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Sets of extended uniqueness and σ-porosity

Miroslav Zelený

Abstract. We show that there exists a closed non-σ-porous set of extended uniqueness.
We also give a new proof of Lyons’ theorem, which shows that the class of H(n)-sets is
not large in U0.

Keywords: σ-porosity, sets of extended uniqueness, trigonometric series, H(n)-sets

Classification: Primary 42A63

Let us recall several basic notions. The symbol T stands for the interval [0, 2π]
with 0 and 2π identified. A complex Borel measure µ on T is said to be Rajchman,
if lim|n|→+∞ |µ̂(n)| = 0, where µ̂(n) =

∫
e−inx dµ, n ∈ Z. A set P ⊂ T is called

a set of extended uniqueness if for every positive Rajchman measure µ we have
µ(P ) = 0. We denote by U0 the class of closed sets of extended uniqueness. We
say that a class B ⊂ U0 is large in U0 if complex Borel measure µ is Rajchman if
and only if µ(P ) = 0 for every P ∈ B. See [KL] for details.
Let (P, ρ) be a metric space. The open ball with the center x ∈ P and the

radius r > 0 is denoted by B(x, r). Let M ⊂ P , x ∈ P , R > 0. Then we define

γ(x, R, M) = sup{r > 0; for some z ∈ P, B(z, r) ⊂ B(x, R) \ M},

p(x, M) = lim sup
R→0+

γ(x, R, M)

R
.

A set M ⊂ P is said to be porous if p(x, M) > 0 for every x ∈ M . A countable
union of porous sets is called σ-porous set. The class of all closed σ-porous subsets
of T is denoted by Pσ.
The notion of σ-porosity was introduced by E.P. Dolzhenko ([D]) to describe

certain class of exceptional sets, which appears in the study of boundary behaviour
of complex functions. There are many other results describing sets of exceptional
points in terms of σ-porous sets (cf. [Z2]).
Each σ-porous subset of R is clearly meager. Using Lebesgue density theorem

we can prove that each σ-porous set has Lebesgue measure zero. On the other
hand there exists a meager non-σ-porous set with Lebesgue measure zero ([Z1]).
As for the sets of extended uniqueness, Borel ones have also Lebesgue measure zero
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and are meager. The first fact is well-known and the second one was obtained by
Debs and Saint-Raymond ([DSR]) as a solution of a longstanding open problem.
Our main goal is to show that meagerness in Debs–Saint-Raymond’s result

cannot be replaced by σ-porosity.
We will give a new proof of Lyons’ theorem concerning largeness of the class

of all H(n)-sets in U0. (See [KL] for the definition of H(n)-sets.) We will use

the result from [Š], which shows that each H(n)-set is σ-porous. This result is
unfortunately unpublished, but there exists a manuscript in English. See also
[Z3].
We start with the following lemma.

Lemma. There exists a Borel measure µ on [0, 2π] such that

(i) µ is not Rajchman,

(ii) for every σ-porous set P we have µ(P ) = 0.

We will need the following theorem to prove our Lemma.

Theorem A ([T]). Let µ be a Borel measure on S ⊂ R fulfilling the following

conditions:

(i) There exists d > 1 such that
∑

I is bounded and
contiguous to S

µ(d ⋆ I) < +∞.

(ii) There exist c > 1, C > 0 and δ > 0 such that µ(c ⋆ I) ≤ Cµ(I) for every
interval I with the length less than δ and with the center in S.

(iii) All countable sets are µ-null.

Then µ(P ) = 0, whenever P is σ-porous subset of R.

Proof of Lemma: We use a modification of the construction from [T]. Let R

be a closed (open) bounded interval and k > 0. Then k ⋆ R denotes the closed
(open) interval with the same center as R has and with k times greater length. Let

(kn)
+∞
n=1 be an increasing sequence of natural numbers. We divide closed bounded

interval R into 2kn+2 many closed subintervals with the same length and with
pairwise disjoint interiors. Let Rn(R) be the set of all intervals mentioned above
without these intervals, which contain the center of the interval R. We define sets
of closed intervals as follows:

R0 = {[0, 2π]}, Rn =
⋃

{Rn(R); R ∈ Rn−1}.

We define inductively a function τ :
⋃+∞

n=0Rn → [0, 1] such that τ([0, 2π]) = 1
and for every n ∈ N and for all intervals R ∈ Rn, R

′ ∈ Rn−1 with R ⊂ R′ we put

τ(R) =





α 2−2kn−1τ(R′), for R ⊂ 2−kn ⋆ R′,

3α 2−kn−k−2τ(R′), for IntR ⊂ 2−k+1 ⋆ R′ \ 2−k ⋆ R′, k ∈ {2, . . . , kn}

3β 2−kn−3τ(R′), for IntR ⊂ R′ \ 12 ⋆ R′,
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where α = 47 and β = 87 . Since

∑

R∈Rn, R⊂R′

τ(R) = τ(R′) for every R′ ∈ Rn−1,

there exists Borel measure µ such that suppµ ⊂ S =
⋂+∞

n=0

⋃
{R; R ∈ Rn} and

µ(I) = τ(I), whenever I ∈
⋃+∞

n=0Rn.
Observe the following fact:

(⋆) for every n ∈ N and K, L ∈ Rn, ∂K ∩ ∂L 6= ∅ we have µ(K) ≥ 1
4µ(L).

At first we show that µ(P ) = 0 for each σ-porous set P . It is sufficient to show
that µ fulfills the conditions (i), (ii) and (iii) from Theorem A.

Ad (i): Putting d = 2 we obtain

+∞∑

n=1

∑

R∈Rn−1

µ(2 ⋆ (2−kn−1 ⋆ IntR)) =
+∞∑

n=1

∑

R∈Rn−1

α2−2knµ(R)

=
+∞∑

n=1

α2−2kn ≤ α

+∞∑

n=1

2−2n < +∞.

Ad (ii): We will show that this condition is fulfilled for c = 2, C = 148 and
δ = 4π. Let J be an interval with the center x ∈ S such that the length of J is less
than 4π. Let n ∈ N be the smallest natural number such that there exists intervals
R′ ∈ Rn, R ∈ Rn−1 such that x ∈ R′ ⊂ J ∩ R. Let Q = J ∩

⋃kn+1
k=0 ∂(2−k ⋆ R).

We distinguish the two cases.

(1) The number of elements of Q is less or equal to 1. It implies that

(⋆ ⋆) 2−kn−1 ⋆ R ∩ J = ∅.

Let K1, . . . , Kp be these intervals from the set Rn, which are contained in J and
L1, . . . , Lq be these intervals from Rn, which intersect the set S ∩ 2 ⋆ J . Thus we

have S ∩ 2 ⋆ J ⊂
⋃q

i=1 Li. Let rn ∈ R be the length of the intervals from Rn.
The length of the interval J is at most (p + 2)rn. (We used the fact (⋆ ⋆).) It
implies that the length of 2 ⋆ J is at most (2p+ 4)rn. Therefore q ≤ 2p+ 5. Now
fix j ∈ {1, . . . , p} and i ∈ {1, . . . , q}. We distinguish the following possibilities.

(a) Suppose that Li ⊂ R. Let x ∈ 2−l ⋆ R \ 2−l−1 ⋆ R, l ∈ N ∪ {0}. If
dist(center(R), Li) ≤ dist(center(R), Kj), then µ(Kj) ≥ µ(Li). Suppose that

dist(center(R), Li) > dist(center(R), Kj). We have Li ⊂ 2−l+1 ⋆ R ∩ R and

Kj ∩ 2
−l−2 ⋆ R = ∅. From the fact (⋆) we obtain that µ(Kj) ≥

1
16µ(Li).

(b) Suppose that Li 6⊂ R. Then there exists an interval R̃ ∈ Rn−1 such

that ∂R ∩ ∂R̃ 6= ∅ and Li ⊂ R̃. From (⋆) we have µ(R) ≥ 1
4µ(R̃). Observing

Kj ∩
1
4 ⋆ R = ∅ we can conclude µ(Kj) ≥

1
16µ(Li).
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We have proved that

min{µ(K1), . . . , µ(Kp)} ≥
1

16
max{µ(L1), . . . , µ(Lq)}.

It gives
µ(2 ⋆ J)

µ(J)
≤
16(2p+ 5)

p
≤ 112.

(2) The number of elements of Q is greater or equal to 2. Let k be the smallest

natural number from the set {1, 2, . . . , kn + 1} such that J ∩ ∂(2−k+1 ⋆ R) 6= ∅.
Then we have

µ(J) ≥
1

2
µ(2−k+1 ⋆ R \ 2−k ⋆ R).

We also have 2 ⋆ J ⊂ 2−k+3 ⋆ R and therefore

µ(2 ⋆ J) ≤ µ(2−k+3 ⋆ R \ 2−k+2 ⋆ R) + µ(2−k+2 ⋆ R \ 2−k+1 ⋆ R)

+ µ(2−k+1 ⋆ R \ 2−k ⋆ R) + µ(2−k ⋆ R)

≤ (16 · 4 + 4 · 2 + 1 + 1)µ(2−k+1 ⋆ R \ 2−k ⋆ R).

It gives that
µ(2 ⋆ J)

µ(J)
≤ 148.

Ad (iii): This condition is clearly fulfilled.

Now we show that µ is not a Rajchman measure. Fix n ∈ N. The intervals
from Rn have the length rn. The number

2π
rn

is clearly natural. We have

∫ 2π

0
cos
2π

rn
xdµ =

∑

R∈Rn

∫

R

cos
2π

rn
xdµ ≥

∑

R∈Rn

(
1

2
µ(R \

3

4
⋆ R)− µ(

1

2
⋆ R)

)

=
∑

R∈Rn

(
1

2
3β2−kn+1−32kn+1µ(R)− (µ(R)− 3β2−kn+1−32kn+1+1µ(R))

)

=
∑

R∈Rn

(
3β

16
− (1 −

3β

4
)

)
µ(R) =

15β

16
− 1 > 0.

It implies that µ is not Rajchman. �

The fundamental theorem concerning largeness in U0 is due to Lyons and reads
as follows.

Theorem ([L]). The class U0 is large in U0.

Now we are able to prove the main result of this paper.
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Theorem. There exists a closed non-σ-porous set of extended uniqueness.

Proof: Suppose that U0 ⊂ Pσ. Then the measure µ from Lemma must be
Rajchman according to the previous Theorem. This contradiction proves our
Theorem. �

Theorem ([L]). The class
⋃+∞

n=1H(n) is not large in U0.

Proof: According to [Š] we have
⋃+∞

n=1H(n) ⊂ Pσ. We also have that
⋃+∞

n=1H(n)

⊂ U0 (cf. [KL]). The class
⋃+∞

n=1H(n) is not large since Pσ ∩ U0 is not large as
Lemma shows. �

Remark The question, whether Pσ ⊂ U0, has the negative answer too (cf. [Z2]).
The Salem-Zygmund theorem gives that there exists a symmetric perfect set of
constant ratio of dissection, which is not the set of extended uniqueness (cf. [KL]).
But it is easy to see that this set is porous (cf. [Z2]). This answers the question,
which was posed in [BKR].

Remark Let us note that there exists also a closed non-σ-porous set of uniqueness,
but the proof of this result is much more complicated than the proof for sets of
extended uniqueness and uses a completely different method. The proof will
appear in a subsequent paper.
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