On a *d*-parameter ergodic theorem for continuous semigroups of operators satisfying norm conditions

SHIGERU HASEGAWA, RYOTARO SATO

Abstract. A continuous multiparameter version of Chacon's vector valued ergodic theorem is proved.

Keywords: vector valued multiparameter pointwise ergodic theorem, Chacon's ergodic theorem, semigroups of operators, norm conditions

Classification: 47A35

1. Introduction and the theorem

Let X be a reflexive Banach space with norm $|\cdot|$ and (Ω, Σ, μ) be a σ -finite measure space. For $1 \leq p \leq \infty$, let $L_p(\Omega; X) = L_p((\Omega, \Sigma, \mu); X)$ denote the usual Banach space of all X-valued strongly measurable functions f on Ω with the norm given by

$$||f||_p = \left(\int |f|^p d\mu\right)^{1/p} < \infty \quad \text{if } 1 \le p < \infty,$$

$$||f||_{\infty} = \text{ess sup}\{|f(\omega)| : \omega \in \Omega\} < \infty \quad \text{if } p = \infty.$$

Let $d \geq 1$ be an integer, and let $T_i = \{T_i(t) : t > 0\}, 1 \leq i \leq d$, be strongly continuous one-parameter semigroups of linear contractions in $L_1(\Omega; X)$ such that all the operators $T_i(t)$ are also bounded linear operators in $L_{\infty}(\Omega; X)$. Thus T_i , $1 \leq i \leq d$, can be considered to be strongly continuous one-parameter semigroups of bounded linear operators in $L_p(\Omega; X)$ for each $1 , by the Riesz convexity theorem. In this paper we shall assume that there are strongly continuous one-parameter semigroups <math>P_i = \{P_i(t) : t > 0\}, 1 \leq i \leq d$, of positive linear contractions in $L_1(\Omega; \mathbf{R})$, \mathbf{R} being the real numbers, such that

(i) for all
$$f \in L_1(\Omega; X)$$
 and $t > 0$,

(1)
$$|T_i(t)f(\omega)| \le P_i(t)|f|(\omega)$$
 a.e. on Ω ,

(ii) for all $f \in L_1(\Omega; \mathbf{R}) \cap L_{\infty}(\Omega; \mathbf{R})$ and $\alpha > 0$,

$$||A_{\alpha}(P_i)f||_{\infty} \le K||f||_{\infty} < \infty,$$

where

$$A_{\alpha}(P_i)f = \frac{1}{\alpha} \int_0^{\alpha} P_i(t)f \, dt \text{ for } f \in L_1(\Omega; \mathbf{R}).$$

Under this hypothesis we will prove the following multiparameter pointwise ergodic theorem for T_1, \ldots, T_d .

Theorem. If the semigroups T_1, \ldots, T_d commute and the semigroups P_1, \ldots, P_d are both L_1 and L_{∞} contraction semigroups, or if the semigroups P_1, \ldots, P_d commute, then for every $f \in L_1(\Omega; X)$ the limit

$$q - \lim_{\alpha \to \infty} \alpha^{-d} \int_0^{\alpha} \cdots \int_0^{\alpha} T_1(t_1) T_2(t_2) \dots T_d(t_d) f dt_1 \dots dt_d$$

exists a.e. on Ω , where $q-\lim_{\alpha\to\infty}$ means that the limit is taken as α tends to infinity along a countable dense subset of the positive real numbers.

This theorem may be considered to be a continuous multiparameter version of Chacon's vector valued ergodic theorem ([2]). See also [4]. Here of course the authors think that it is more natural to ask whether the conclusion of the theorem holds without assuming the existence of such positive semigroups P_1, \ldots, P_d , when the semigroups T_1, \ldots, T_d commute and they are both L_1 and L_{∞} contraction semigroups. But we failed to have an idea for its proof.

2. A lemma

Let T_1, \ldots, T_d and P_1, \ldots, P_d be the same as in the preceding section. By letting $T_i(0) = P_i(0) = I$ (the identity operator) for each $1 \leq i \leq d$, we can obviously extend T_i and P_i to the one-parameter semigroups \tilde{T}_i and \tilde{P}_i defined on the interval $[0, \infty)$, respectively. Let us suppose the semigroups T_1, \ldots, T_d commute, and define

(3)
$$\tilde{T}(t) = \tilde{T}_1(t_1)\tilde{T}_2(t_2)\dots\tilde{T}_d(t_d) \text{ for } t = (t_1,\dots,t_d) \in \mathbf{R}_d^+,$$

where

$$\mathbf{R}_d^+ = \{t = (t_1, \dots, t_d) : t_i \ge 0, \ 1 \le i \le d\}.$$

Then $\tilde{T} = \{\tilde{T}(t) : t \in \mathbf{R}_d^+\}$ becomes a d-parameter semigroup of linear contractions in $L_1(\Omega; X)$ such that it is strongly continuous on the interior $\mathbf{P}_d = \{t = (t_1, \dots, t_d) : t_i > 0, \ 1 \leq i \leq d\}$ of \mathbf{R}_d^+ , and for all $f \in L_1(\Omega; X)$ and $t = (t_1, \dots, t_d) \in \mathbf{R}_d^+$ we have

$$|\tilde{T}(t)f(\omega)| \leq \tilde{P}_1(t_1)\dots\tilde{P}_d(t_d)|f|(\omega)$$
 a.e. on Ω .

Lemma. Suppose the semigroups T_1, \ldots, T_d commute, and let $\tilde{T} = \{\tilde{T}(t) : t \in \mathbf{R}_d^+\}$ be the d-parameter semigroup defined by (3). Then to any $u = (u_1, \ldots, u_d) \in \mathbf{R}_d^+$ there corresponds a positive linear contraction $\tau(u)$ defined in $L_1(\Omega; \mathbf{R})$, called the linear modulus of $\tilde{T}(u)$, such that

- (i) $|\tilde{T}(u)f| \leq \tau(u)|f| \leq \tilde{P}_1(u_1) \dots \tilde{P}_d(u_d)|f|$ a.e. on Ω for all $f \in L_1(\Omega; X)$,
- (ii) $\tau(u)g = \sup\{\sum_{i=1}^k |\tilde{T}(u)f_i| : f_i \in L_1(\Omega; X), \sum_{i=1}^k |f_i| \le g, 1 \le k < \infty\}$ for all $g \in L_1^+(\Omega; X)$,
- (iii) $\tau(s+t) \leq \tau(s)\tau(t)$ for all $s, t \in \mathbf{R}_d^+$,

(iv) if
$$u \in \mathbf{P}_d$$
 then
$$\tau(u) = \ \, \mbox{strong-} \lim_{\substack{t \to u \\ t > u}} \tau(t).$$

PROOF: See the proof of Lemma 1 in [7].

3. Proof of the theorem

We first consider the case d=1. For u>0 let $\varphi_u(x)=u^{-2}\varphi(xu^{-2})$, where

$$\varphi(x) = \begin{cases} 2^{-1} \pi^{-\frac{1}{2}} x^{-\frac{3}{2}} e^{-\frac{1}{4x}} & (x > 0), \\ 0 & (x \le 0). \end{cases}$$

Define

$$Q_1(u)f = \int_0^\infty \varphi_u(x)P_1(x)f\,dx$$
 for $f \in L_1(\Omega; \mathbf{R})$.

It follows (cf. [3], [1]) that $Q_1 = \{Q_1(u) : u > 0\}$ becomes a strongly continuous semigroup of positive linear contractions in $L_1(\Omega; \mathbf{R})$ such that for all $f \in L_1^+(\Omega; \mathbf{R})$ and $\alpha > 0$

(4)
$$\frac{1}{\alpha} \int_0^{\alpha} P_1(t) f \, dt \le C_1 \cdot \frac{1}{\sqrt{\alpha}} \int_0^{\sqrt{\alpha}} Q_1(u) f \, du \text{ a.e. on } \Omega,$$

where C_1 is an absolute constant, and also such that

(5)
$$||Q_1(u)||_{\infty} \le M'K \text{ for all } u > 0,$$

where

$$M' = \int_0^\infty \left| \frac{\partial \varphi_u(x)}{\partial x} \right| x \, dx < \infty$$

(M' does not depend on u > 0). Thus we have

$$q - \sup_{\alpha > 0} \frac{1}{\alpha} \int_0^\alpha P_1(t) f \, dt \le C_1 \cdot q - \sup_{\alpha > 0} \frac{1}{\alpha} \int_0^\alpha Q_1(u) f \, du,$$

where $q-\sup_{\alpha>0}$ means that the supremum is taken as α ranges along a countable dense subset of the positive real numbers.

Define for $f \in L_p^+(\Omega; \mathbf{R})$ with $1 \le p < \infty$,

$$Q_1^* f = q - \sup_{\alpha > 0} \frac{1}{\alpha} \int_0^\alpha Q_1(u) f \, du.$$

By (5) together with Theorem 3 in [5], we see that

(i) if 1 then there exists a constant <math>K(p) with

(6)
$$||Q_1^*f||_p \le K(p)||f||_p \text{ for all } f \in L_p^+(\Omega; \mathbf{R}),$$

(ii) if p = 1 then there exits a constant K(1) with

(7)
$$\mu(\{\omega : Q_1^* f(\omega) > \alpha\}) \le \frac{1}{\alpha} K(1) \|f\|_1$$

for all $f \in L_1^+(\Omega; \mathbf{R})$ and $\alpha > 0$; hence $Q_1^* f < \infty$ a.e. on Ω for all $f \in L_1^+(\Omega; \mathbf{R})$. We now prove that if $f \in L_1(\Omega; X)$ then

(8)
$$q - \lim_{\alpha \to \infty} \frac{1}{\alpha} \int_{\alpha}^{\alpha+1} T_1(t) f \, dt = 0 \text{ on } \Omega.$$

For this purpose, by (1) it is enough to show that

(9)
$$q - \lim_{\alpha \to \infty} \frac{1}{\alpha} \int_{\alpha}^{\alpha+1} P_1(t) g \, dt = 0 \text{ a.e. on } \Omega$$

for any $g \in L_1^+(\Omega; \mathbf{R})$. To do so, let $0 < h \in L_1(\Omega; \mathbf{R}) \cap L_\infty(\Omega; \mathbf{R})$ be any function. Then we have

$$\frac{1}{\alpha} \int_{\alpha}^{\alpha+1} P_1(t)g \, dt = A_{\alpha}(P_1)h \cdot \frac{\int_{\alpha}^{\alpha+1} P_1(t)g \, dt}{\int_{0}^{\alpha} P_1(t)h \, dt}$$

$$\leq K \|h\|_{\infty} \cdot \frac{\int_{\alpha}^{\alpha+1} P_1(t)g \, dt}{\int_{0}^{\alpha} P_1(t)h \, dt},$$

and

$$q - \lim_{\alpha \to \infty} \frac{\int_{\alpha}^{\alpha+1} P_1(t)g \, dt}{\int_{0}^{\alpha} P_1(t)h \, dt} = 0$$

a.e. on $\{\omega: q-\sup_{\alpha>0}(\int_0^\alpha P_1(t)h\,dt)(\omega)>0\}$ by virtue of the Chacon-Ornstein lemma (cf. Lemma 3.2.3 in [6]). Hence (9) follows.

Next let $1 be fixed. We observe that the net <math>\{A_{\alpha}(T_1) : \alpha > 0\}$ is ergodic with respect to the one-parameter semigroup $T_1 = \{T_1(t) : t > 0\}$ of bounded linear operators in $L_p(\Omega; X)$ in the sense of Chapter 2 of [6]. Indeed, for any t > 0 we have

$$||T_1(t)A_{\alpha}(T_1) - A_{\alpha}(T_1)||_p = \left\| \frac{1}{\alpha} \int_{\alpha}^{\alpha+t} T_1(u) du - \frac{1}{\alpha} \int_{0}^{t} T_1(u) du \right\|_p$$

$$\leq \left\| \frac{1}{\alpha} \int_{\alpha}^{\alpha+t} T_1(u) du \right\|_p + \frac{1}{\alpha} \left\| \int_{0}^{t} T_1(u) du \right\|_p$$

$$\leq \left\| \frac{1}{\alpha} \int_{\alpha}^{\alpha+t} P_1(u) du \right\|_p + \frac{1}{\alpha} \left\| \int_{0}^{t} P_1(u) du \right\|_p \to 0 \text{ as } \alpha \to \infty,$$

by the Riesz convexity theorem together with (1) and (2). Since X is reflexive by hypothesis, $L_p(\Omega; X)$ is also reflexive. Thus by a mean ergodic theorem (cf. Theorem 2.1.5 in [6]) for any $f \in L_p(\Omega; X)$ the limit

$$\lim_{\alpha \to \infty} A_{\alpha}(T_1) f$$

exists in the L_p -norm, and we have $L_p(\Omega; X) = F \oplus N$, where

$$F = \{ f \in L_p(\Omega; X) : T_1(t)f = f \text{ for all } t > 0 \},$$

$$N = \text{ the closed linear span of } \{ f - T_1(t)f : f \in L_p(\Omega; X), \ t > 0 \}.$$

Since (9) holds for all $g \in L_1^+(\Omega; \mathbf{R})$, (6) together with an approximation argument proves that (9) holds for all $g \in L_p^+(\Omega; \mathbf{R})$. By this and (1), for all $f \in L_p(\Omega; X)$ we have

(10)
$$q - \lim_{\alpha \to \infty} \frac{1}{\alpha} \int_{\alpha}^{\alpha+1} T_1(t) f \, dt = 0 \text{ a.e. on } \Omega.$$

Here clearly $\alpha + 1$ can be replaced by any $\alpha + u$ with u > 0. So for u > 0 we have

$$\begin{split} q - \lim_{\alpha \to \infty} A_{\alpha}(T_1)(f - T_1(u)f) \\ &= q - \lim_{\alpha \to \infty} \left(\frac{1}{\alpha} \int_0^u T_1(t) f \, dt - \frac{1}{\alpha} \int_{\alpha}^{\alpha + u} T_1(t) f \, dt \right) \\ &= 0 \quad \text{a.e. on } \Omega, \end{split}$$

whence (1), (4), (6) and Banach's convergence principle (cf. Theorem 1.7.2 in [6]) prove that for any $f \in L_p(\Omega; X)$ the limit

$$q$$
- $\lim_{\alpha \to \infty} \frac{1}{\alpha} \int_0^{\alpha} T_1(t) f dt$

exists a.e. on Ω . Since $L_p(\Omega; X) \cap L_1(\Omega; X)$ is dense in $L_1(\Omega; X)$, (7) and Banach's convergence principle prove that the theorem holds for d = 1.

Since the case d=1 has been done, we now proceed by an induction argument. First suppose that the semigroups T_1,\ldots,T_d commute and the semigroups P_1,\ldots,P_d are both L_1 and L_∞ contraction semigroups. Let $\tilde{T}=\{\tilde{T}(t):t\in\mathbf{R}_d^+\}$ and $\{\tau(t);t\in\mathbf{R}_d^+\}$ be as in the lemma. We notice that $\|\tau(t)\|_p\leq 1$ for all $1\leq p\leq\infty$ and $t\in\mathbf{R}_d^+$, and that if $u\in\mathbf{P}_d$ then $\tau(u)=\operatorname{strong-lim}_{t\to u,t\geq u}\tau(t)$ in $L_p(\Omega;\mathbf{R})$ for each $1\leq p<\infty$. For $u=(u_1,\ldots,u_d)\in\mathbf{P}_d$ and $g\in L_p(\Omega;\mathbf{R})$ with $1\leq p<\infty$, define

(11)
$$S(u)g = S(u_1, \dots, u_d)g$$
$$= \int_0^\infty \dots \int_0^\infty \varphi_{u_1}(x_1) \dots \varphi_{u_d}(x_d) \tau(x_1, \dots, x_d) g \, dx_1 \dots dx_d.$$

S(u) becomes a positive linear contraction in $L_p(\Omega; \mathbf{R})$ for each $1 \leq p < \infty$. Further, by putting

$$\tilde{\tau}(x_1, \tilde{x}_1, \dots, x_x, \tilde{x}_d) = \tau(x_1, \dots, x_d),$$

we get for all $g \in L_p(\Omega; \mathbf{R})$ with $1 \le p < \infty$

$$S(u)g = \int_0^\infty \cdots \int_0^\infty \varphi_{u_1}(x_1)\varphi_{u_1}(\tilde{x}_1)\dots\varphi_{u_d}(x_d)\varphi_{u_d}(\tilde{x}_d)\tilde{\tau}(x_1,\tilde{x}_1,\dots,\tilde{x}_d)g\,dx_1\dots d\tilde{x}_d.$$

Thus it follows from the lemma (iii) and a standard calculation (cf. p. 700 in [3]) that if $u, t \in \mathbf{P}_d$ and $g \in L_p^+(\Omega; \mathbf{R})$ with $1 \le p < \infty$ then

(12)
$$S(u)S(t)g \ge S(u+t)g$$
 a.e. on Ω ,

that is, $S = \{S(t) : t \in \mathbf{P}_d\}$ becomes a d-parameter sub-semigroup of positive linear contractions in $L_p(\Omega; \mathbf{R})$ for each $1 \le p < \infty$. Since S is strongly continuous on \mathbf{P}_d , the proof of Lemma VIII.7.13 in [3] shows that there exists a constant $C_d > 0$, dependent only on d, and a strongly continuous one-parameter sub-semigroup $S^1 = \{S^1(t) : t > 0\}$ of positive linear contractions in $L_1(\Omega; \mathbf{R})$ such that

(13)
$$||S^1(t)||_{\infty} \le 1 \text{ for all } t > 0,$$

and also such that for all $g \in L_p^+(\Omega; \mathbf{R})$ with $1 \le p < \infty$

(14)
$$q - \sup_{\alpha > 0} \frac{1}{\alpha^d} \int_{[0,\alpha]^d} \tau(u) g \, du \le C_d \cdot q - \sup_{\alpha > 0} \frac{1}{\alpha} \int_0^\alpha S^1(t) g \, dt \quad \text{a.e. on } \Omega.$$

Let us fix a $g \in L_p^+(\Omega; \mathbf{R})$ with $1 \leq p < \infty$, and let \mathbf{Q}^+ denote the set of all positive rational numbers. Since

$$\lim_{n \to \infty} \left\| \frac{1}{r} \int_0^r S^1(t) g \, dt - \frac{1}{r(n!)} \sum_{i=0}^{r(n!)-1} S^1\left(\frac{i}{n!}\right) g \right\|_p = 0$$

for all $r \in \mathbf{Q}^+$, where $S^1(0) = I$, the Cantor diagonal method can be applied to choose a subsequence (n') of (n) such that

$$\frac{1}{r} \int_0^r S^1(t) g \, dt = \lim_{n' \to \infty} \frac{1}{r(n'!)} \sum_{i=0}^{r(n'!)} S^1\left(\frac{i}{n'!}\right) g$$

$$\leq \liminf_{n' \to \infty} \frac{1}{r(n'!)} \sum_{i=0}^{r(n'!)-1} \left(S^1\left(\frac{1}{n'!}\right)\right)^i g \text{ a.e. on } \Omega$$

for all $r \in \mathbf{Q}^+$. Thus putting

(15)
$$g^*(n') = \sup_{k \ge 1} \frac{1}{k} \sum_{i=0}^{k-1} \left(S^1 \left(\frac{1}{n'!} \right) \right)^i g,$$

and for each a > 0

$$E(n', a) = \{ \omega \in \Omega : g^*(n')(\omega) > a \},$$

we see that the function

(16)
$$g^* = \sup_{r \in \mathbf{Q}^+} \frac{1}{r} \int_0^r S^1(t) g \, dt$$

satisfies

(17)
$$g^* \leq \liminf_{n' \to \infty} g^*(n') \text{ a.e. on } \Omega,$$

and

$$\{\omega: g^*(\omega) > a\} \subset \liminf_{n' \to \infty} E(n', a).$$

Therefore by Fatou's lemma, if $g \in L_1^+(\Omega; \mathbf{R})$ then

$$\begin{split} \int_{\{g^*>a\}} (a - \min\{a, g\}) \, d\mu &\leq \liminf_{n' \to \infty} \int_{E(n', a)} (a - \min\{a, g\}) \, d\mu \\ &\leq \int_{\Omega} (g - \min\{a, g\}) \, d\mu \quad \text{(by Theorem 1 in [5])}, \end{split}$$

so that

$$\mu(\{g^* > a\}) \le \frac{1}{a} \|g\|_1,$$

whence $g^* < \infty$ a.e. on Ω . By this together with (14) and the lemma, we have for all $f \in L_1(\Omega; X)$

$$(18) \qquad q - \sup_{\alpha > 0} \alpha^{-d} \Big| \int_0^\alpha \cdots \int_0^\alpha \tilde{T}(t_1, \ldots, t_d) f \, dt_1 \ldots dt_d \Big| < \infty \quad \text{a.e. on } \Omega.$$

Let $1 . If <math>g \in L_p^+(\Omega; \mathbf{R})$ then the function g^* in (16) satisfies, by (17) and Fatou's lemma,

$$||g^*||_p \le \liminf_{n' \to \infty} ||g^*(n')||_p.$$

From (13) it follows (cf. [5]) that there exists a constant $\tilde{K}(p) > 0$ such that

$$||g^*(n')||_p \le \tilde{K}(p)||g||_p;$$

thus

(19)
$$||g^*||_p \le \tilde{K}(p)||g||_p (g \in L_p^+(\Omega; \mathbf{R})).$$

Let $f \in L_p(\Omega; X)$ and t > 0 be fixed. Since

$$q-\lim_{\alpha\to\infty}\frac{1}{\alpha}\int_0^\alpha T_d(u)[f-T_d(t)f]\,du=0\ \ \text{a.e. on }\Omega,$$

the functions

$$M(\alpha)[f - T_d(t)f] = \sup_{\substack{b > \alpha \\ b \in \mathbf{Q}^+}} \frac{1}{b} \Big| \int_0^b T_d(u)[f - T_d(t)f] \, du \Big| \qquad (\alpha > 0)$$

satisfy

$$\lim_{\alpha \to \infty} M(\alpha)[f - T_d(t)f] = 0 \text{ a.e. on } \Omega.$$

Further, since

$$M(\alpha)[f - T_d(t)f] \le \sup_{r \in \mathbf{Q}^+} \frac{1}{r} \Big| \int_0^r T_d(u)[f - T_d(t)f] du \Big| \in L_p(\Omega; \mathbf{R})$$

by the preceding argument for d=1, it follows from Lebesgue's convergence theorem that

$$\lim_{\alpha \to \infty} ||M(\alpha)[f - T_d(t)f]||_p = 0.$$

This together with the inequalities (14) for the case d-1 and (19) yield

$$q - \lim_{\alpha \to \infty} \alpha^{-(d-1)} \int_0^{\alpha} \cdots \int_0^{\alpha} \tilde{T}(u_1, \dots, u_{d-1})$$
$$\left(\frac{1}{\alpha} \int_0^{\alpha} T_d(s) [f - T_d(t)f] ds\right) du_1 \dots du_{d-1} = 0 \text{ a.e. on } \Omega.$$

Since $L_p(\Omega; X) = F_d \oplus N_d$, where

$$F_d=\{h\in L_p(\Omega;X):T_d(t)h=h\ \text{ for all }\ t>0\},$$

$$N_d=\ \text{the closed linear span of }\ \{h-T_d(t)h:h\in L_p(\Omega;X),\ t>0\},$$

we then apply the induction hypothesis together with Banach's convergence principle (cf. (14), (16) and (19)) to show for any $f \in L_p(\Omega; X)$ the limit

$$q - \lim_{\alpha \to \infty} \alpha^{-d} \int_0^{\alpha} \cdots \int_0^{\alpha} \tilde{T}_1(t_1, \dots, t_d) f dt_1 \dots dt_d$$

exists a.e. on Ω . This and (18) for $f \in L_1(\Omega; X)$ prove that the conclusion of the theorem holds, when T_1, \ldots, T_d commute and P_1, \ldots, P_d are both L_1 and L_{∞} contraction semigroups.

Finally suppose that the semigroups P_1, \ldots, P_d commute. For $u = (u_1, \ldots, u_d) \in \mathbf{P}_d$ and $g \in L_1(\Omega; \mathbf{R})$, define

(20)
$$Q(u)g = Q(u_1, \dots, u_d)g$$
$$= \int_0^\infty \dots \int_0^\infty \varphi_{u_1}(x_1) \dots \varphi_{u_d}(x_d) P_1(x_1) \dots P_d(x_d) g \, dx_1 \dots dx_d.$$

It follows from (5) (cf. [8]) that $Q = \{Q(u) : u \in \mathbf{P}_d\}$ becomes a d-parameter semigroup of positive linear contraction in $L_1(\Omega; \mathbf{R})$ such that

(21)
$$||Q(u)||_{\infty} \le (M'K)^d \text{ for all } u \in \mathbf{P}_d.$$

Thus there exists a strongly continuous one-parameter semigroup $Q^1 = \{Q^1(t) : t > 0\}$ of positive linear contractions in $L_1(\Omega; \mathbf{R})$ such that $||Q^1(t)||_{\infty} \leq (M'K)^d$ for all t > 0, and if $g \in L_p^+(\Omega; \mathbf{R})$ with $1 \leq p < \infty$ then

$$q - \sup_{\alpha > 0} \frac{1}{\alpha^d} \int_0^{\alpha} \cdots \int_0^{\alpha} P_1(u_1) \dots P_d(u_d) g \, du_1 \dots du_d$$

$$\leq C_d \cdot q - \sup_{\alpha > 0} \frac{1}{\alpha} \int_0^{\alpha} Q^1(t) g \, dt < \infty \text{ a.e. on } \Omega.$$

Since (1) implies that if $f \in L_p(\Omega; X)$ with $1 \le p < \infty$ then the function

$$Mf = q - \sup_{\alpha > 0} \frac{1}{\alpha^d} \left| \int_0^{\alpha} \cdots \int_0^{\alpha} T_1(t_1) \dots T_d(t_d) f \, dt_1 \dots dt_d \right|$$

satisfies

$$Mf \leq q - \sup_{\alpha > 0} \frac{1}{\alpha^d} \int_0^{\alpha} \cdots \int_0^{\alpha} P_1(u_1) \dots P_d(u_d) |f| du_1 \dots du_d,$$

it follows that

$$Mf < \infty$$
 a.e. on Ω

for all $f \in L_p(\Omega; X)$ with $1 \leq p < \infty$. Using this and the fact that the one-parameter semigroup $T_d = \{T_d(t) : t > 0\}$ of bounded linear operators in $L_p(\Omega; X)$ with 1 satisfies the mean ergodic theorem, we can prove that the conclusion of the theorem holds in this case, too. We may omit the details.

References

- Brunel A., Émilion R., Sur les opérateurs positifs à moyennes bornées, C.R. Acad. Sci. Paris Sér. I Math. 298 (1984), 103–106.
- [2] Chacon R.V., An ergodic theorem for operators satisfying norm conditions, J. Math. Mech. 11 (1962), 165–172.
- [3] Dunford N., Schwartz J.T., Linear Operators. Part I: General Theory, Interscience, New York, 1958.
- [4] Hasegawa S., Sato R., On d-parameter pointwise ergodic theorems in L₁, Proc. Amer. Math. Soc. 123 (1995), 3455-3465.
- [5] Hasegawa S., Sato R., Tsurumi S., Vector valued ergodic theorems for a one-parameter semigroup of linear operators, Tôhoku Math. J. 30 (1978), 95–106.
- [6] Krengel U., Ergodic Theorems, de Gruyter, Berlin, 1985.
- [7] Sato R., Vector valued differentiation theorems for multiparameter additive processes in L_p spaces, submitted for publication.
- [8] Terrell T.R., Local ergodic theorems for n-parameter semigroups of operators, Lecture Notes in Math., vol. 160, Springer, Berlin, 1970, pp. 262-278.

DEPARTMENT OF MATHEMATICS, SHIBAURA INSTITUTE OF TECHNOLOGY, OMIYA, 330 JAPAN

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, OKAYAMA UNIVERSITY, OKAYAMA, 700 JAPAN

(Received July 5, 1996)