Sets of extended uniqueness and σ -porosity

Miroslav Zelený

Abstract. We show that there exists a closed non- σ -porous set of extended uniqueness. We also give a new proof of Lyons' theorem, which shows that the class of $H^{(n)}$ -sets is not large in U_0 .

Keywords: σ -porosity, sets of extended uniqueness, trigonometric series, $H^{(n)}$ -sets Classification: Primary 42A63

Let us recall several basic notions. The symbol \mathbb{T} stands for the interval $[0, 2\pi]$ with 0 and 2π identified. A complex Borel measure μ on \mathbb{T} is said to be *Rajchman*, if $\lim_{|n|\to+\infty} |\hat{\mu}(n)| = 0$, where $\hat{\mu}(n) = \int e^{-inx} d\mu$, $n \in \mathbb{Z}$. A set $P \subset \mathbb{T}$ is called a set of *extended uniqueness* if for every positive Rajchman measure μ we have $\mu(P) = 0$. We denote by U_0 the class of closed sets of extended uniqueness. We say that a class $\mathcal{B} \subset U_0$ is *large in* U_0 if complex Borel measure μ is Rajchman if and only if $\mu(P) = 0$ for every $P \in \mathcal{B}$. See [KL] for details.

Let (P, ρ) be a metric space. The open ball with the center $x \in P$ and the radius r > 0 is denoted by B(x, r). Let $M \subset P$, $x \in P$, R > 0. Then we define

$$\gamma(x, R, M) = \sup\{r > 0; \text{ for some } z \in P, B(z, r) \subset B(x, R) \setminus M\},$$
$$p(x, M) = \limsup_{R \to 0+} \frac{\gamma(x, R, M)}{R}.$$

A set $M \subset P$ is said to be *porous* if p(x, M) > 0 for every $x \in M$. A countable union of porous sets is called σ -porous set. The class of all closed σ -porous subsets of \mathbb{T} is denoted by \mathcal{P}_{σ} .

The notion of σ -porosity was introduced by E.P. Dolzhenko ([D]) to describe certain class of exceptional sets, which appears in the study of boundary behaviour of complex functions. There are many other results describing sets of exceptional points in terms of σ -porous sets (cf. [Z₂]).

Each σ -porous subset of \mathbb{R} is clearly meager. Using Lebesgue density theorem we can prove that each σ -porous set has Lebesgue measure zero. On the other hand there exists a meager non- σ -porous set with Lebesgue measure zero ([Z₁]). As for the sets of extended uniqueness, Borel ones have also Lebesgue measure zero

Research supported by Research Grant GAUK 363 and GAČR 201/94/0474

and are meager. The first fact is well-known and the second one was obtained by Debs and Saint-Raymond ([DSR]) as a solution of a longstanding open problem.

Our main goal is to show that meagerness in Debs–Saint-Raymond's result cannot be replaced by σ -porosity.

We will give a new proof of Lyons' theorem concerning largeness of the class of all $H^{(n)}$ -sets in U_0 . (See [KL] for the definition of $H^{(n)}$ -sets.) We will use the result from [Š], which shows that each $H^{(n)}$ -set is σ -porous. This result is unfortunately unpublished, but there exists a manuscript in English. See also [Z₃].

We start with the following lemma.

Lemma. There exists a Borel measure μ on $[0, 2\pi]$ such that

- (i) μ is not Rajchman,
- (ii) for every σ -porous set P we have $\mu(P) = 0$.

We will need the following theorem to prove our Lemma.

Theorem A ([T]). Let μ be a Borel measure on $S \subset \mathbb{R}$ fulfilling the following conditions:

(i) There exists d > 1 such that

$$\sum_{\substack{I \text{ is bounded and}\\ \text{ contiguous to } \overline{S}}} \mu(d \star I) < +\infty.$$

- (ii) There exist c > 1, C > 0 and $\delta > 0$ such that $\mu(c \star I) \leq C\mu(I)$ for every interval I with the length less than δ and with the center in S.
- (iii) All countable sets are μ -null.

Then $\mu(P) = 0$, whenever P is σ -porous subset of \mathbb{R} .

PROOF OF LEMMA: We use a modification of the construction from [T]. Let R be a closed (open) bounded interval and k > 0. Then $k \star R$ denotes the closed (open) interval with the same center as R has and with k times greater length. Let $(k_n)_{n=1}^{+\infty}$ be an increasing sequence of natural numbers. We divide closed bounded interval R into 2^{k_n+2} many closed subintervals with the same length and with pairwise disjoint interiors. Let $\mathcal{R}_n(R)$ be the set of all intervals mentioned above without these intervals, which contain the center of the interval R. We define sets of closed intervals as follows:

$$\mathcal{R}_0 = \{[0, 2\pi]\}, \qquad \mathcal{R}_n = \bigcup \{\mathcal{R}_n(R); R \in \mathcal{R}_{n-1}\}$$

We define inductively a function $\tau : \bigcup_{n=0}^{+\infty} \mathcal{R}_n \to [0,1]$ such that $\tau([0,2\pi]) = 1$ and for every $n \in \mathbb{N}$ and for all intervals $R \in \mathcal{R}_n, R' \in \mathcal{R}_{n-1}$ with $R \subset R'$ we put

$$\tau(R) = \begin{cases} \alpha 2^{-2k_n - 1} \tau(R'), & \text{for } R \subset 2^{-k_n} \star R', \\ 3\alpha 2^{-k_n - k - 2} \tau(R'), & \text{for } \operatorname{Int} R \subset 2^{-k + 1} \star R' \setminus 2^{-k} \star R', \, k \in \{2, \dots, k_n\} \\ 3\beta 2^{-k_n - 3} \tau(R'), & \text{for } \operatorname{Int} R \subset R' \setminus \frac{1}{2} \star R', \end{cases}$$

where $\alpha = \frac{4}{7}$ and $\beta = \frac{8}{7}$. Since

$$\sum_{R \in \mathcal{R}_n, R \subset R'} \tau(R) = \tau(R') \text{ for every } R' \in \mathcal{R}_{n-1},$$

there exists Borel measure μ such that $\operatorname{supp} \mu \subset S = \bigcap_{n=0}^{+\infty} \bigcup \{R; R \in \mathcal{R}_n\}$ and $\mu(I) = \tau(I)$, whenever $I \in \bigcup_{n=0}^{+\infty} \mathcal{R}_n$.

Observe the following fact:

(*) for every $n \in \mathbb{N}$ and $K, L \in \mathcal{R}_n, \partial K \cap \partial L \neq \emptyset$ we have $\mu(K) \geq \frac{1}{4}\mu(L)$.

At first we show that $\mu(P) = 0$ for each σ -porous set P. It is sufficient to show that μ fulfills the conditions (i), (ii) and (iii) from Theorem A.

Ad (i): Putting d = 2 we obtain

$$\sum_{n=1}^{+\infty} \sum_{R \in \mathcal{R}_{n-1}} \mu(2 \star (2^{-k_n - 1} \star \operatorname{Int} R)) = \sum_{n=1}^{+\infty} \sum_{R \in \mathcal{R}_{n-1}} \alpha 2^{-2k_n} \mu(R)$$
$$= \sum_{n=1}^{+\infty} \alpha 2^{-2k_n} \le \alpha \sum_{n=1}^{+\infty} 2^{-2n} < +\infty.$$

Ad (ii): We will show that this condition is fulfilled for c = 2, C = 148 and $\delta = 4\pi$. Let J be an interval with the center $x \in S$ such that the length of J is less than 4π . Let $n \in \mathbb{N}$ be the smallest natural number such that there exists intervals $R' \in \mathcal{R}_n, R \in \mathcal{R}_{n-1}$ such that $x \in R' \subset J \cap R$. Let $Q = J \cap \bigcup_{k=0}^{k_n+1} \partial(2^{-k} \star R)$. We distinguish the two cases.

(1) The number of elements of Q is less or equal to 1. It implies that

$$(\star\star) \qquad \qquad 2^{-k_n-1}\star R\cap J = \emptyset.$$

Let K_1, \ldots, K_p be these intervals from the set \mathcal{R}_n , which are contained in J and L_1, \ldots, L_q be these intervals from \mathcal{R}_n , which intersect the set $S \cap 2 \star J$. Thus we have $S \cap 2 \star J \subset \bigcup_{i=1}^q L_i$. Let $r_n \in \mathbb{R}$ be the length of the intervals from \mathcal{R}_n . The length of the interval J is at most $(p+2)r_n$. (We used the fact $(\star\star)$.) It implies that the length of $2 \star J$ is at most $(2p+4)r_n$. Therefore $q \leq 2p+5$. Now fix $j \in \{1, \ldots, p\}$ and $i \in \{1, \ldots, q\}$. We distinguish the following possibilities.

(a) Suppose that $L_i \subset R$. Let $x \in 2^{-l} \star R \setminus 2^{-l-1} \star R$, $l \in \mathbb{N} \cup \{0\}$. If dist(center(R), L_i) \leq dist(center(R), K_j), then $\mu(K_j) \geq \mu(L_i)$. Suppose that dist(center(R), L_i) > dist(center(R), K_j). We have $L_i \subset 2^{-l+1} \star R \cap R$ and $K_j \cap 2^{-l-2} \star R = \emptyset$. From the fact (\star) we obtain that $\mu(K_j) \geq \frac{1}{16}\mu(L_i)$.

(b) Suppose that $L_i \not\subset R$. Then there exists an interval $\widetilde{R} \in \mathcal{R}_{n-1}$ such that $\partial R \cap \partial \widetilde{R} \neq \emptyset$ and $L_i \subset \widetilde{R}$. From (*) we have $\mu(R) \geq \frac{1}{4}\mu(\widetilde{R})$. Observing $K_j \cap \frac{1}{4} \star R = \emptyset$ we can conclude $\mu(K_j) \geq \frac{1}{16}\mu(L_i)$.

We have proved that

$$\min\{\mu(K_1), \dots, \mu(K_p)\} \ge \frac{1}{16} \max\{\mu(L_1), \dots, \mu(L_q)\}.$$

It gives

$$\frac{\mu(2 \star J)}{\mu(J)} \le \frac{16(2p+5)}{p} \le 112.$$

(2) The number of elements of Q is greater or equal to 2. Let k be the smallest natural number from the set $\{1, 2, \ldots, k_n + 1\}$ such that $J \cap \partial(2^{-k+1} \star R) \neq \emptyset$. Then we have

$$\mu(J) \ge \frac{1}{2}\mu(2^{-k+1} \star R \setminus 2^{-k} \star R).$$

We also have $2 \star J \subset 2^{-k+3} \star R$ and therefore

$$\begin{split} \mu(2 \star J) &\leq \mu(2^{-k+3} \star R \setminus 2^{-k+2} \star R) + \mu(2^{-k+2} \star R \setminus 2^{-k+1} \star R) \\ &+ \mu(2^{-k+1} \star R \setminus 2^{-k} \star R) + \mu(2^{-k} \star R) \\ &\leq (16 \cdot 4 + 4 \cdot 2 + 1 + 1)\mu(2^{-k+1} \star R \setminus 2^{-k} \star R). \end{split}$$

It gives that

$$\frac{\mu(2\star J)}{\mu(J)} \le 148$$

Ad (iii): This condition is clearly fulfilled.

Now we show that μ is not a Rajchman measure. Fix $n \in \mathbb{N}$. The intervals from \mathcal{R}_n have the length r_n . The number $\frac{2\pi}{r_n}$ is clearly natural. We have

$$\begin{split} \int_{0}^{2\pi} \cos \frac{2\pi}{r_n} x \, \mathrm{d}\mu &= \sum_{R \in \mathcal{R}_n} \int_R \cos \frac{2\pi}{r_n} x \, \mathrm{d}\mu \ge \sum_{R \in \mathcal{R}_n} \left(\frac{1}{2} \mu(R \setminus \frac{3}{4} \star R) - \mu(\frac{1}{2} \star R) \right) \\ &= \sum_{R \in \mathcal{R}_n} \left(\frac{1}{2} 3\beta 2^{-k_{n+1}-3} 2^{k_{n+1}} \mu(R) - (\mu(R) - 3\beta 2^{-k_{n+1}-3} 2^{k_{n+1}+1} \mu(R)) \right) \\ &= \sum_{R \in \mathcal{R}_n} \left(\frac{3\beta}{16} - (1 - \frac{3\beta}{4}) \right) \mu(R) = \frac{15\beta}{16} - 1 > 0. \end{split}$$

It implies that μ is not Rajchman.

The fundamental theorem concerning largeness in U_0 is due to Lyons and reads as follows.

Theorem ([L]). The class U_0 is large in U_0 .

Now we are able to prove the main result of this paper.

Theorem. There exists a closed non- σ -porous set of extended uniqueness.

PROOF: Suppose that $U_0 \subset \mathcal{P}_{\sigma}$. Then the measure μ from Lemma must be Rajchman according to the previous Theorem. This contradiction proves our Theorem.

Theorem ([L]). The class $\bigcup_{n=1}^{+\infty} H^{(n)}$ is not large in U_0 .

PROOF: According to [Š] we have $\bigcup_{n=1}^{+\infty} H^{(n)} \subset \mathcal{P}_{\sigma}$. We also have that $\bigcup_{n=1}^{+\infty} H^{(n)} \subset U_0$ (cf. [KL]). The class $\bigcup_{n=1}^{+\infty} H^{(n)}$ is not large since $\mathcal{P}_{\sigma} \cap U_0$ is not large as Lemma shows.

Remark The question, whether $\mathcal{P}_{\sigma} \subset U_0$, has the negative answer too (cf. [Z₂]). The Salem-Zygmund theorem gives that there exists a symmetric perfect set of constant ratio of dissection, which is not the set of extended uniqueness (cf. [KL]). But it is easy to see that this set is porous (cf. [Z₂]). This answers the question, which was posed in [BKR].

Remark Let us note that there exists also a closed non- σ -porous set of uniqueness, but the proof of this result is much more complicated than the proof for sets of extended uniqueness and uses a completely different method. The proof will appear in a subsequent paper.

References

- [BKR] Bukovský L., Kholshchevnikova N.N., Repický M., Thin sets of harmonic analysis and infinite combinatorics, Real Analysis Exchange 20.2 (1994-95), 454–509.
- [DSR] Debs G., Saint-Raymond J., Ensembles boréliens d'unicité et d'unicité au sens large, Ann. Inst. Fourier (Grenoble) 37 (1987), 217–239.
- [D] Dolzhenko E.P., Boundary properties of arbitrary functions (in Russian), Izv. Akad. Nauk. SSSR Ser. Mat. 31 (1967), 3–14.
- [KL] Kechris A., Louveau A., Descriptive Set Theory and the Structure of Sets of Uniqueness, Cambridge U. Press, Cambridge, 1987.
- [L] Lyons R., The size of some classes of thin sets, Studia Math. 86.1 (1987), 59–78.
- [T] Tkadlec J., Construction of a finite Borel measure with σ -porous sets as null sets, Real Analysis Exchange **12** (1986-87), 349–353.
- [Š] Šleich P., Sets of type $H^{(s)}$ are σ -bilaterally porous, unpublished.
- [Z₁] Zajíček L., Sets of σ -porosity and sets of σ -porosity(q), Časopis Pěst. Mat. **101** (1976), 350–359.
- [Z₂] Zajíček L., Porosity and σ -porosity, Real Analysis Exchange **13** (1987-88), 314–350.
- [Z₃] Zajíček L., A note on σ -porous sets, Real Analysis Exchange 17.1 (1991-92), 18.

DEPARTMENT OF MATHEMATICAL ANALYSIS, FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVERSITY, SOKOLOVSKÁ 83, 186 00 PRAGUE, CZECH REPUBLIC

E-mail: zeleny@karlin.mff.cuni.cz

(Received February 16, 1996)