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Separation of (n + 1)-families of

sets in general position in Rn

Mircea Balaj

Abstract. In this paper the main result in [1], concerning (n + 1)-families of sets in
general position in Rn, is generalized. Finally we prove the following theorem: If
{A1, A2, . . . , An+1} is a family of compact convexly connected sets in general position in
R

n, then for each proper subset I of {1, 2, . . . , n+ 1} the set of hyperplanes separating

∪{Ai : i ∈ I} and ∪{Aj : j ∈ I} is homeomorphic to S+n .
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1. Introduction

In this paper we continue the investigation of a previous article [1], regarding
the separability of the members of an (n + 1)-family of sets in general position
in Rn. In the beginning we recall some definitions and notations.
A family A of sets in Rn is said to be in general position if anym-flat, 0 ≤ m ≤

n− 1, intersects at most m+1 members of A. Let m = min{n+1, cardA}. It is
easy to see that the family A is in general position if and only if for every choice of
sets A1, A2, . . . , Am ∈ A and every choice of points x1 ∈ A1, x2 ∈ A2, . . . , xm ∈
Am, the set {x1, x2, . . . , xm} is affinely independent.
A set A ⊂ Rn is called (cf.[5] and [8, p. 174]) convexly connected if there is no

hyperplane H such that H ∩A = ∅ and A contains points in both open halfspaces
determined by H .
If A is a compact set and H a hyperplane in Rn, then the distance between A

and H is defined to be d(A, H) = min{‖x − y‖ : x ∈ A, y ∈ H}. If H = {x ∈
R

n : 〈x, b〉 = λ} is a hyperplane, the corresponding closed halfspace {x ∈ Rn :
〈x, b〉 ≤ λ}, {x ∈ Rn : 〈x, b〉 ≥ λ} are denoted respectively by H≤, H≥. A set A

is said to be separated from a set B by the hyperplane H provided that A lies in
one of the closed halfspaces H≤, H≥ and B lies in the other. The set A is strictly
separated from B by H provided that the separating hyperplane H is disjoint
from both A and B. If A is a family of sets containing at least two members, we
say that a hyperplane H separates the members of A if there exists a nontrivial
partition (B, C) of A such that ∪B ⊂ H≤, ∪C ⊂ H≥.
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The unit sphere in Rn+1 and the set {x = (x1, x2, . . . , xn+1) : ‖x‖ = 1, xi ≥ 0,
1 ≤ i ≤ n + 1} are denoted by Sn, S+n respectively. For every subset I of
{1, 2 . . . , n+ 1}, I denotes the complement of I in {1, 2, . . . , n+ 1}.
In [1] among other results we have obtained the following

Theorem 1. Let {A1, A2, . . . , An+1} be a family of compact convexly connected
sets in general position in Rn. Then

(i) for each proper subset I of {1, 2, . . . , n+ 1}, there exists exactly one hy-
perplane H such that

(1) H separates strictly the sets ∪ {Ai : i ∈ I}, ∪{Aj : j ∈ I}

and

(2) d(A1, H) = d(A2, H) = · · · = d(An+1, H);

(ii) there exist exactly 2n − 1 hyperplanes satisfying (2).

In this paper we obtain a generalization of the previous result. Also, we prove
that for every nontrivial partition (B, C) of an (n+1)-family of compact convexly
connected sets in general position in Rn, the set of hyperplanes separating ∪B
and ∪C is homeomorphic to S+n .

2. Basic results

We start with the following result which generalizes Lemma 3 in [1].

Lemma 2. Let [x1, x2, . . . , xn+1] be an n-simplex in Rn. Then for each α =
(α1, α2, . . . , αn+1) ∈ S+n and for each proper subset I of {1, 2, . . . , n + 1} there
exists exactly one hyperplane H such that

H separates the sets {xi : i ∈ I} and {xj : j ∈ I},(3)

d(xi, H) = kαi for some k and all i, 1 ≤ i ≤ n+ 1.(4)

Proof: The distance from an arbitrary point x0 to a hyperplane

(5) H = {x ∈ Rn : 〈x, b〉 = λ}

is given by the Ascoli’s formula (see [6, p. 21])

(6) d(x0, H) =
|〈x0, b〉 − λ|

‖b‖
.

Since the pair (b, λ) ∈ (Rn \ {0}) × R for which the hyperplane H admits
the representation (5) is unique up to a non-zero multiplicative constant, the
conditions (3) and (4) are equivalent with

(7) 〈xi, b〉 − λ = βi, 1 ≤ i ≤ n+ 1
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where

βi =

{

αi, if i ∈ I,

−αi, if i ∈ I.

Denoting by (xi1, xi2, . . . , xin) the coordinates of xi, 1 ≤ i ≤ n + 1, and by
(b1, b2, . . . , bn) the coordinates of b, we are lead to an (n + 1) × (n + 1) linear
system

(8) xi1b1 + xi2b2 + · · ·+ xinbn − λ = βi, 1 ≤ i ≤ n+ 1.

From the affine independence of the points x1, x2, . . . , xn+1, it follows that
the determinant D of order n + 1 having the general row (xi1, xi2, . . . , xin, 1) is
different from zero. This proves that the system (8) possesses the unique solution

(9)

{

bj =
Dj

D , 1 ≤ j ≤ n

λ = −Dn+1

D ,

where Dj is the determinant of order n+ 1 having the general row (xi1, xi2, . . . ,

xi,j−1, βi, xi,j+1, . . . , xin, 1) and Dn+1 is the determinant of the same order, with
the general row (xi1, . . . , xin, βi). Since at least two βi are distinct, from (7) it can
be easily deduced that b 6= 0. All these show that there exists a unique hyperplane
H which satisfies the conditions (3) and (4). Note that d(xi, H) =

αi

‖b‖
and that

the points xi, i ∈ I, lie in the closed halfspace H≥, while the points xj , j ∈ I, lie

in H≤. �

Let a point α0 lie on the surface S+n with all coordinates equal. The proof of
the following lemma repeats the previous proof (taking I = {1, 2, . . . , n+ 1}).

Lemma 3. Let ∆ = [x1, x2, . . . , xn+1] be an n-simplex in Rn. Then for every

α = (α1, α2, . . . , αn+1) ∈ S+n \ {α0} there exists exactly one hyperplane H such

that

(i) the simplex ∆ is contained in one of the closed half-spaces determined by
H , and

(ii) d(xi, H) = kαi for some k and all i, 1 ≤ i ≤ n+ 1.

The following generalization of Theorem 1 is our main result.

Theorem 4. Let {A1, A2, . . . , An+1} be a family of compact convexly connected
sets in general position in Rn. Then

(i) for each α = (α1, α2, . . . , αn+1) ∈ S+n and for each proper subset I of

{1, 2, . . . , n+ 1} there exists exactly one hyperplane H such that

(10) H separates the sets ∪ {Ai : i ∈ I} and ∪ {Aj : j ∈ I}

and

(11) d(Ai, H) = kαi for some k and all i, 1 ≤ i ≤ n+ 1;
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(ii) if for each α ∈ S+n , N(α) denotes the number of the hyperplanes H satis-

fying (11), then

N(α) =

{

2n, if α ∈ S+n \ {α0}

2n − 1, if α = α0.

Proof: (i) A similar argument to that used in proving Corollary 7 in [1] permits
us to suppose the compact sets Ai being convex. Let A = A1 ×A2 × · · · ×An+1.
The elements of A are denoted by x, y, . . . . Let I be an arbitrary fixed proper
subset of {1, 2, . . . , n + 1}. By Lemma 2, for each x = (x1, x2, . . . , xn+1) ∈ A,
(xi ∈ Ai, 1 ≤ i ≤ n+1) there exists a unique hyperplane, denoted by H(x), such
that

(12) d(xi, H(x)) = kαi for some k (dependent on x) and all i, 1 ≤ i ≤ n+1,

{xi : i ∈ I} ⊂ H≥(x) and {xj : j ∈ I} ⊂ H≤(x). The equation of H(x) is
〈x, b〉 = λ, where b = (b1, b2, . . . , bn) ∈ Rn \ {0} and λ ∈ R are given by the
formulas (9).

We define the map f : A → 2A by f(x) = P1(x)×P2(x)×· · ·×Pn+1(x), x ∈ A

and Pi(x) defined by

(13)

{

(a) Pi(x) = {x ∈ Ai : 〈x, b〉 = min{〈y, b〉 : y ∈ Ai}}, i ∈ I,

(b) Pi(x) = {x ∈ Ai : 〈x, b〉 = max{〈y, b〉 : y ∈ Ai}}, i ∈ I.

Since the sets Ai are compact, the sets Pi(x) are nonempty. If yi ∈ Pi(x), 1 ≤ i ≤
n+1, then Pi(x) coincides with the intersection of the set Ai with the hyperplane
through yi parallel to H(x). Thus each Pi(x) is a compact convex set, and f(x)
is a compact convex set for each x ∈ A. Using Lemma 4 in [1] it can be easily
verified that f is upper semicontinuous.
By the Fan-Glicksberg-Kakutani fixed point theorem (see [2] and [4]), there is

a point z = (z1, z2, . . . , zn+1) ∈ A such that z ∈ f(z). Let 〈x, b0〉 − λ0 = 0 be
the equation of the hyperplane H(z), with b0 = (b01, b

0
2, . . . , b

0
n) and λ0 given by

the formulas (9). For each i ∈ I, zi ∈ H≥(z) and by definition of f , zi ∈ Pi(z).
Thus, we infer from (13a) that Ai ⊂ H≥(z) for all i ∈ I.
Then, for each i ∈ I, we have

d(Ai, H(z)) = min

{

|〈x, b0〉 − λ0|

‖b0‖
: x ∈ Ai

}

=
〈zi, b

0〉 − λ0

‖b0‖
= d(zi, H(z)).

In a similar manner, we obtain thatAj ⊂ H≤(z) and d(Aj , H(z)) = d(zj , H(z)),

for all j ∈ I. Therefore H(z) separates the sets ∪{Ai : i ∈ I}, ∪{Aj : j ∈ I}
and by (12) the sets {d(A1, H(z)), d(A2, H(z)), . . . , d(An+1, H(z))}, {α1, α2, . . . ,
αn+1} are proportional.
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In the second part of the proof we verify the uniqueness of the hyperplane H

which satisfies (10) and (11), for an arbitrary fixed set of indices I.
By the way of contradiction, suppose that there exist two distinct hyperplanes

H ′ = {x ∈ Rn : 〈x, b′〉 − λ′ = 0}, H ′′ = {x ∈ Rn : 〈x, b′′〉 − λ′′ = 0} satisfying
(10) and (11). For each i ∈ {1, 2, . . . , n + 1} let x′i and x′′i be points in Ai such
that d(Ai, H

′) = d(x′i, H
′), d(Ai, H

′′) = d(x′′i , H ′′). Then, for a convenient choice
of the pairs (b′, λ′), (b′′, λ′′) we have

(14)

{

(a) min{〈x, b′〉 − λ′ : x ∈ Ai} = 〈x′i, b
′〉 − λ′ = αi if i ∈ I,

(b) max{〈x, b′〉 − λ′ : x ∈ Aj} = 〈x′j , b
′〉 − λ′ = −αj if i ∈ I

and

(15)

{

(a) min{〈x, b′′〉 − λ′′ : x ∈ Ai} = 〈x′′i , b′′〉 − λ′′ = αi if i ∈ I,

(b) max{〈x, b′′〉 − λ′′ : x ∈ Aj} = 〈x′′j , b′′〉 − λ′′ = −αj if i ∈ I.

Then, for each i ∈ I, by (14a) and (15a) it follows that 〈x′i, b
′−b′′〉+λ′′−λ′ ≤ 0

and 〈x′′i , b′ − b′′〉 + λ′′ − λ′ ≥ 0. Obviously H ′ and H ′′ cannot be parallel, hence
b′ 6= b′′. The convexity of Ai implies that the hyperplane H = {x ∈ Rn :
〈x, b′−b′′〉+λ′′−λ′ = 0} intersects all sets Ai, i ∈ I. Using a similar argument we
obtain that H intersects all sets Aj , j ∈ I. Therefore H intersects each member
of the family {A1, A2, . . . , An+1} which is in general position. The contradiction
obtained completes the proof.

(ii) From (i) we deduce that there exist exactly 2n−1 hyperplanes which satisfy
(11) and separate the members of the family {A1, A2, . . . , An+1}.

N(α0) = 2
n−1 is the assertion (ii) in Theorem 1. If α ∈ S+n \{α0}, arguing as

above, Lemma 3 yields a unique hyperplane which leaves all sets Ai on the same
side and which satisfies (11). �

Let {A1, A2, . . . , An+1} be a family of compact convexly connected sets in
general position in Rn. For each proper subset I of {1, 2, . . . , n+1} letH(I) denote
the set of hyperplanes which separate the sets ∪{Ai : i ∈ I} and ∪{Aj : j ∈ I}.

To each hyperplane H ∈ H(I) there corresponds a unique point (bH , λH) =

(bH
1 , bH

2 , . . . , bH
n , λH ) ∈ Sn such that H = {x ∈ Rn : 〈x, bH〉 = λH} and ∪{Ai :

i ∈ I} ⊂ H≥. This correspondence permits to identify H(I) with a subset of Sn,

namely {(bH , λH ) : H ∈ H(I)}.
The following known results are needed in the proof of Theorem 7.

Lemma 5 [7, Theorem 1]. If M is a compact convex set inRn, then the function

h : Rn → R defined by h(b) = max{〈x, b〉 : x ∈ M} is continuous.

Lemma 6 [3, p. 207, Lemma 3]. Let X and Y be topological spaces, X com-

pact and Y separated. If f : X → Y is a continuous bijection, then f is a

homeomorphism.



748 M.Balaj

Theorem 7. Let {A1, A2, . . . , An+1} be a family of compact convexly connected
sets in general position in Rn. Then for every proper subset I of {1, 2, . . . , n+1}
the sets H(I) and S+n are homeomorphic.

Proof: Let I be a proper subset of {1, 2, . . . , n + 1} arbitrarily fixed. Define
f : H(I) → S+n by f(H) = 1

‖dH‖
dH , where dH = (d(A1, H), d(A2, H), . . . ,

d(An+1, H)). By Theorem 4, f is a bijection. By Lemma 5, each component
of f is continuous, hence f is continuous too. Then, taking into account the
quoted identification, H(I) = f−1(S+n ) is a closed subset of the compact set Sn.
So H(I) is compact and the assertion of Theorem 7 follows now from Lemma 6.

�

Remark. Theorems 4 and 7 can be reformulated obtaining analogous informa-
tions about the hyperplanes which strictly separate the members of the family
{A1, A2, . . . , An+1}. For instance we have:
Let {A1, A2, . . . , An+1} be a family of compact convexly connected sets in

general position inRn. Then for each proper subset I of {1, 2, . . . , n+1} the set of
hyperplanes strictly separating ∪{Ai : i ∈ I} and ∪{Aj : j ∈ I} is homeomorphic
to {(α1, α2, . . . , αn+1) ∈ Sn : αi > 0, 1 ≤ i ≤ n+ 1}.

References

[1] Balaj M., (n+1)-families of sets in general position, Beitrage zur Algebra und Geometrie
37 (1996), 67–74.

[2] Fan K., Fixed-point and minimax theorems in locally convex topological linear spaces,
Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121–126.

[3] Gaal S.A., Point Set Topology, Academic Press, New York and London, 1964.
[4] Glicksberg I.L., A further generalization of the Kakutani fixed point theorem, with appli-
cation to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170–174.

[5] Hanner O., Radström H., A generalization of a theorem of Fenchel, Proc. Amer. Math.
Soc. 2 (1951), 589–593.

[6] Singer I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces
(in Romanian), Edit. Academiei Române, Bucureşti, 1967.
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