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A two-weight inequality for the Bessel potential operator

Y. Rakotondratsimba

Abstract. Necessary conditions and sufficient conditions are derived in order that
Bessel potential operator Js,λ is bounded from the weighted Lebesgue spaces Lp

v =

Lp(Rn, v(x)dx) into Lq
u when 1 < p ≤ q < ∞.
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§1. Introduction

The Bessel potential operator Js,λ is defined via the Fourier transform by

(Ĵs,λf)(ξ) =
(
4π2|ξ|2 + λ

1

s

)− s
2

f̂(ξ)

where λ > 0, 0 < s < n, n ∈ N∗ and ĝ(ξ) =
∫
y∈Rn e−2iπy·ξg(y) dy. Our purpose

is to characterize the weight functions u(·) and v(·) for which there is C > 0 such
that

(1.1)
(∫

x∈Rn
(Js,λf)q(x)u(x) dx

) 1
q

≤ C
(∫

x∈Rn
fp(x)v(x) dx

) 1
p
for all f(·) ≥ 0,

and with 1 < p ≤ q < ∞. A weight means a nonnegative locally integrable
function. This inequality implies Js,λ is bounded from the weighted Lebesgue

space L
p
v = Lp(Rn, vdx) into L

q
u. For the convenience (1.1) will also be denoted

by Js,λ : L
p
v → L

q
u.

Inequality (1.1) plays a fundamental role in Analysis since it is closely connected
with spectral properties of Schrödinger operators [Ch-Wh], [Ke-Sa] and it leads to
applications in partial differential equations ([Ad-Pi], [Ma-Ve]), theory of Sobolev
spaces ([Ma]), complex analysis, etc. For instance estimate like

∫

y∈Rn
gp(y)u(y) dy

≤ c

∫

y∈Rn

(
(−∆+ λ

1

s )
s
2 g

)p
(y)v(y) dy for all smooth functions g(·),
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which also appears in partial differential equation related to the operators (−∆+

λ
1

s )
s
2 , can be derived from Js,λ : L

p
u → Lp

u, since ((−∆+λ
1

s )
s
2Js,λ)g = (Js,λ(−∆+

λ
1

s )
s
2 g) = g.
Compared to the Riesz potential operators Is, 0 < s < n, defined by

(Isf)(x) =

∫

y∈Rn
|x − y|s−nf(y) dy,

few works (see for instance [Ad1], [Sc]) are devoted to the study of Js,λ : L
p
v →

Lq
u; and people had to be content oneself on Js,λ ≤ cIs so that a condition for

Is : L
p
v → L

q
u is also right for Js,λ : L

p
v → L

q
u. The strongest up to date results

are those of Kerman-Sawyer [Ke-Sa], and Maz’ya-Verbitsky [Ma-Ve]. Indeed a
characterization of weights u(·) for which Js,λ : L

p
1 → L

q
u (i.e. v(·) = 1) is given

in [Ke-Sa], and investigations of weights w(·) which ensure Js,1 : L
p
1 → Lq

(Js,1w)p
′

are presented in [Ma-Ve]. Although a necessary and sufficient condition for Is :
L

p
v → L

q
u is known ([Sa-Wh]), the analog condition characterizing Js,λ : L

p
v → L

q
u

is not clear in the literature. Consequently our intention is to fill this gap.
Although a result due to Sawyer and Wheeden [Sa-Wh] related to T : Lp

v → Lq
u,

where T is a potential operator given by a positive kernelK(x, y), could be applied
directly to get Js,λ : Lp

v → Lq
u, the fast decrease at infinity of the kernel Ks,λ

of Js,λ (see §3) leads to conditions more refined than the standard ones used

for T . Therefore the boundedness Js,λ : L
p
v → Lq

u deserves its own study which
is performed in this paper.
The main results are presented in the next section. And §3 is devoted to basic

lemmas used for the results whose proofs are given in §4.

§2. The main results

In this paper we always assume:

0 < s < n, λ > 0, 1 < p ≤ q < ∞, p′ =
p

p − 1
, q′ =

q

q − 1
,

u(·), v(·) are weight functions with σ(·) = v
− 1

p−1 (·) ∈ L1loc(R
n, dx).

Our first main result is

Theorem 1. The boundedness Js,λ : L
p
v → L

q
u holds if and only if there are

C, c > 0 such that

(2.1)
(∫

Q
(Isg)

q(x)u(x) dx
) 1

q
≤ C

( ∫

(3Q)
gp(x)v(x) dx

) 1
p

for each g(·) ≥ 0 whose support is 3Q
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and
(2.2)
( ∫

y/∈(3Q)
|xQ − y|(s−n)p′ exp{−cλ

1

2s |xQ − y|}σ(y) dy
) 1

p′ ×
( ∫

y∈Q
u(y) dy

) 1
q
≤ C

for all cubes Q centered at xQ and with |Q|
1

n = λ−
1

2s .

Remind that a cube Q (centered at xQ = (xi) ∈ Rn) is a product of n intervals
of the form [xi − l, xi + l] where l > 0. And for R > 0, RQ is the cube given by
the product of [xi −Rl, xi+Rl]. The Lebesgue measure

∫
y∈Q dy of Q is denoted

by |Q|.
Next we give some remarks whose proofs are given in §4.

Remarks.

(1) A necessary condition for Js,λ : L
p
v → Lq

u, which is consequently assumed

is 0 ≤ s
n +

1
q − 1

p . So for 1 < p < n
s this boundedness has a sense for p ≤ q ≤ p∗

with 1p∗ =
1
p − s

n .

(2) Theorem 1 remains true if in conditions (2.1) and (2.2) the cubes Q are

chosen such that |Q|
1

n ≈ λ−
1

2s . This equivalence means c1λ
− 1

2s ≤ |Q|
1

n ≤ c2λ
− 1

2s

for some fixed constants c − 1, c2 > 0.

(3) Condition (2.1) in Theorem 1 can be replaced by

(2.3)
(∫

Q2

(Ish)
q(x)u(x) dx

) 1
q
≤ C

( ∫

Q1

hp(x)v(x) dx
) 1

p

for each function h(·) ≥ 0 whose support is Q1; and where Q1 and Q2 are cubes

with |Q1|
1

n = |Q2|
1

n = [resp. ≈] λ−
1

2s and Q1 ∩ Q2 6= ∅.

(4) Also the condition (2.2) can be replaced by

(2.4) exp(−cm)m(s−n)(λ−
1

2s )(s−n)
( ∫

y∈Q2

σ(y) dy
) 1

p′
(∫

x∈Q1

u(x) dx
) 1

q
≤ C

for all integers m ≥ 4 and cubes Q1, Q2 with |Q1|
1

n = |Q2|
1

n = λ−
1

2s and

dist(Q1, Q2) = inf{|x − y|; y ∈ Q1, x ∈ Q2} ≈ (mλ−
1

2s ) > 0. So here we are in
the case Q1 ∩ Q2 = ∅.

(5) The weight function w(·) satisfies the doubling condition if
∫
(2Q) w(y) dy ≤

C
∫
Q w(y) dy for some C > 0 and all cubes Q. If one of u(·) and σ(·) = v

− 1

p−1 (·)

is a doubling weight then an easy condition which ensures (2.4) is

(2.5) (λ−
1

2s )(s−n)
(∫

y∈Q
σ(y) dy

) 1

p′
(∫

x∈Q
u(x) dx

) 1
q
≤ C

for all cubes Q with |Q|
1

n = λ−
1

2s .

Now we can state the following
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Theorem 2. Assume that one of u(·) and σ(·) = v
− 1

p−1 (·) is a doubling weight
function. Then Js,λ : L

p
v → Lq

u if and only if the condition (2.3) is satisfied.

With this theorem and the well known results on the (global) boundedness
Is : L

p
v → L

q
u, we obtain the following more useful statement.

Proposition 3. Let u(·) and σ(·) as in Theorem 2. Then Js,λ : L
p
v → L

q
u

whenever, for some t > 1 with 1 < t <
1

q
− 1

p
+1

s
n
+ 1

q
− 1

p

,

(2.6) |Q|
s
n
+ 1

q
− 1

p

( 1
|Q|

∫

Q
ut(y) dy

) 1

tq
( 1
|Q|

∫

Q
σt(y) dy

) 1

tp′ ≤ A

for all cubes Q with |Q|
1

n ≤ λ−
1

2s .

Moreover for u(·) and σ(·) satisfying A∞ condition, then Js,λ : L
p
v → L

q
u if and

only if

(2.7) |Q|
s
n
+ 1

q
− 1

p

( 1
|Q|

∫

Q
u(y) dy

) 1
q
( 1
|Q|

∫

Q
σ(y) dy

) 1

p′ ≤ A

for all cubes Q with |Q|
1

n ≤ λ−
1

2s .

Conditions (2.6) and (2.7) have nontrivial senses since s
n+

1
q −
1
p ≥ 0 is assumed

(see Remark 1). Recall that w(·) satisfies the A∞ condition if, for some r > 1:

|Q|
s
n
−1( 1

|Q|

∫
Q w(y) dy)

1

r ( 1
|Q|

∫
Q w1−r′(y) dy)

1

r′ ≤ c for all cubes Q.

As an example, for each weight function w(·) then Js,1 : L
p
1 → L

p

(Js,1w)p
′

whenever for a t > 1: |Q|
s
n ( 1

|Q|

∫
Q(Js,1w)

tp′ (y) dy)
1

tp ≤ C for all cubes Q with

|Q|
1

n ≤ 1. Such a result was proved by a different method in [Ma-Ve]. We will
present below another application of Proposition 3.
Although this result yields sufficient condition for Js,λ : Lp

v → Lq
u, we are

able to state a necessary and sufficient condition for this embedding. However,
compared with (2.6), the corresponding characterizing condition is not easy to
check in general.

Proposition 4. Let u(·), σ(·) as in the hypotheses of Theorem 2. Then Js,λ :

L
p
v → L

q
u if and only if for some C > 0:

(2.8)
( ∫

(3Q)
(IsσIQ)

q(y)u(y) dy
) 1

q
≤ C

(∫

Q
σ(y) dy

) 1
p

and

(2.8∗)
(∫

(3Q)
(IsuIQ)

p′(y)σ(y) dy
) 1

p′ ≤ C
( ∫

Q
u(y) dy

) 1

q′
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for all dyadic cubes Q with |Q|
1

n ≤ λ−
1

2s .

A dyadic cube Q is a product of n intervals of the form [2k(xi − l), 2k(xi + l)]
where l > 0, and IE(·) is the characteristic function of the measurable set E.
Let w(·) be a weight function, and 0 < s < n

pr with 1 < r < ∞. By a result

due to Adams [Ad2], there is C > 0 such that

(2.9)

∫

x∈Rn
(Isf)

p(x)w(x) dx ≤ C

∫

x∈Rn
fp(x)

(
Msprw

r) 1r (x) dx

for all f(·) ≥ 0.

Here Mβ , 0 ≤ β < n, is the usual fractional maximal operator defined as

(Mβg)(x) = sup{|Q|
β
n
−1 ∫

Q |g(y)| dy;Q ∋ x}. Since Js,λ is pointwise majorized

by Is then inequality (2.9) remains true with Is replaced by Js,λ, and it becomes
natural to ask whether (2.9) holds with Js,λ and the weight in the second member
defined by a smaller operator than Mβ . Therefore we will be interested to get an
inequality like

(2.10)

∫

x∈Rn
(Js,λf)p(x)w(x) dx ≤ C

∫

x∈Rn
fp(x)

(
Mspr,λwr) 1r (x) dx

for all f(·) ≥ 0,

where (Mβ,λg)(x) = sup{|Q|
β
n
−1 ∫

Q |g(y)| dy;Q ∋ x and |Q|
1

n ≤ λ−
1

2s }.

Unfortunately (2.10) is false in general. Indeed take n = 1, λ = 1, w(·) =
I[0,1](·) and f(·) = I[3,4](·). Clearly (Mβ,1w

r)(x) = 0 for all |x| ≥ 3 and
∫
x∈Rn fp(x)(Mβ,1w

r)
1

r (x) dx = 0. On the other hand (Js,λf)(·) ≈ (Isf)(·) ≈ 1,

on [0, 1] and
∫
x∈Rn(Js,λf)p(x)w(x) dx ≈ 1.

Consequently to get (2.10), some restriction on the weight function w(·) is
needed. Really, by Proposition 3, we have

Corollary 5. Let r > 1, 0 < s < n
pr and λ > 0. Suppose that one of w(·)

and σ(·) is a doubling weight function, where σ(·) = (Mspr,λwr)
1

r
(1−p′)(·). Then

there is C > 0 for which (2.10) is true. This constant C depends on n, p, s and
the constant on the doubling condition.

§3. Preliminaries lemmas

As we have alluded in §1, by arguments in [Ar-Sm] the kernel Ks,λ(·) of Js,λ
satisfies

(3.1) Ks,λ(R) ≈ Rs−n if R ≤ λ−
1

2s , else Ks,λ(R) ≈ R
1

2
(s−n+1) exp(−Rλ

1

2s ).

These equivalences lead to a better knowledge of the behaviour of Js,λ.
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Lemma 1. Let 0 ≤ s < n, λ > 0. Then

(3.2) C1(Ts,c2sλf)(·) ≤ (Js,λf)(·) ≤ C2(Ts,c−2sλf)(·).

Here C1, C2, c depend only on n and s. And the operator Ts,µ (µ > 0) is defined

as (Ts,µf)(x) =
∫
y∈Rn |x − y|(s−n) exp{−µ

1

2s |x − y|}f(y) dy.

Obviously (Js,λf)(·) ≤ C(Isf)(·).

Lemma 2. Let L > 0. One can find a family (Ql)l∈I of cubes with |Ql|
1

n = L
and disjoint interiors such that

(3.3) Rn =
⋃

l∈I

Ql,

and there is an integer N > 1 (depending only on n) for which the following holds:

(3Ql) =
⋃

l′∈Il

Ql′ where l′ ∈ Il if Ql ∩ Ql′ 6= ∅, and card{l; l′ ∈ Il} ≤ N ;

(3.4)

(3Ql)
c = {y; y /∈ (3Ql)} =

∞⋃

m=4

[(m+ 1)Ql \ (m − 1)Ql] =
∞⋃

m=4

⋃

j∈Jm,l

Qj ,

(3.5)

where j ∈ Jm,l iff dist(Qj , Ql) ≈ (mL), and card{j; j ∈ Jm,l} ≤ N × mn or

card{l; j ∈ Jm,l} ≤ N × mn;

|x − y| ≈ |xQl
− y| ≈ (mL) for all x ∈ Ql, y ∈ Qj and j ∈ Jm,l;(3.6)

∑

l∈I

I(3Ql)(·) ≤ N ;(3.7)

∑

l∈I

I[(m+1)Ql\(m−1)Ql ]
(·) ≤ Nmn for each integer m ≥ 4.(3.8)

Proof of Lemma 1: Using the property of the exponential like
limR→∞ Rα exp{−βR} = 0, and estimates (3.1) for Ks,λ then we can find

C1, C2, c > 0 depending only on s and n such that C1R
s−n exp{−cλ

1

2s R} ≤

Ks,λ(R) ≤ C2R
s−n exp{−c−1λ

1

2s R} for all R > 0. With the definition of the
operator Ts,µ, these inequalities imply (3.2). �

Proof of Lemma 2: This geometrical lemma will be a consequence of the
homogeneity property of the euclidean space Rn. Thus the points (3.3) to (3.6)
are standard and can be easily seen.
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Inequality (3.7) is a consequence of (3.4) since

∑

l∈I

I(3Ql)(·) =
∑

l∈I

∑

l′∈Il

IQl′
(·) =

∑

l′∈I

IQl′
(·)

∑

l;l′∈Il

1 ≤ N
∑

l′∈I

IQl′
(·) ≤ N.

Inequality (3.8) comes from the cardinality property (3.5) since

∑

l∈I

I[(m+1)Ql\(m−1)Ql](·) =
∑

l∈I

∑

j∈Jm,l

IQj
(·) =

∑

j∈I

IQj
(·)

∑

l;j∈Jm,l

1

≤ Nmn
∑

j∈I

IQj
(·) ≤ Nmn.

�

§4. Proofs of results

Proof of Theorem 1: We begin by the sufficient part. By Lemma 1, the proof
of Js,λ : L

p
v → Lq

u is reduced to that of Ts,c−2sλ : L
p
v → Lq

u. Without a loss of

generality it can be assumed that c = 1. Take a family of cubes (Ql)l∈I with

common size L = λ−
1

2s (= |Q|
1

n ) as in Lemma 2. So for f(·) ≥ 0 we have
∫

x∈Rn
(Ts,λf)q(x)u(x) dx =

∑

l∈I

∫

Ql

(Ts,λf)q(x)u(x) dx ≤ C{S1 + S2}

where

S1 =
∑

l∈I

∫

Ql

(Ts,λfI(3Ql)
)q(x)u(x) dx,

S2 =
∑

l∈I

∫

Ql

(Ts,λfI(3Ql)c)
q(x)u(x) dx,

and C > 0 is a constant which depends on n and q. The estimates for S1 are
done as follows

S1 ≤
∑

l∈I

∫

Ql

(IsfI(3Ql))
q(x)u(x) dx by the definition of Ts,λ

≤ C
∑

l∈I

(∫

(3Ql)
f(x)pv(x) dx

) q
p
by the condition (2.1)

≤ C
( ∫

x∈Rn

[∑

l∈I

I(3Ql)(x)
]
f(x)pv(x) dx

) q
p
since

q

p
≥ 1

≤ CN
q
p

(∫

x∈Rn
f(x)pv(x) dx

) q
p
by (3.7).
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Let

H(c, Q)

=
(∫

y∈(3Q)c
|xQ − y|(s−n)p′ exp{−cL−1|xQ − y|}σ(y) dy

) 1

p′
( ∫

x∈Q
u(x) dx

) 1
q
.

Consequently

S2 =
∑

l∈I

∫

x∈Ql

[ ∫

y∈(3Ql)c
|x − y|s−n exp{−L−1|x − y|}f(y) dy

]q
u(x) dx

by the definition of Ts,λ

≤ C
∑

l∈I

[ ∫

y∈(3Ql)c
|xQl

− y|s−n exp{−cL−1|xQl
− y|}f(y) dy

]q
×

×
(∫

x∈Ql

u(x) dx
)
by property (3.6)

≤ C
∑

l∈I

[H(c, Ql)]
q
(∫

y∈(3Ql)c
exp{−cL−1|xQl

− y|}f(y)pv(y) dy
) q

p

by the Hölder inequality

≤ CHq
∑

l∈I

( ∫

y∈(3Ql)c
exp{−cL−1|xQl

− y|}f(y)pv(y) dy
) q

p

by the condition (2.2)

≤ CHq
(∑

l∈I

∫

y∈(3Ql)c
exp{−cL−1|xQl

− y|}f(y)pv(y) dy
) q

p
since

q

p
≥ 1

= CHq
(∑

l∈I

∞∑

m=4

∫

y∈[((m+1)Ql)\((m−1)Ql)]
exp{−cL−1|xQl

− y|}f(y)pv(y) dx
) q

p

≤ CHq
( ∞∑

m=4

exp{−c′m}

∫

y∈Rn

[∑

l∈I

I[((m+1)Ql)\((m−1)Ql)]y
]
f(y)pv(y) dx

) q
p

≤ NCHq
([ ∞∑

m=4

exp{−c′m}
] ∫

y∈Rn
f(y)pv(y) dx

) q
p
by (3.8)

≤ NC′Hq
(∫

y∈Rn
f(y)pv(y) dx

) q
p

by the fast decreasing of the exponential function.

Conversely suppose Js,λ : L
p
v → Lq

u. Then Ts,c2sλ : L
p
v → Lq

u (by Lemma 1).

Let Q be a cube with |Q|
1

n = λ−
1

2s , and h(·) ≥ 0 a function whose support is 3Q.
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The last boundedness implies

(4.1)
(∫

Q
(Ts,c2sλh)q(x)u(x) dx

) 1
q
≤ C

( ∫

(3Q)
h(x)pv(x) dx

) 1
p

for a constant C > 0 which does not depend on h(·) and Q. Then for all x ∈ Q

(Ts,c2sλh)(x) =

∫

y∈(3Q)
|x − y|s−n exp{−(c2sλ)

1

2s |x − y|}h(y) dy

≥ exp{−c′}

∫

y∈(3Q)
|x − y|s−nh(y) dy since |x − y| ≤ c′λ−

1

2s

= exp{−c′}(Ish)(x) since the support of h(·) is (3Q).

This last inequality with (4.1) yields the point (2.1) in Theorem 1. To get (2.2)
observe that, by duality, Ts,c2sλ : L

p
v → L

q
u is equivalent to

( ∫

y∈Rn

[ ∫

x∈Rn
|x − y|s−n exp{−(c2sλ)

1

2s |x − y|}f(x)u(x) dx
]p′

(x)σ(y) dy
) 1

p′

≤ C
( ∫

x∈Rn
f(x)q

′

u(x) dx
) 1

q′ .

Now take a cube Q with |Q|
1

n = λ−
1

2s , and f(·) ≥ 0 equal to 1 in its support Q.
Then

( ∫

y∈(3Q)c

[ ∫

x∈Q
|x − y|s−n exp{−(c2sλ)

1

2s |x − y|}u(x) dx
]p′

(x)σ(y) dy
) 1

p′

≤ C
( ∫

x∈Q
u(x) dx

) 1

q′ .

Since |x − y| ≈ |xQ − y|, for all x ∈ Q, y ∈ (3Q)c, and
∫
Q u(x) dx < ∞ then

( ∫

y∈(3Q)c
|xQ − y|(s−n)p′ exp{−c′p′(c2sλ)

1

2s |xQ − y|}σ(y) dy
) 1

p′

×
( ∫

x∈Q
u(x) dx

) 1
q
≤ C

which is the condition (2.2) �

Proof of Remark 1: Suppose Js,λ : Lp
v → Lq

u. Then Ts,c2sλ : Lp
v → Lq

u

and Is : Lp(Q, vdx) → Lq(Q, udx) for all cubes Q with |Q|
1

n ≤ λ−
1

2s . So
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|Q|
s
n
+ 1

q
− 1

p ( 1
|Q|

∫
Q σ(y) dy)

1

p′ ( 1
|Q|

∫
Q u(y) dy)

1

q ≤ C for a constant C > 0 not de-

pending on Q. By the Lebesgue differentiation theorem, this last inequality yields
0 ≤ s

n +
1
q − 1p unless u(·) = 0 or σ(·) = 0. �

Proof of Remark 3: If Js,λ : L
p
v → L

q
u then Ts,c2sλ : L

p
v → L

q
u and the

condition (2.3) is satisfied. Indeed if Q1 and Q2 are cubes with |Q1|
1

n = |Q2|
1

n =

λ−
1

2s and Q1 ∩ Q2 6= ∅, then |x − y| ≤ c′λ−
1

2s for x ∈ Q1 and y ∈ Q2, and the
operator Ts,c2sλ can be replaced by Is. To see that (2.3) implies (2.1), let Q be a

cube with |Q|
1

n = λ−
1

2s and h(·) ≥ 0 supported in (3Q). By (3.4), (3Q) =
⋃

l Ql

with |Ql|
1

n = |Q|
1

n , Q = Ql 6= ∅, and so by (2.3) the condition (2.1) appears since
∫

Q
(Ish)

q(x)u(x) dx ≤ C
∑

l

∫

Q
(IshIQl

)q(x)u(x) dx

≤ C
∑

l

( ∫

Ql

h(x)pv(x) dx
) q

p

≤ C
( ∫

x∈Rn

[∑

l

IQl
(x)

]
h(x)pv(x) dx

) q
p

= C
( ∫

(3Q)
h(x)pv(x) dx

) q
p
.

�

Proof of Remark 4: Suppose (2.2) is true. To get (2.4) let Q1, Q2 be cubes

with |Q1|
1

n = |Q2|
1

n = λ−
1

2s and dist(Q1, Q2) ≈ (mλ−
1

2s ) where m ≥ 4. Since
Q2 ⊂ (3Q1)

c then, taking Q = Q1 in (2.2) and using |xQ1 − y| ≈ dist(Q1, Q2) ≈

(mλ−
1

2s ) for all y ∈ Q2, we obtain (2.4). Conversely suppose this last condition is

satisfied for some constant c0 > 0. For a cube Q with |Q|
1

n = λ−
1

2s and c = c0c
−1
1 ,

with c1 a fixed constant depending only on n, then

(∫

(3Q)c
|xQ − y|(s−n)p′ exp{−(2c)λ−

1

2s |xQ − y|}σ(y) dy
)(∫

Q
u(x) dx

) p′

q

=

∞∑

m=4

∑

l∈J (m,Q)

(∫

Ql

|xQ − y|(s−n)p′ exp{−(2c)λ−
1

2s |xQ − y|}σ(y) dy
)

×
( ∫

Q
u(x) dx

) p′

q

≤ C

∞∑

m=4

∑

l∈J (m,Q)

(mλ−
1

2s )s−n exp{−(2cc1)m}
(∫

Ql

σ(y) dy
)(∫

Q
u(x) dx

) p′

q
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here |xQ − y| ≈ dist(Q, Q1) ≈ (mλ−
1

2s )

≤ C

∞∑

m=4

ms−n exp{−c0m}
∑

l∈J (m,Q)

exp{−c0m}(mλ−
1

2s )s−n
( ∫

Ql

σ(y) dy
)

×
( ∫

Q
u(x) dx

) p′

q

≤ C′C

∞∑

m=4

ms−n exp{−c0m}
∑

l∈J (m,Q)

1 by the condition (2.4)

≤ NC′C

∞∑

m=4

ms exp{−c0m} = NC′CC′′ by (3.5).

�

Proof of Remark 5: Since the arguments are the same, we can suppose that
σ(·) satisfies the doubling condition. This hypothesis implies

∫
(tQ) σ(y) dy ≤

C1t
nρ

∫
Q σ(y) dy for all t > 1. The constant ρ, C1 > 0, depend on the doubling

condition. Suppose (2.5) is satisfied. To get (2.4) let Q1, Q2 with |Q1|
1

n =

|Q2|
1

n = λ−
1

2s and dist(Q1, Q2) ≈ (mλ−
1

2s ), m ≥ 4. Since Q2 ⊂ (c1mQ1) for a
fixed constant c1 (depending only on n), then

∫
Q2

σ(y) dy ≤
∫
(c1mQ1)

σ(y) dy ≤

C1m
nρ

∫
Q1

σ(y) dy. With this last inequality the conclusion appears, since for all

c > 0

exp(−cm)m(s−n)(λ−
1

2s )(s−n)
(∫

y∈Q2

σ(y) dy
) 1

p′
(∫

x∈Q1

u(x) dx
) 1

q

≤ C2 exp(−cm)m
[s−n(1− ρ

p′
)]
(λ−

1

2s )(s−n)
(∫

Q1

σ(y) dy
) 1

p′
(∫

Q1

u(x) dx
) 1

q

≤ C0C3C2
where C0 is from the condition (2.5) and C3 a constant which exists by the

property of the exponential function (limR→∞ Rβ exp{−γR} = 0, γ > 0) and
does not depend on m. �

Proof of Theorem 2: By Theorem 1, Remarks 3 and 4 then Js,λ : L
p
v → Lq

u iff
both (2.3) and (2.4) hold. So we have just to prove that (2.3) implies (2.4). Taking

Q1 = Q2 = Q (with |Q|
1

n = λ
1

2s ) in (2.3) then Is : Lp(Q, vdx) → Lq(Q, udx),
with a constant independent of Q. So, as in the proof of Remark 1, (2.5) is
satisfied. By Remark 5, this last condition implies (2.4). �

Proof of Proposition 3: By Theorem 2 and Remark 2, to get Js,λ : L
p
v → Lq

u

it is sufficient to get (2.3), which can be written as

(4.2)
( ∫

x∈Rn
(Isf)

q(x)ũ(x) dx
) 1

q
≤ C

(∫

x∈Rn
f(x)pṽ(x) dx

) 1
p
for all f(·) ≥ 0.
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Here ũ(·) = u(·)IQ2(·), ṽ(·) = v(·)IQ1(·) and Q1, Q2 are cubes with |Q1|
1

n =

|Q2|
1

n = 13λ
− 1

2s and Q1 ∩ Q2 6= ∅. We emphasize that C > 0 is a constant which
does not depend on Q1 and Q2. Sawyer and Wheeden [Sa-Wh] proved that (4.2)
holds if for some t > 1 and S > 0

(4.3) |Q|
s
n
+ 1

q
− 1

p

( 1
|Q|

∫

Q
ũ(y)t dy

) 1

tq
( 1
|Q|

∫

Q
σ̃(y)t dy

) 1

tp′ ≤ S

for any cube Q of arbitrary size and where σ̃(·) = σ(·)IQ1(·).

Precisely they found C = cS where c > 0 depends only on s, n, p, q. Of course
the constant S > 0 in (4.3) must depend on ũ(·) and σ̃(·). Thus to get (4.2), by
using this Sawyer-Wheeden’s result, we have to prove that in our context really
S in (4.3) depends only on u(·) and v(·) but not on the cubes Q1 and Q2.
Call A(ũ, σ̃, Q) the left member of (4.3), and where Q is an arbitrary cube.

First consider the case |(3Q1)|
1

n ≤ |Q|
1

n . Note that
∫
Q ũt(y) dy ≤

∫
Q2

ut(y) dy ≤∫
(3Q1)

ut(y) dy and
∫
Q σ̃t(y) dy ≤

∫
(3Q1)

σt(y) dy. Using these estimates and

1 < t <
1

q
− 1

p
+1

s
n
+ 1

q
− 1

p

then

A(ũ, σ̃, Q) ≤ A(u, σ, (3Q1)) ≤ A.

This last inequality is true since |3Q1|
1

n = 3|Q1|
1

n ≤ λ−
1

2s , and A > 0 which

depends on u(·), v(·) comes from (2.6). Next suppose |Q|
1

n ≤ |3Q1|
1

n . Since∫
Q ũt(y) dy ≤

∫
Q ut(y) dy and

∫
Q σ̃t(y) dy ≤

∫
Q σt(y) dy then, again by (2.6),

A(ũ, σ̃, Q) ≤ A(u, σ, Q) ≤ A here |Q|
1

n ≤ |3Q1|
1

n ≤ λ−
1

2s .

Therefore A(ũ, σ̃, Q) ≤ A for any cube of arbitrary size, and with A > 0 indepen-
dent of Q1, Q2. Then (4.2) is satisfied and so Js,λ : L

p
v → L

q
u.

If moreover both u(·) and σ(·) satisfy the Muckenhoupt A∞ condition then, as
above, both ũ(·) and σ̃(·) satisfy A∞ with constants depending on u(·) and σ(·)
but not on Q1 and Q2. It is known from [Sa-Wh] that condition (4.3), with t = 1,
is a sufficient condition which ensures the embedding (4.2). Condition (4.3) with
t = 1 and a constant S > 0 not depending on Q1 and Q2 can be obtained from
(2.7). �

Proof of Proposition 4: Choose the family of dyadic cubes (Ql)l∈I , in Lemma

2, with common size equal to 2k, where k is an integer such that 2k ≤ λ−
1

2s <
2k+1. Again we have to get (4.2) (where Q1 and Q2 are dyadic cubes with

|Q1|
1

n = |Q2|
1

n = 2k and Q1 ∩ Q2 6= ∅). By the Sawyer’s theorem [Sa-Wh], then
(4.2) holds iff for some S > 0

(4.4)
(∫

y∈Rn
(Isσ̃IQ)

q(y)ũ(y) dy
) 1

q
≤ S

(∫

Q
σ̃(y) dy

) 1
p
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and

(4.4∗)
(∫

y∈Rn
(IsũIQ)

p′(y)σ̃(y) dy
) 1

p′ ≤ S
(∫

Q
ũ(y) dy

) 1

q′

for each dyadic cube Q with an arbitrary size. Therefore it remains to prove that
the condition (2.8) (respectively (2.8∗)) implies (4.4) (respectively (4.4∗)) and the
corresponding contact S > 0 depends only on u(·), σ(·) but not on Q1 and Q2.
Conditions (4.4) and (4.4∗) can be written as

(4.5)
(∫

Q∩Q2

(IsσIQ∩Q1)
q(y)u(y) dy

) 1
q
≤ S

(∫

Q∩Q1

σ(y) dy
) 1

p

and

(4.5∗)
(∫

Q∩Q2

(IsuIQ∩Q2)
p′(y)σ(y) dy

) 1

p′ ≤ S
(∫

Q∩Q2

u(y) dy
) 1

q′

The crucial fact we use is the well-known property of dyadic cubes which asserts
that: for a given closed dyadic cubes Q, Q0 the only cases which can occur are:
(a) Q ∩ Q0 = ∅; (b) Q ∩ Q0 = ∂Q ∩ ∂Q0; (c) Q ⊂ Q1; (d) Q1 ⊂ Q.

First take a dyadic cube Q with |Q|
1

n ≤ 2k. We can assume
∫
Q∩Q1

σ(y) dy 6= 0

(respectively
∫
Q∩Q2

u(y) dy 6= 0) else (4.5) (respectively (4.5∗)) is trivially satis-

fied. Suppose Q ⊂ Q1 (respectively Q ⊂ Q2). For Q1 6= Q2 then (4.5) (respec-
tively (4.5∗)) is trivially satisfied since necessarily

∫
Q∩Q2

u(y) dy = 0 (respectively∫
Q∩Q1

σ(y) dy = 0). But for Q1 = Q2 then Q∩Q1 = Q (respectively Q∩Q2 = Q)

and (4.5) (respectively (4.5∗)) is reduced to

(4.6)
( ∫

Q
(IsσIQ)

q(y)u(y) dy
) 1

q
≤ S

( ∫

Q
σ(y) dy

) 1
p

(respectively

(4.6∗)
(∫

Q
(IsuIQ)

p′(y)σ(y) dy
) 1

p′ ≤ S
(∫

Q
u(y) dy

) 1

q′ ).

Since |Q|
1

n ≤ 2k ≤ λ−
1

2s , then by (2.8) (respectively (2.8∗)) the condition (4.6)
(respectively (4.6∗)) is satisfied with S = C, a constant which depends only on
u(·) and σ(·).
Next consider 2k < and assume

∫
Q∩Q1

σ(y) dy 6= 0 (respectively
∫
Q∩Q2

u(y) dy

6= 0) else there is nothing to prove. If Q1 ⊂ Q (respectively Q2 ⊂ Q) then (4.5)
(respectively (4.5∗)) is reduced to

(4.7)
( ∫

Q∩Q2

(IsσIQ1)
q(y)u(y) dy

) 1
q
≤ S

(∫

Q1

σ(y) dy
) 1

p
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(respectively

(4.7∗)
(∫

Q∩Q1

(IsuIQ2)
p′(y)σ(y) dy

) 1

p′ ≤ S
(∫

Q2

u(y) dy
) 1

q′ ).

If moreover
∫
Q∩Q2

u(y) dy 6= 0 (respectively
∫
Q∩Q1

σ(y) dy 6= 0) then necessarily

Q2 ⊂ Q (respectively Q1 ⊂ Q) and (4.7) (respectively (4.7∗)) is the same as

(4.8)
( ∫

Q2

(IsσIQ1)
q(y)u(y) dy

) 1
q
≤ S

(∫

Q1

σ(y) dy
) 1

p

(respectively

(4.8∗)
( ∫

Q1

(IsuIQ2)
p′(y)σ(y) dy

) 1

p′ ≤ C
(∫

Q2

u(y) dy
) 1

q′ ).

Since |Q1|
1

n = |Q2|
1

n = 2k ≤ λ−
1

2s and Q2 ⊂ (3Q1) (respectively Q1 ⊂ (3Q2))
then the condition (4.8) (respectively (4.8∗)) is satisfied with S=C by (2.8) (re-
spectively (2.4∗)).

�

Proof of Corollary 5: Let v(·) = (Mspr,λwr)
1

r (·). It remains to prove Js,λ :

L
p
v → L

p
w. Since one of w(·) and σ(·) = v

− 1

p−1 (·) is a doubling weight function,
then by Proposition 3, (2.6) is a sufficient condition in order to get the above em-

bedding. So we have to estimate |Q|
s
n ( 1

|Q|

∫
Q wr(y) dy)

1

rp ( 1
|Q|

∫
Q σr(y) dy)

1

rp′ =

Fr(Q) by a constant which does nor depend on Q with |Q|
1

n ≤ λ−
1

2s . By the

definition ofMβ,λ then σr(x) ≤ (|Q|
spr
n
1
|Q|

∫
Q wr(y) dy)1−p′ for each cube Q with

|Q|
1

n ≤ λ−
1

2s and for all x ∈ Q. Consequently Fr(Q) ≤ |Q|
s
n ( 1

|Q|

∫
Q wr(y) dy)

1

rp

(|Q|
spr
n
1
|Q|

∫
Q wr(y) dy)

− 1

rp = 1. �
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