When is **N** Lindelöf?

HORST HERRLICH, GEORGE E. STRECKER

Abstract.

Theorem. In ZF (i.e., Zermelo-Fraenkel set theory without the axiom of choice) the following conditions are equivalent:

- N is a Lindelöf space,
- (2) \mathbb{Q} is a Lindelöf space,
- (3) \mathbb{R} is a Lindelöf space,
- (4) every topological space with a countable base is a Lindelöf space,
- (5) every subspace of \mathbb{R} is separable,
- (6) in R, a point x is in the closure of a set A iff there exists a sequence in A that converges to x,
- (7) a function $f : \mathbb{R} \to \mathbb{R}$ is continuous at a point x iff f is sequentially continuous at x,
- (8) in \mathbb{R} , every unbounded set contains a countable, unbounded set,
- (9) the axiom of countable choice holds for subsets of \mathbb{R} .

Keywords: axiom of choice, axiom of countable choice, Lindelöf space, separable space, (sequential) continuity, (Dedekind-) finiteness

Classification: Primary 03E25, 04A25, 54D20; Secondary 26A03, 26A15, 54A35

Introduction

Jech (1968) has shown that in ZF (i.e., Zermelo-Fraenkel set theory without the axiom of choice) the space \mathbb{R} of real numbers may fail to be Lindelöf, even though \mathbb{R} has a countable base. Here we will show that — perhaps even more surprisingly — the countable discrete space \mathbb{N} of positive integers can fail to be Lindelöf as well. Naturally, the axiom of countable choice implies that \mathbb{R} and (hence) \mathbb{N} are Lindelöf. Is there a simple set-theoretic condition that is sufficient and necessary for \mathbb{N} to be Lindelöf? The purpose of our note is to answer this question.

Proof of the Theorem

It suffices to establish the implications $(8) \Rightarrow (9) \Rightarrow (4)$ and $(1) \Rightarrow (8)$, since the validity of the implications $(4) \Rightarrow (2) \Rightarrow (1)$, $(4) \Rightarrow (3) \Rightarrow (1)$, $(7) \Rightarrow (6) \Rightarrow$ $(8) \Rightarrow (7)$, and $(9) \Rightarrow (5) \Rightarrow (8)$ is apparent.

 $(8) \Rightarrow (9)$ Let (X_n) be a sequence of non-empty subsets of \mathbb{R} . For each $n \in \mathbb{N}$ consider an injection $\tau_n : \mathbb{R}^n \to]n, n+1[$.

[Such τ_n can be constructed effectively, e.g., as follows:

Let **A** be the subset of $\{0, 1\}^{\mathbb{N}}$ consisting of all non-constant sequences (x_n) with infinitely many zeros.

Let α : $\mathbb{R} \to [0,1[$ be the bijection defined by $\alpha(x) = 2^{-1} + \pi^{-1} \cdot \arctan x$. Let β : $\mathbf{A} \to [0,1[$ be the bijection defined by $\beta(x_n) = \sum_{i=1}^{\infty} 2^{-n} \cdot x_n$.

Consider $\gamma = \beta^{-1} \circ \alpha$: $\mathbb{R} \to \mathbf{A}$ and γ^n : $\mathbb{R}^n \to \mathbf{A}^n$. Let σ_n : $\mathbf{A}^n \to \mathbf{A}$ be the *n*-th squeezing function defined by

$$\sigma_n\Big((x_1^1, x_2^1, \dots), (x_1^2, x_2^2, \dots), \dots, (x_1^n, x_2^n, \dots)\Big) = \\ = (x_1^1, x_1^2, \dots, x_1^n, x_2^1, x_2^2, \dots x_2^n, x_3^1, \dots).$$

Let δ_n : $]0,1[\rightarrow]n,n+1[$ be the bijection defined by $\delta_n(x) = n + x$. Then $\tau_n = \delta_n \circ \beta \circ \sigma_n \circ \gamma^n$: $\mathbb{R}^n \to]n,n+1[$ is an injection.]

Each $Y_n = \tau_n \begin{bmatrix} n \\ 1 \end{bmatrix} X_i$ is a non-empty subset of]n, n+1[. Hence $Y = \bigcup_{1}^{\infty} Y_n$ is an unbounded subset of \mathbb{R} . By (8), Y contains an unbounded sequence (y_m) . For each $m \in \mathbb{N}$ there exists a unique $\nu(m)$ in \mathbb{N} with $y_m \in Y_{\nu(m)}$, thus a unique element $\int_{1}^{\nu(m)} Y_n$ is a provide the sequence $(x_m, y_m) = 0$.

 $z_m ext{ of } \prod_{1}^{\nu(m)} X_i ext{ with } \tau_{\nu(m)}(z_m) = y_m. ext{ Denote } z_m ext{ by } \left(x_1^m, x_2^m, \dots, x_{\nu(m)}^m \right).$

Next, let *n* be an element of \mathbb{N} . Since (y_m) is unbounded there exists some *m* in \mathbb{N} with $n \leq \nu(m)$. Define $\mu(n) = \operatorname{Min}\{m \in \mathbb{N} \mid n \leq \nu(m)\}$. Then $n \leq \nu(\mu(n))$. Thus $x_n^{\mu(n)}$ belongs to X_n , and consequently $(x_n^{\mu(n)}) \in \prod_{1}^{\infty} X_n$.

 $(9) \Rightarrow (4)$ Let **X** be a topological space with a countable base (B_n) , and let \mathfrak{U} be an open cover of **X**. Then the map $\alpha: \mathfrak{U} \to \mathfrak{P}\mathbb{N}$ from \mathfrak{U} into the powerset of \mathbb{N} , defined by $\alpha(U) = \{n \in \mathbb{N} \mid B_n \subseteq U\}$, is injective. For each n in \mathbb{N} define $X_n = \{\alpha(U) \mid B_n \subseteq U \in \mathfrak{U}\}$. Then $M = \{n \in \mathbb{N} \mid X_n \neq \emptyset\}$ is at most countable. Since there exists a bijection between $\mathfrak{P}\mathbb{N}$ and \mathbb{R} condition (9) implies that $\prod_{m \in M} X_m \neq \emptyset$. Let (x_m) be an element of this product. Since α is injective,

for each $m \in M$ there exists a unique element U_m in \mathfrak{U} with $\alpha(U_m) = x_m$. In particular, $x_m \in X_m$ implies $B_m \subseteq U_m$. Since (B_n) is a base and \mathfrak{U} is an open cover of \mathbf{X} , $\{B_m \mid m \in M\}$ covers X. Consequently $\{U_m \mid m \in M\}$ covers X.

 $(1) \Rightarrow (8)$ Let A be a subset of \mathbb{R} unbounded to the right. Consider a bijection $\alpha \colon \mathbb{N} \to \mathbb{Q}$. Then the map $\beta \colon A \to \mathfrak{PN}$, given by $\beta(a) = \{n \in \mathbb{N} \mid \alpha(n) < a\}$, is injective. Further $\mathfrak{U} = \{\beta(a) \mid a \in A\}$ is an open cover of \mathbb{N} . By $(1), \mathfrak{U}$ contains an at most countable subset \mathfrak{V} that covers \mathbb{N} . For each $V \in \mathfrak{V}$ there exists a unique element $a_V \in A$ with $V = \beta(a_V)$. Consequently $\{a_V \mid V \in \mathfrak{V}\}$ is a countable, unbounded subset of A.

Remarks

- Jaegermann (1965) has constructed a model of ZF in which the condition (7) of our Theorem fails.
- (2) Jech (1968) has shown that in any model of ZF that violates the following condition

(*) every infinite subset of \mathbb{R} is Dedekind-infinite,¹

(e.g., in Cohen's basic model) the conditions (3), (5), (6), and (7) of our Theorem must fail. Obviously, condition (5) implies (*). We do not know whether (*) is properly weaker than the conditions of our Theorem. It is, however, easy to see that (*) is equivalent to the following strong form of the Bolzano-Weierstraß-Theorem:

(SBW) in $\mathbb R,$ every bounded, infinite set contains a convergent, injective sequence.

In contrast to this, the ordinary Bolzano-Weierstraß-Theorem

(BW) in $\mathbb R,$ for every bounded, infinite set there exists an accumulation point

is easily seen to hold in ZF.

- (3) Sierpiński (1916) has shown that the conditions (6) and (7) of our Theorem are equivalent to each other and to the following (somewhat unattractive) set-theoretic-condition:
 - (P) "Pour toute suite infinie des ensembles de nombres réels X_1, X_2, X_3, \ldots , [non vides] sans points communs, existe au moins une suite infinie de nombres réels x_1, x_2, x_3, \ldots , dont les termes correspondants aux indices différents appartiennent toujours aux différents ensembles X_n ."

In contrast to the above, Sierpiński (1918) proved that a function $f: \mathbb{R} \to \mathbb{R}$ is continuous iff it is sequentially continuous.

In contrast to this, Herrlich and Steprāns proved that the equivalence of continuity and sequential continuity for functions between metric spaces (equivalently: for functions from metric spaces into \mathbb{R}) is equivalent to the axiom of countable choice.

- (4) In the wider realm of pseudometric spaces the following hold:
 - (a) (Herrlich (1996)) Equivalent are:
 - (α) Heine-Borel-compactness (i.e., every open cover contains a finite one) implies Alexandroff-Urysohn-compactness (i.e., every infinite set has a complete accumulation point),

¹A set A is called *Dedekind-infinite* provided there exists some injection from \mathbb{N} into A.

- (β) the axiom of choice.
- (b) (Bentley and Herrlich) Equivalent are:
 - (α) sequential compactness implies Heine-Borel-compactness,
 - (β) Heine-Borel-compactness implies separability,
 - (γ) the Lindelöf property implies separability,
 - (δ) the countable base condition (= second axiom of countability) implies separability,
 - (ϵ) subspaces of separable spaces are separable,
 - (ζ) the Baire Category Theorem holds for complete spaces with countable base,
 - (η) the axiom of countable choice.
- (c) (Bentley and Herrlich) Equivalent are:
 - (α) sequential compactness implies Bolzano-Weierstraß-compactness (i.e., every infinite set has an accumulation point),
 - (β) every infinite set is Dedekind-infinite.
- (d) (Bentley and Herrlich) The Baire category theorem holds for separable complete spaces.

References

- Bentley H.L., Herrlich H., Countable choice and pseudometric spaces, in preparation.
- Herrlich H. (1996), Compactness and the Axiom of Choice, Appl. Categ. Struct. 4 (1996), 1–14.
- Herrlich H., Steprāns J., Maximal Filters, continuity, and choice principles, to appear in Quaestiones Math.
- Jaegermann M. (1965), The axiom of choice and two definitions of continuity, Bulletin de l'Acad. Polonaise des Sciences, Ser. Math. 13 (1965), 699–704.
- Jech T. (1968), Eine Bemerkung zum Auswahlaxiom, Časopis pro pěstování matematiky 9 (1968), 30–31.
- Sierpiński W. (1916), Sur le rôle de l'axiome de M. Zermelo dans l'Analyse moderne, Compt. Rendus Hebdomadaires des Séances de l'Academie des Sciences, Paris 193 (1916), 688–691.
- Sierpiński W. (1918), L'axiome de M. Zermelo et son rôle dans la théorie des ensembles et l'analyse, Bulletin de l'Académie des Sciences de Cracovie, Classe des Sciences Math., Sér. A (1918), 97–152.

FACHBEREICH 3, UNIVERSITÄT BREMEN, 28359 BREMEN, GERMANY

DEPARTMENT OF MATHEMATICS, KANSAS STATE UNIVERSITY, MANHATTAN, KS 66506, USA

(Received June 7, 1996)