can formulate our main result.

Theorem 1. Let X be a Banach space which admits a Lipschitz UG-differen-

tiable bump function and let f be a real Lipschitz function on X . Then f is

(WD)-differentiable at all points of X except those which belong to a σ-globally

very porous set.

Remark 3. (a) It is well known and easy to prove that if a Banach space admits
an equivalent uniformly Gâteaux differentiable norm then it admits a Lipschitz
UG-differentiable bump function. By [13], the converse implication is also true.

(b) Some facts about spaces which admit a UG-differentiable norm can be
found in [1].

An easy consequence of Theorem 1 is the following result which improves The-
orem A.

Theorem 2. Let X be a Banach space with a uniformly Gâteaux differentiable

norm. Then, for an arbitrary closed set A, the distance function d(x) = dist(x, A)
is Gâteaux differentiable at all points of X \ A except those which belong to a

σ-globally very porous set.

It is well-known (cf. e.g. [7, Proposition 2]) that, in a strictly convex Banach
space X , the fact that the distance function dist(x, A) is Gâteaux differentiable
at x implies that the metric projection

PA(x) := {y ∈ A : ‖x − y‖ = dist(x, A)}

is not multivalued (i.e., it is an empty set or a singleton). Consequently Theorem 2
immediately implies the following result.
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Corollary 1. Let X be a Banach space with a norm which is simultaneously

strictly convex and UG-differentiable and let A ⊂ X be a closed set. Then the set

of points x ∈ X at which the metric projection PA(x) is multivalued is σ-globally

very porous.

Now we shall describe the mentioned result of M. Zelený which gives a charac-
terization of σ-globally very porous sets in a Banach space X based on a modifi-
cation of the Banach-Mazur game. We shall call this game GVP-game here (GVP
is for “globally very porous”); in [11] another terminology is used.
Two players play the GVP-game corresponding to a setM ⊂ X and a sequence

of positive numbers (cn)
∞
1 as follows:

In his first move the first player chooses an open ball U1 = B(x1, ρ1), then the
second player chooses a ball V1 = B(y1, r1) ⊂ U1, the first player chooses a ball
U2 = B(x2, ρ2) ⊂ V1 and so on. The second player wins if

∞⋂

n=1

Vn ∩ M = ∅ and

rn > cnρn for each positive integer n.

M. Zelený [11, Corollary of Theorem 2] has proved the following result.

Theorem Z. A subset M of a Banach space X is σ-globally very porous if and

only if there exists a sequence of positive numbers (cn)
∞
1 such that the second

player has a winning strategy in the GVP-game corresponding to M and (cn)
∞
1 .

2. Lemmas

In the following, B(x, r) and B(x, r) are open and closed balls with center x and
radius r, respectively. If h is a real function on a Banach space X , then h′(x, v) :=

limt→0
h(x+tv)−h(x)

t is the two-sided derivative of h at x in the direction v. We
say that f is an L-Lipschitz function, if f is a Lipschitz function with Lipschitz
constant L.

Lemma 1. Let h be a L-Lipschitz function defined on a Banach space X such

that h(0) = p > 0 and h vanishes on X \ B(0, 1). Suppose that a ∈ X and τ > 0
are given; put

h∗(x) = ha,τ (x) = τh(
x − a

τ
).

Further suppose that K < p and a K-Lipschitz function f on B(a, τ) are given;
denote

(1) c =
p − K

2L
.
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Then for each δ > 0 there exist a real number y and z ∈ B(a, τ) such that

h∗(x) + y ≤ f(x) for each x ∈ B(a, τ),(2)

f(z) < h∗(z) + y + δ and(3)

B(z, cτ) ⊂ B(a, τ).(4)

Proof: At first we observe that h∗ is also L-Lipschitz since

|h∗(x) − h∗(y)| ≤ τL‖
x − a

τ
−

y − a

τ
‖ = L‖x − y‖.

Now suppose that δ > 0 is given; we can suppose that

δ <
(p − K)τ

2
.

Since both h∗ and f are bounded on B(a, τ), we can put y := inf{f(x)− h∗(x) :
x ∈ B(a, τ)}; we see that the condition (2) is satisfied. Obviously there exists
z ∈ B(a, τ) such that (3) holds. To prove (4), suppose on the contrary that there
exists a point v ∈ B(z, cτ) \ B(a, τ). Then

τp = h∗(a) = h∗(a)− h∗(v) = (h∗(a)− h∗(z)) + (h∗(z)− h∗(v)) ≤

(f(a)− y)− (f(z)− y − δ) + (h∗(z)− h∗(v)) ≤

|f(a)− f(z)|+ δ + |h∗(z)− h∗(v)| <

Kτ +
(p − K)τ

2
+ Lcτ = τp,

which is a contradiction. �

We will need also the following geometrically obvious lemma.

Lemma 2. Let h and h∗ = ha,τ be as in Lemma 1. Further suppose that h is

differentiable at all points in the direction v ∈ X . Let ǫ > 0, δ > 0 and

|
h(p+ tv)− h(p)

t
− h′(p, v)| < ε whenever p ∈ X and 0 < |t| ≤ δ.

Then h∗ is also differentiable at all points in the direction v and

|
h∗(q + sv)− h∗(q)

s
− (h∗)′(q, v)| < ε whenever q ∈ X and 0 < |s| ≤ τδ.
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3. Proofs of Theorems

Proof of Theorem 1: Suppose that f is K-Lipschitz and choose a p > K.
Since X admits a uniformly Gâteaux differentiable Lipschitz bump function b it
is easy to show that there exists L > 0 and a uniformly Gâteaux differentiable
function h on X which meets the assumptions from Lemma 1 (we can easily find h

in the form h(x) = αb(βx−y) for some real numbers α, β and y ∈ X). Define c by
(1). LetM be the set of those points at which f is not (WD)-subdifferentiable. By
Theorem Z it is sufficient to prove that the second player has a winning strategy
in the the GVP-game corresponding to M and (cn)

∞
1 , where cn =

c
2n2
. We shall

show that the following strategy does the job:
Suppose the first player chose an open ball Un = B(an, τn) in his n-th move.

In our strategy we apply Lemma 1 to f , a = an, τ = τn, δ = cτn

n2
; choose

corresponding y = yn, z = zn and define Vn := B(zn, cτn

n2
) as the n-th move of

the second player.
This is a winning strategy. In fact, suppose that a play at which the second

player has used the above strategy is over and x ∈
⋂∞

n=1 Vn. Let x∗n be the
Gâteaux derivative of han,τn

at the point zn. Since all han,τn
are L-Lipschitz,

‖x∗n‖ ≤ L and the Alaoglu-Bourbaki theorem implies that we can choose an
x∗ ∈ X∗ which is a w∗-cluster point of the sequence (x∗n). Now it is sufficient to
show that x∗ is a (WD)-subgradient of f at the point x.
To this end choose an arbitrary v ∈ X , ‖v‖ = 1, and put

tn = cn−1τn.

Since clearly tn → 0, it is sufficient to prove that

(5) limn→∞
f(x+ tnv)− f(x)

tn
≥ (v, x∗).

To prove (5), choose arbitrarily ε > 0 and a natural number n0. Now we can
choose n > n0 such that

|
h(p+ tv)− h(p)

t
− h′(p, v)| < ε whenever p ∈ X and 0 < t ≤

c

n
,(6)

(2K + 1)n−1 < ε, and(7)

|(v, x∗)− (v, x∗n)| < ε.(8)

Then, since f is K-Lipschitz and x ∈ Vn, we have

(9) f(x+ tnv)− f(x) ≥ f(zn + tnv)− f(zn)−
2Kcτn

n2
.

The choice of zn and tn implies that zn + tnv ∈ Un (since B(zn, cτn) ⊂ Un by
(4)) and (we use (2) and (3))

(10) f(zn+ tnv)− f(zn) ≥ h∗(zn+ tnv)− h∗(zn)− cτnn−2, where h∗ = han,τn
.
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On account of Lemma 2 and (6) we obtain that

(11) |(v, x∗n)−
h∗(zn + tnv)− h∗(zn)

tn
| < ε.

Since tn = cτnn−1, (9), (10), (11), (7) and (8) give

f(x+ tnv)− f(x)

tn
≥

f(zn + tnv)− f(zn)

tn
−
2K

n
≥

h∗(zn + tnv)− h∗(zn)

tn
− n−1 − 2Kn−1

≥ (v, x∗n)− 2ε ≥ (v, x∗)− 3ε.

Thus we have proved (5) and the proof is complete. �

Proof of Theorem 2: By Theorem 3 of [7] the one-sided derivative d
′

+(x, v) =

limh→0+
d(x+hv)−d(x)

h exists for all x ∈ X\A and v ∈ X . Since d is 1-Lipschitz on
X \A, it can be extended to a 1-Lipschitz function d∗ on X . By Remark 3 (a) we
can apply Theorem 1 to d∗ and −d∗. Then we obtain, on account of Remark 1 (b),
the statement of the theorem. �

Acknowledgments. I thank to M. Fabian for remarks which led to improve-
ments of the presentation of results.
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