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A basic approach to the perfect extensions of spaces

Giorgio Nordo

Abstract. In this paper we generalize the notion of perfect compactification of a Ty-
chonoff space to a generic extension of any space by introducing the concept of perfect
pair. This allow us to simplify the treatment in a basic way and in a more general
setting. Some [S1], [S2], and [D]’s results are improved and new characterizations for
perfect (Hausdorff) extensions of spaces are obtained.
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1. Introduction

The notion of perfect compactification of a Tychonoff space was introduced
and studied by E.G. Skljarenko since 1961 ([S1], [S2]) by using proximal tech-
niques. In [D], B. Diamond gave some additional characterizations of perfectness
for compactifications of Tychonoff spaces by using proximities, too.
The aim of this paper is to generalize the notion of perfectness from a Hausdorff

compactification of a Tychonoff space to a generic extension of any space by
introducing the notion of perfect pair. This definition allow us to simplify the
treatment in a basic way (without using proximities) and in a more general setting,
removing any additional hypothesis about the space.
Thus we are able to improve some Skljarenko and Diamond’s results contained

in [S1], [S2], [D] and to establish new characterizations for perfect (Hausdorff)
extensions of spaces.

2. Notation and preliminaries

The word “space” will mean “topological space” on which, unless otherwise
specified, no separation axiom is assumed.
If X is a space, τ(X) will denote the set of open sets of X while σ(X) will

denote the set of closed sets of X .
Terms and undefined concepts are used as in [E] and [PW].
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through “Gruppo Topologia e Geometria” (Italy)
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Definition. Let Y be a generic extension of a space X and U be an open set
of X . We define the maximal extension of U in Y and we will denote it by 〈U〉Y
(or 〈U〉 for short) by setting 〈U〉Y =

⋃

{V ∈ τ(Y ) : V ∩ X = U}.

The main properties of the operator 〈·〉 : τ(X)→ τ(Y ) are summarized in the
following:

Lemma 2.1. For every extension Y of X and every pair of open set U , V of X ,
the following holds:

(1) 〈U〉 = Y \clY (X\U);
(2) U ⊆ V =⇒ 〈U〉 ⊆ 〈V 〉;
(3) if Z ⊆ Y is another extension of X , then 〈U〉Z = 〈U〉Y ∩ Z;
(4) 〈U ∩ V 〉 = 〈U〉 ∩ 〈V 〉;
(5) 〈U〉 ⊆ clY (U);
(6) clY (〈U〉) = clY (U);
(7) U is dense in 〈U〉;
(8) bdY (〈U〉)\bdX(U) ⊆ Y \X ;
(9) bdX(U) ⊆ bdY (〈U〉);
(10) clY (bdX(U)) ⊆ bdY (〈U〉).

Lemma 2.2. Let Y be an extension of X , U ∈ τ(X) and C ∈ σ(Y ) such that
C ⊆ X , then:

(1) 〈U〉 = 〈U\C〉 ∪ (U ∩ C);
(2) 〈U\C〉 = 〈U〉\C.

Proof: (1) Since C = C ∩ X ∈ σ(X), by 2.1.(4) and 2.1.(1), 〈U\C〉 = 〈U〉 ∩
〈X\C〉 = 〈U〉 ∩ (Y \C) and so 〈U\C〉 ∩ (Y \X) = 〈U〉 ∩ (Y \X). Hence, 〈U〉 =
(〈U〉∩(Y \X))∪(〈U〉∩X) = (〈U\C〉∩(Y \X))∪U = (〈U\C〉∩(Y \X))∪((U\C)∪
(U ∩ C)) = (〈U\C〉 ∩ (Y \X)) ∪ ((〈U\C〉 ∩ X) ∪ (U ∩ C)) = 〈U\C〉 ∪ (U ∩ C).

(2) It follows directly from (1) as the sets 〈U\C〉 and U ∩ C are disjoint. �

Lemma 2.3 [D]. If Y is an extension of X and U, V ∈ τ(X), then 〈U∪V 〉\(〈U〉∪
〈V 〉) ⊆ clY (U) ∩ clY (V ) ∩ (Y \X).

Lemma 2.4. Let Y be an extension of X , U ∈ τ(X) and V ∈ τ(Y ), then
〈U ∩ V 〉V = 〈U〉Y ∩ V .

Proof: Obviously V is an extension of V ∩X and U ∩ V ∈ τ(V ) ⊆ τ(Y ) implies
〈U ∩ V 〉V ⊆ 〈U ∩ V 〉Y ⊆ 〈U〉Y by 2.1.(2). Thus 〈U ∩ V 〉V ⊆ 〈U〉Y ∩ V . On the
other hand, U ∈ τ(X) implies U ∩V ∈ τ(U) ⊆ τ(X). So, being 〈U〉Y ∩ V ∈ τ(V )
and (〈U〉Y ∩ V ) ∩X = U ∩ V , it follows that 〈U〉Y ∩ V ⊆ 〈U ∩ V 〉V . This proves
the equality. �

Corollary 2.5. Let Y be an extension of X , V be an open cover of Y and
U ∈ τ(X), then 〈U〉Y =

⋃

V ∈V
〈U ∩ V 〉V .
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3. Perfect extensions of arbitrary spaces and their characterizations

Definitions [S1]. Let Y be an extension of a space X .

(i) If U is an open set of X , we say that Y is a perfect extension of X with
respect to U if clY (bdX(U)) = bdY (〈U〉).

(ii) We say that Y is a perfect extension of X if it is a perfect extension of X
with respect to every open set of X .

Now, we introduce some new definitions closely connected with the previous
ones.

Definitions. Let Y be an extension of X , U ∈ τ(X) and x ∈ Y \X .

(i) We say that the pair (x, U) is perfect if x ∈ clY (bdX(U)) provided x ∈
bdY (〈U〉).

(ii) We say that Y is a perfect extension of X relatively to U if for every
y ∈ Y \X the pair (y, U) is perfect.

(iii) We say that Y is a perfect extension of X relatively to x if for every
W ∈ τ(X) the pair (x, W ) is perfect.

Remark. It is clear that Y is a perfect extension of X iff all the pairs (x, U)
(with x ∈ Y \X and U ∈ τ(X)) are perfect iff Y is a perfect extension of X
relatively to any open set of X (any point of the remainder Y \X).

Moreover, we give the following definitions.

Definition. Let Y be an extension of X , U ∈ τ(X) and x ∈ Y \X . We say that
Y \X cuts X at x relatively to U if there exists some O neighbourhood of x in Y
and some V open set of X such that O ∩X = (O ∩U)∪ V , (O ∩U)∩ V = ∅ and
x ∈ clY (O ∩ U) ∩ clY (V ).

Note. Obviously in the previous definition it results U ∩ V = ∅.

Definition [S1]. Let X be a space, F ⊆ X and U, V ∈ τ(X). We say that F
separates X in U and V if U ∩ V = ∅ and X\F = U ∪ V .

Note. It is clear that in the last definition, F is a closed set of X .

Definition. Let X be a space, A, C ⊆ X and U, V ∈ τ(X). We say that the set
A C-separates X in U and V if U ∩ V = ∅ and X\(A ∪ C) = U ∪ V .

First we give the following characterization for a perfect pair.

Proposition 3.1. Let Y be an extension of X , U ∈ τ(X) and x ∈ Y \X . The
following are equivalent:

(1) the pair (x, U) is perfect;
(2) Y \X does not cut X at x relatively to U ;
(3) there is no neighbourhood O of x in Y such that O ∩ X = (O ∩ U) ∪
(O ∩ (X\clX(U))) and x ∈ clY (O ∩ U) ∩ clY (O ∩ (X\clX(U)));

(4) for every V ∈ τ(X) such that U ∩ V = ∅, x /∈ 〈U ∪ V 〉\ (〈U〉 ∪ 〈V 〉);
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(5) x /∈ 〈U ∪ (X\clX(U))〉\ (〈U〉 ∪ 〈X\clX(U)〉);
(6) for every V ∈ τ(X) such that U ∩V = ∅, x ∈ clY (X\(U ∪V ))∪〈U〉∪〈V 〉;
(7) x ∈ clY (bdX(U)) ∪ 〈U〉 ∪ 〈X\clX(U)〉;
(8) for every F ∈ σ(Y ) such that F ⊆ X , the pair (x, U\F ) is perfect;
(9) for every F ∈ σ(Y ) such that F ⊆ X , Y \X does not cut X at x relatively
to U\F ;

(10) for every V ∈ τ(X) such that clY (U ∩ V ) ⊆ X , x /∈ 〈U ∪ V 〉\ (〈U〉 ∪ 〈V 〉);
(11) for every F ∈ σ(X) and C ∈ σ(Y ) such that C ⊆ X and F C-separates

X in U and V , then x ∈ clY (F ) ∪ C ∪ 〈U〉 ∪ 〈V 〉;
(12) for every F ∈ σ(X) which separatesX in U and V , x ∈ clY (F )∪〈U〉∪〈V 〉;
(13) for every C ∈ σ(Y ) and V ∈ τ(X) such that C ⊆ X and (U ∪C)∩V = ∅,

then x ∈ clY (X\((U\C) ∪ V )) ∪ 〈U\C〉 ∪ 〈V 〉.

Proof: First of all, let us observe that the implications (2)⇒(3), (4)⇒(5),
(8)⇒(1), (9)⇒(2), (10)⇒(4), (11)⇒(12) and (13)⇒(6) are trivial.
(1)⇒(2) Suppose that the pair (x, U) is perfect and let us observe that if

x ∈ 〈U〉 ∪ (Y \clY (〈U〉)), Y \X does not cut X at x relatively to U . In fact, if —
by contradiction — there is some O neighbourhood of x in Y and some V ∈ τ(X)
such that O∩X = (O ∩U)∪V , (O∩U)∩V = ∅ and x ∈ clY (O ∩U)∩ clY (V ), it
follows that U ∩ V = ∅ and by 2.1.(4), 〈U〉 ∩ 〈V 〉 = ∅. Hence, 〈U〉 ∩ clY (〈V 〉) = ∅
where x ∈ clY (V ) = clY (〈V 〉) by 2.1.(6). Thus, x /∈ 〈U〉 and if x ∈ Y \clY (〈U〉)
by 2.1.(2) and (6), we obtain x ∈ clY (O ∩ U) ⊆ clY (U) = clY (〈U〉) which is
a contradiction.
So, we have only to consider the case x ∈ bdY (〈U〉). Since the pair (x, U) is

perfect, x ∈ clY (bdX(U)) and if — by contradiction — Y \X cutsX at x relatively
to U , i.e. if there is some O neighbourhood of x in Y and some V ∈ τ(X) such
that O ∩ X = (O ∩ U) ∪ V , (O ∩ U) ∩ V = ∅ and x ∈ clY (O ∩ U) ∩ clY (V ),
it follows that O ∩ bdX(U) = O ∩ X ∩ bdX(U) = ((O ∩ U) ∪ V ) ∩ bdX(U) ⊆
(U ∪ V ) ∩ bdX(U) = V ∩ bdX(U) ⊆ V ∩ clX(U) = ∅ and so x /∈ clY (bdX(U)). A
contradiction which proves that Y \X does not cut X at x relatively to U .
(3)⇒(4) Let V ∈ τ(X) such that U ∩ V = ∅. If, by contradiction, x ∈ 〈U ∪

V 〉\(〈U〉 ∪ 〈V 〉), by 2.3., x ∈ clY (U) ∩ clY (V ). Now, from U ∩ V = ∅ follows
V ⊆ X\clX(U) = V ′ with V ′ ∈ τ(X) and so O = 〈U∪V ′〉 is a neighbourhood of x
in Y such that O∩X = U∪V ′, O∩U = U , O∩V ′ = V ′ and O∩X = (O∩U)∪(O∩
(X\clX(U))). Further, x ∈ clY (U) = clY (O ∩ U) and x ∈ clY (V ) ⊆ clY (V

′) =
clY (O∩V ′) = clY (O∩(X\clX(U))) imply x ∈ clY (O∩U)∩clY (O∩(X\clX(U)))
which is a contradiction to (3).
(5)⇒(6) Suppose that x /∈ 〈U ∪ (X\clX(U))〉\ (〈U〉 ∪ 〈X\clX(U)〉) and — by

contradiction — that there exists some V ∈ τ(X) such that U ∩ V = ∅ and
x /∈ clY (X\(U ∪ V )) ∪ 〈U〉 ∪ 〈V 〉. So, from x /∈ clY (X\(U ∪ V )) follows that
there is some W neighboourhood of x in Y such that W ∩ clY (X\(U ∪ V )) =
∅. Hence, (W ∩ X)\(U ∪ V ) = ∅ implies W ∩ X ⊆ U ∪ V . So, by definition
of maximal extension and 2.1.(2), we obtain x ∈ W ⊆ 〈W ∩ X〉 ⊆ 〈U ∪ V 〉.
Further, from U ∩ V = ∅ follows V ⊆ X\clX(U) and again, by 2.1.(2), x ∈
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〈U ∪ (X\clX(U))〉. Since x ∈ 〈U ∪ V 〉\(〈U〉 ∪ 〈V 〉), by 2.3. and 2.1.(6), we
have that x ∈ clY (U) ∩ clY (V ) = clY (〈U〉) ∩ clY (〈V 〉). On the other hand,
by 2.1(4), U ∩ V = ∅ implies 〈U〉 ∩ 〈V 〉 = ∅ and 〈U〉 ∩ clY (〈V 〉) = ∅. So,
x /∈ 〈U〉. Moreover, from U ∩ (X\clX(U)) = ∅ we obtain 〈U〉 ∩ 〈X\clX(U)〉 = ∅
and by 2.1.(4) follows clY (〈U〉) ∩ 〈X\clX(U)〉 = ∅ and x /∈ 〈X\clX(U)〉. Thus
x ∈ 〈U ∪ (X\clX(U))〉\ (〈U〉 ∪ 〈X\clX(U)〉). A contradiction to (5).

(6)⇒(7) It suffices to put V = X\clX(U) and observe that bdX(U) = X\(U ∪
V ).

(7)⇒(1) Let x ∈ bdY (〈U〉). Obviously x /∈ 〈U〉. Furthermore, being U ∩
(X\clX(U)) = ∅, by 2.1.(4) we obtain 〈U〉 ∩ 〈X\clX(U)〉 = ∅ and bdY (〈U〉) ∩
(X\clX(U)) = ∅ which implies that x /∈ 〈X\clX(U)〉. So, as from (7), x ∈
clY (bdX(U))∪〈U〉∪〈X\clX(U)〉, it follows that x ∈ clY (bdX(U)) and this proves
that the pair (x, U) is perfect.

(1)⇒(8) Suppose (x, U) be perfect and let F ∈ σ(Y ) such that F ⊆ X . Ob-
viously x /∈ F , F = F ∩ X ∈ σ(X) and U\F ∈ τ(X). So, if x ∈ bdY (〈U\F 〉),
by 2.2.(2), x ∈ bdY (〈U〉)\F and this leads to x ∈ bdY (〈U〉). By perfectness of
(x, U), x ∈ clY (bdX (U)) and being clearly bdX(U) ⊆ F ∪ bdX(U\F ), it follows
that x ∈ F ∪ clY (bdX(U\F )) which implies x ∈ clY (bdX(U\F )) and proves that
the pair (x, U\F ) is perfect.

(2)⇒(9) Suppose that Y \X does not cut X at x relatively to U and let F ∈
σ(Y ) such that F ⊆ X . If, by contradiction, Y \X cuts X at x relatively to U\F ,
i.e. if there exists some O neighbourhood of x in Y and some V ∈ τ(Y ) such that
O ∩ X = (O ∩ (U\F )) ∪ V , it is clear that (U\F ) ∩ V = ∅. Now, O′ = O\F
is a neighbourhood of x in Y and V ′ = V \F is an open set of Y such that
O′∩X = (O\F )∩X = (O∩X)\F = ((O∩(U\F ))∪V )\F = (((O\F )∩U)∪V )\F =
((O′ ∩ U) ∪ V )\F = (O′ ∩ U) ∪ (V \F ) = (O′ ∩ U) ∪ V ′. Since x ∈ clY (V )
and x /∈ F ∈ σ(Y ), x ∈ clY (V \F ) = clY (V

′) and as x ∈ clY (O ∩ (U\F )) =
clY ((O\F ) ∩ U) = clY (O

′ ∩ U), it follows that x ∈ clY (O
′ ∩ U) ∩ clY (V

′) which
means that Y \X cuts X at x relatively to U . A contradiction.

(4)⇒(10) Let F = clY (U ∪ V ) ⊆ X . Then x /∈ F = F ∩ X ∈ σ(X) Hence,
U ′ = U\F and V ′ = V \F are two disjoint open sets of X and by (4), x /∈ 〈U ′ ∪
V ′〉\(〈U ′〉 ∪ 〈V ′〉). So, by 2.2.(2), 〈U ′〉 = 〈U〉\F , 〈V ′〉 = 〈V 〉\F and 〈U ′ ∪ V ′〉 =
〈U ∪ V 〉\F . Thus, 〈U ′ ∪ V ′〉\(〈U ′〉 ∪ 〈V ′〉) = (〈U ∪ V 〉\(〈U〉 ∪ 〈V 〉))\F and as
x /∈ F this implies that x /∈ 〈U ∪ V 〉\(〈U〉 ∪ 〈V 〉).

(6)⇒(11) It is obvious, because if F C-separates X in U and V , i.e. if X\(F ∪
C) = U ∪ V and U ∩ V = ∅, by (6) it follows — in particular — that x ∈
clY (X\(U ∪ V )) ∪ 〈U〉 ∪ 〈V 〉, i.e. that x ∈ clY (F ) ∪ C ∪ 〈U〉 ∪ 〈V 〉.

(12)⇒(6) If U ∩ V = ∅, it is clear that F = X\(U ∪ V ), F separates X in U
and V and hence by (12), x ∈ clY (X\(U ∪ V )) ∪ 〈U〉 ∪ 〈V 〉.

(6)⇒(13) Let C ∈ σ(Y ), V ∈ τ(X) such that C ⊆ X and (U ∪C)∩V = ∅. Let
us suppose that x /∈ 〈U\C〉∪〈V 〉. Since U∩V = ∅, by (6) we have x ∈ clY (X\(U∪
V ))∪〈U〉∪〈V 〉 and so that x ∈ (clY (X\(U ∪V ))∪〈U〉∪〈V 〉)\(〈U\C〉∪〈V 〉) = by
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2.1.(1) = ((Y \〈U∪V 〉)∪〈U〉∪〈V 〉)\(〈U\C〉∪〈V 〉) = (Y \〈U∪V 〉)∪(〈U〉\〈U\C〉) =
by 2.2.(1) = (Y \〈U ∪ V 〉) ∪ (U ∩ C). Hence, being x /∈ C, it follows that x ∈
(Y \〈U ∪ V 〉)\C = Y \(〈U ∪ V 〉\C) = by 2.2.(2) = Y \〈(U ∪ V )\C〉 = by 2.1.(1)
= clY (X\((U∪V )\C)) = clY (X\((U\C)∪(V \C))) = clY (X\((U\C)∪V )) which
proves (13). �

Since, by definition, Y is a perfect extension of X relatively to U ∈ τ(X) if
and only if for every x ∈ Y \X the pair (x, U) is perfect, from the correspondent
points in 3.1., we have immediately the following characterization for a perfect
extension of a space relatively to a fixed open set.

Proposition 3.2. Let Y be an extension of X and U ∈ τ(X). The following are
equivalent:

(1) Y is a perfect extension of X relatively to U ;
(2) Y \X does not cut X at any point of Y \X relatively to U ;
(3) for any x ∈ Y \X there is no neighbourhood O of x in Y such that O∩X =
(O∩U)∪ (O ∩ (X\clX(U))) and x ∈ clY (O∩U)∩ clY (O ∩ (X\clX(U)));

(4) for every V ∈ τ(X) such that U ∩ V = ∅, 〈U ∪ V 〉 = 〈U〉 ∪ 〈V 〉;
(5) 〈U ∪ (X\clX(U))〉 = 〈U〉 ∪ 〈X\clX(U)〉;
(6) for every V ∈ τ(X) such that U ∩ V = ∅, clY (X\(U ∪ V )) separates Y in

〈U〉 and 〈V 〉;
(7) clY (bdX(U)) separates Y in 〈U〉 and 〈X\clX(U)〉;
(8) for every F ∈ σ(Y ) such that F ⊆ X , Y \X is a perfect extension of X
relatively to U\F ;

(9) for every F ∈ σ(Y ) such that F ⊆ X , Y \X does not cut X at any point
of Y \X relatively to U\F ;

(10) for every V ∈ τ(X) such that clY (U ∩ V ) ⊆ X , 〈U ∪ V 〉 = 〈U〉 ∪ 〈V 〉;
(11) for every F ∈ σ(X) and C ∈ σ(Y ) such that C ⊆ X and F C-separates

X in U and V , clY (F ) C-separates Y in 〈U〉 and 〈V 〉;
(12) for every F ∈ σ(X) which separates X in U and V , clY (F ) separates Y

in 〈U〉 and 〈V 〉;
(13) for every C ∈ σ(Y ) and V ∈ τ(X) such that C ⊆ X and (U ∪C)∩V = ∅,

clY (X\((U\C) ∪ V )) separates Y in 〈U\C〉 and 〈V 〉.

Definition [S1]. Let Y be an extension of X and x ∈ Y \X . We say that Y \X
cuts (= separates in [S1]) X at x if there exists some O neighbourhood of x in
Y and a pair U, V of disjoint open sets of X such that O ∩ X = U ∪ V and
x ∈ clY (U) ∩ clY (V ).

Lemma 3.3. Let Y be an extension of X and x ∈ Y \X , then Y \X does not cut
X at x iff Y \X does not cut X at x relatively to any open set of X .

Proof: (=⇒) If Y \X does not cut X at x and, by contradiction, Y \X cuts X
at x relatively to some U ∈ τ(X), we have that there are some O neighbourhood
of x in Y and some V ∈ τ(X) such that O ∩ X = (O ∩ U) ∪ V , (O ∩ U) ∩ V = ∅
and x ∈ clY (O ∩ U) ∩ clY (V ). Since U ∈ τ(X), U ′ = O ∩ U ∈ τ(U) ⊆ τ(X). So,
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it results O ∩ X = U ′ ∪ V , U ′ ∩ V = ∅ and x ∈ clY (U
′) ∩ clY (V ), that is Y \X

cuts X at x. A contradiction.

(⇐=) Suppose that Y \X does not cut X at x relatively to any U ∈ τ(X). If,
by contradiction, Y \X cuts X at x, i.e. there are a neighbourhood O of x in Y
and U, V ∈ τ(X) such that O ∩X = U ∪ V , U ∩ V = ∅ and x ∈ clY (U)∩ clY (V ),
it suffices to observe that O∩U = U to conclude that Y \X cuts X at x relatively
to U obtaining a contradiction. �

Now, using 3.1. and 3.3. (only for the equivalence (1) ⇔ (2)), we are able to
give a characterization of a perfect extension of a space relatively to some point
of its remainder.

Proposition 3.4. Let Y be an extension of X and x ∈ Y \X . The following are
equivalent:

(1) Y \X is a perfect extension of X relatively to x;
(2) Y \X does not cut X at x;
(3) for any U ∈ τ(X) there is no neighbourhood O of x in Y such that

O ∩ X = (O ∩ U) ∪ (O ∩ (X\clX(U))) and
x ∈ clY (O ∩ U) ∩ clY (O ∩ (X\clX(U)));

(4) for every pair U, V of disjoint open sets of X , x /∈ 〈U ∪ V 〉\ (〈U〉 ∪ 〈V 〉);
(5) for every U ∈ τ(X), x /∈ 〈U ∪ (X\clX(U))〉\ (〈U〉 ∪ 〈X\clX(U)〉);
(6) for any pair U, V of disjoint open sets of X , x ∈ clY (X\(U∪V ))∪〈U〉∪〈V 〉;
(7) for every U ∈ τ(X), x ∈ clY (bdX (U)) ∪ 〈U〉 ∪ 〈X\clX(U)〉;
(8) for every U ∈ τ(X) and F ∈ σ(Y ) such that F ⊆ X , the pair (x, U\F ) is
perfect;

(9) for every U ∈ τ(X) and F ∈ σ(Y ) such that F ⊆ X , Y \X does not cut
X at x relatively to U\F ;

(10) for every U, V ∈ τ(X) such that clY (U∩V ) ⊆ X , x /∈ 〈U∪V 〉\ (〈U〉 ∪ 〈V 〉);
(11) for every F ∈ σ(X) and C ∈ σ(Y ) such that C ⊆ X and F C-separates

X in U and V x ∈ clY (F ) ∪ C ∪ 〈U〉 ∪ 〈V 〉;
(12) for every F ∈ σ(X) which separatesX in U and V , x ∈ clY (F )∪〈U〉∪〈V 〉;
(13) for every C ∈ σ(Y ) and U, V ∈ τ(X) such that C ⊆ X and (U∪C)∩V = ∅,

x ∈ clY (X\((U\C) ∪ V )) ∪ 〈U\C〉 ∪ 〈V 〉.

The following characterization of a perfect extension of a space is again a direct
consequence of the main Proposition 3.1. and of the Lemma 3.3.

Proposition 3.5. Let Y be an extension of X . The following are equivalent:

(1) Y is a perfect extension of X ;
(2) Y \X does not cut X at any point of Y \X ;
(3) for every U ∈ τ(X) and x ∈ Y \X there is no neighbourhood O of x in

Y such that O ∩X = (O ∩ U) ∪ (O ∩ (X\clX(U))) and x ∈ clY (O ∩ U) ∩
clY (O ∩ (X\clX(U)));

(4) for every pair U, V of disjoint open sets of X , 〈U ∪ V 〉 = 〈U〉 ∪ 〈V 〉;
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(5) for every U ∈ τ(X), 〈U ∪ (X\clX(U))〉 = 〈U〉 ∪ 〈X\clX(U)〉;
(6) for every pair U, V of disjoint open sets of X , clY (X\(U ∪ V )) separates

Y in 〈U〉 and 〈V 〉;
(7) for every U ∈ τ(X), clY (bdX (U)) separates Y in 〈U〉 and 〈X\clX(U)〉;
(8) for every U ∈ τ(X) and F ∈ σ(Y ) such that F ⊆ X , Y is a perfect
extension of X relatively to U\F ;

(9) for every U ∈ τ(X) and F ∈ σ(Y ) such that F ⊆ X , Y \X does not cut
X at any point of Y \X relatively to U\F ;

(10) for every U, V ∈ τ(X) such that clY (U ∩ V ) ⊆ X , 〈U ∪ V 〉 = 〈U〉 ∪ 〈V 〉;
(11) for every F ∈ σ(X) and C ∈ σ(Y ) such that C ⊆ X and F C-separates

X in U and V , clY (F ) C-separates Y in 〈U〉 and 〈V 〉;
(12) for every F ∈ σ(X) which separates X in U and V , clY (F ) separates Y

in 〈U〉 and 〈V 〉;
(13) for every C ∈ σ(Y ) and U, V ∈ τ(X) such that C ⊆ X and (U∪C)∩V = ∅,

clY (X\((U\C) ∪ V )) separates Y in 〈U\C〉 and 〈V 〉.

Remark. The last proposition improves some results found by Skljarenko in [S1]
and by Diamond in [D]. In particular, the equivalence (1) ⇔ (4) was given by
Skljarenko only for the Stone-Cěch compactification of a normal space and by
Diamond only for a generic compactification of a Tychonoff space. Moreover, the
equivalences (1) ⇔ (2) ⇔ (5) ⇔ (12) were obtained in [S1] for compactifications
of Tychonoff spaces by using proximities.

4. Applications and other properties

We conclude with some applications of the Propositions 3.2. and 3.5. Also,
we establish a characterization for the T2 perfect extensions which improves and
generalizes an analogous result for the compactifications of Tychonoff spaces given
by Diamond in [D].

Proposition 4.1. If Y is a perfect extension of X and Z be a space such that
X ⊆ Z ⊆ Y , then Z is a perfect extension of X , too.

Proof: Obviously X is dense in Z, i.e. Z is an extension of X . Moreover, for
every pair U, V of disjoint open sets of X , as Y is a perfect extension of X , by
2.1.(3) and 3.5.(4), we have that 〈U ∪V 〉Z = 〈U ∪V 〉Y ∩Z = (〈U〉Y ∪〈V 〉Y )∩Z =
(〈U〉Y ∩Z)∪ (〈V 〉Y ∩Z) = 〈U〉Z ∪ 〈V 〉Z and so, by 3.5.(4), it follows that Z is a
perfect extension of X . �

Proposition 4.2. Let Y be an extension of a space X and U ∈ τ(X). The
following are equivalent:

(1) Y is a perfect extension of X relatively to U ;
(2) every V ∈ τ(Y ) is a perfect extension of X ∩ V relatively to U ∩ V ;
(3) for every V open cover of Y , any V ∈ V is a perfect extension of X ∩ V
relatively to U ∩ V ;

(4) there exists some V open cover of Y such that every V ∈ V is a perfect
extension of X ∩ V relatively to U ∩ V .
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Proof: (1)⇒(2) Suppose that Y is a perfect extension of X relatively to U and
let V ∈ τ(Y ). Then, for everyW ∈ τ(X∩V ) such thatW ∩(U ∩V ) = ∅, it results
W =W ′∩V for someW ′ ∈ τ(X). Since W ′∩U = ∅, by 2.4. and 3.2.(4), we have
that 〈W ∪(U∩V )〉V = 〈(W ′∪U)∩V 〉V = 〈W ′∪U〉Y ∩V = (〈W ′〉Y ∪〈U〉Y )∩V =
(〈W ′〉Y ∩ V ) ∪ (〈U〉Y ∩ V ) = 〈W ′ ∩ V 〉V ∪ 〈U ∩ V 〉V = 〈W 〉V ∪ 〈U ∩ V 〉V and
again by 3.2.(4), this means that V is a perfect extension of X ∩ V relatively to
U ∩ V .

(2)⇒(3) Trivial.

(3)⇒(4) It suffices to consider V = {Y }.

(4)⇒(1) Let V be an open cover of Y such that every V ∈ V is a perfect
extension of X ∩ V relatively to U ∩ V . Then, for every W ∈ τ(X) such that
W ∩ U = ∅ it is clear that for any V ∈ V , W ∩ V and U ∩ V are two disjoint
open sets of V . So, by 2.5. and 3.2.(4), it results 〈W ∪ U〉Y =

⋃

V ∈V
〈(W ∪

U) ∩ V 〉V =
⋃

V ∈V
〈(W ∩ V ) ∪ (U ∩ V )〉V =

⋃

V ∈V
(〈W ∩ V 〉V ∪ 〈U ∩ V 〉V ) =

(
⋃

V ∈V
〈W ∩ V 〉V

)

∪
(
⋃

V ∈V
〈U ∩ V 〉V

)

= 〈W 〉Y ∪ 〈U〉Y and by 3.2.(4) we can
conclude that Y is a perfect extension of X relatively to U . �

Corollary 4.3. Let Y be an extension of a spaceX . The following are equivalent:

(1) Y is a perfect extension of X ;
(2) every V ∈ τ(Y ) is a perfect extension of X ∩ V ;
(3) for every V open cover of Y , any V ∈ V is a perfect extension of X ∩ V ;
(4) there exists some V open cover of Y such that every V ∈ V is a perfect
extension of X ∩ V .

In order to obtain a stronger version of the Proposition 3.5. for the Hausdorff
perfect extensions, we give the following:

Definition. Let Y be an extension of X and x ∈ Y \X . We say that Y \X c-cuts
( ≡ cuts by a compact set) X at x if there exists some O neighbourhood of x in
Y , a compact set K ⊆ X and a pair of disjoint open sets U, V of X such that
(O\K) ∩ X = U ∪ V and x ∈ clY (U) ∩ clY (V ).

Remark. Obviously, if Y \X cuts X in some point x ∈ Y \X , then Y \X c-cuts X
in the same point x. The converse in general is false, but for Hausdorff extensions
we have the following result:

Proposition 4.4. Let Y be a Hausdorff extension of X and x ∈ Y \X . Then
Y \X cuts X at x iff Y \X c-cuts X at x.

Proof: By the previous remark we need only to prove the second implication.
Let us suppose that Y \X c-cuts X at x, i.e. that there exist a neighbourhood O of
x in Y , a compact set K ⊆ X and two disjoint open subsets U, V of X such that
(O\K) ∩ X = U ∪ V and x ∈ clY (U) ∩ clY (V ). Since Y is Hausdorff, K ∈ σ(Y ).
So, being K ⊆ X and x ∈ Y \X , it is clear that O′ = O\K is a neighbourhood of
x in Y such that O′ ∩ X = U ∪ V . This proves that Y \X cuts X at x. �

Now we can give a characterization of the Hausdorff perfect extensions.
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Proposition 4.5. Let Y be a Hausdorff extension of X . The following are
equivalent:

(1) Y is a perfect extension of X ;
(2) Y \X does not c-cut X at any point of Y \X ;
(3) for every pair U, V of open sets of X such that clX(U ∩ V ) is compact,

〈U ∪ V 〉 = 〈U〉 ∪ 〈V 〉;
(4) for every closed set F of X and every compact set K ⊆ X such that F

K-separates X in U and V , clY (F ) K-separates Y in 〈U〉 and 〈V 〉.

Proof: (1)⇒(2) It is obvious by 3.5.(2) and 4.4.

(2)⇒(3) Let U, V ∈ τ(X) such that clX (U ∩ V ) is compact. Since Y is
Hausdorff, by 4.4. Y \X does not cut X at any point of Y \X . Moreover,
clX(U ∩ V ) ∈ σ(Y ) and it results clY (U ∩ V ) ⊆ clX (U ∩ V ) ⊆ X and so, by
3.5.(10), we have that 〈U ∪ V 〉 = 〈U〉 ∪ 〈V 〉.

(3)⇒(4) Let F ∈ σ(X) and K ⊆ X be a compact set such that F K-separates
X in U, V ∈ τ(X). Since Y is Hausdorff, K ∈ σ(Y ) while U ∩ V = ∅ implies
obviously that clY (U ∩ V ) is a compact set. So, by hypothesis (3), it results
〈U ∪ V 〉 = 〈U〉 ∪ 〈V 〉 and by the equivalence (4)⇔(11) of 3.5., it follows that
clY (F ) K-separates Y in 〈U〉 and 〈V 〉.

(4)⇒(1) In fact, for every F ∈ σ(X) such that F separates X in U, V ∈ τ(X),
it suffices to consider the compact set ∅ to have that F ∅-separates X in U and
V and so by the hypothesis (4), it follows that clY (F ) ∅-separates Y in 〈U〉, 〈V 〉
that is clY (F ) separates Y in 〈U〉 and 〈V 〉. Thus, by 3.5.(12), Y is a perfect
extension of X . �

Remark. The equivalence (1)⇔(3) of 4.5. generalizes to any Hausdorff exten-
sion of a (Hausdorff) space a result given by Diamond in [D] only for Hausdorff
compactifications of Tychonoff spaces.
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