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Results on Colombeau product of distributions

Blagovest Damyanov

Abstract. The differential C-algebra G(Rm) of generalized functions of J.-F. Colombeau
contains the space D′(Rm) of Schwartz distributions as a C-vector subspace and has a
notion of ‘association’ that is a faithful generalization of the weak equality in D′(Rm).
This is particularly useful for evaluation of certain products of distributions, as they are
embedded in G(Rm), in terms of distributions again. In this paper we propose some

results of that kind for the products of the widely used distributions xa
±
and δ(p)(x),

with x in Rm, that have coinciding singular supports. These results, when restricted to

dimension one, are also easily transformed into the setting of regularized model products
in the classical distribution theory.
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1. Notation and definitions

We will recall first the basic definitions of Colombeau algebra G(Rm), following
their recent presentation in [7, Chapter 3].

Notation 1. If N0 stands for the nonnegative integers and p = (p1, p2, . . . , pm)
is a multiindex in N

m
0 , we let |p| =

∑m
i=1 pi and p! = p1! . . . pm!. Then, if

x = (x1, . . . , xm) is in Rm, we denote by xp = (x
p1
1 , x

p2
2 , . . . , x

pm
m ) and ∂

p
x =

∂|p|/∂x
p1
1 . . . ∂x

pm
m . Also, by x < 0 is meant: x1 ≤ 0, . . . , xm ≤ 0 and x 6= 0.

Now for any q in N0, denote by Aq(R) = {ϕ(x) ∈ D(R) :
∫

R
xj ϕ(x) dx = δ0j for

0 ≤ j ≤ q, where δ00 = 1, δ0j = 0 for j > 0}. This also extends to R
m as an

m-fold tensor product: Aq(R
m) = {ϕ(x) ∈ D(Rm) : ϕ(x1, . . . , xm) =

∏m
i=1 χ(xi)

for some χ in Aq(R)}. Finally, we will denote by ϕε = ε−mϕ(ε−1x), for any ϕ
in Aq(R

m) and ε > 0.

Definition 1. Let E [Rm] stand for the set of functions f(ϕ, x) : A0(R
m) ×

Rm→C that are C∞-differentiable with respect to x by a fixed ‘parameter’ ϕ,
which, with the point-wise function operations, is clearly a C-algebra. Then
each generalized function of Colombeau is an element of the quotient algebra
G(Rm) = EM [R

m] / I [Rm]. Here the subalgebra EM [R
m] of E [Rm] is the set

of ‘moderate’ functions f(ϕ, x) in E [Rm] such that for each compact subset K of
Rm and any p in Nm

0 there is a q in N so that : for each ϕ in Aq(R
m) there are

c > 0, η > 0 satisfying supx∈K |∂pf(ϕε, x) | ≤ cε−q for 0 < ε < η. In turn, the
ideal I [Rm] of EM [R

m] is the set of functions f(ϕ, x) such that for each compact
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subset K of Rm and any p in Nm
0 there is q in N so that : for every r ≥ q and

each ϕ in Ar(R
m) there are c > 0, η > 0 satisfying supx∈K |∂pf(ϕε, x) | ≤ cεr−q,

for 0 < ε < η.

The Colombeau algebra G(Rm) contains all distributions (and C∞-differenti-
able functions) on Rm, canonically embedded as a C-vector subspace (respectively,
a subalgebra) by the map i : D′(Rm)→G(Rm) : u 7→ ũ = [ũ(ϕ, x)]. The repre-
sentatives here are given by ũ(ϕ, x) = (u ∗ ϕ̌)(x), with ϕ̌(x) = ϕ(−x) and ϕ
in Aq(R

m). Equivalently, one writes ũ(ϕ, x) = 〈uy, ϕ(y − x)〉. A basic example

is the embedding δ̃ in G(Rm) of the Dirac δ-function given by a representative

δ̃(ϕ, x) = 〈δy, ϕ(y − x)〉 = ϕ(−x), for any ϕ in Aq(R
m).

Definition 2. A generalized function f in G(Rm) is said to admit some u in
D′(Rm) as associated distribution, which is denoted by f ≈ u, if f has a repre-
sentative f(ϕε, x) in EM [R

m] such that for any test-function ψ(x) in D(Rm) there
exists q in N0 so that, for all ϕ(x) in Aq(R

m),

lim
ε→0

∫

Rm
f(ϕε, x)ψ(x)dx = 〈u, ψ〉.

This definition is independent of the representative chosen and the distribution
associated is unique if it exists; the image in G(Rm) of every distribution is asso-
ciated with that distribution ([1]). The concept of association is thus a faithful
generalization of the equality of distributions in D′(Rm).

Now by ‘Colombeau product of distributions’ is denoted the product of some
distributions as they are embedded in Colombeau algebra G(Rm)whenever the
result admits an associated distribution in D′(Rm) (see [5] for a comparison with
other distribution products). This notion helps to bring the results ‘down to the
level’ of distributions, connecting thus Colombeau theory with the classical distri-
bution theory. Below we give some results on products of distribution with coin-
ciding singularities in Colombeau algebra G(Rm), or else — on their Colombeau
product.

2. Preliminary results

The technical lemmas below will be needed later to prove our main results.

Lemma 1. For an arbitrary ϕ in A0(R), i.e. ϕ in D(R) with
∫

R
ϕ(t) dt = 1,

suppose that supp ϕ ⊆ [a, b], for some a, b in R. Then, for any p in N0, it holds

(1)

∫ b

a
ϕ(t)

∫ t

a
(y − t)pϕ(p)(y) dy dt =

(−1)p p!

2
.
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Proof: On expanding the term (y− t)p on the l.h.s. of (1) and then on multiple
integrating by parts, we get :

Ip ≡

p
∑

j=0

(−1)j
(

p

j

)
∫ b

a
tj ϕ(t)

∫ t

a
yp−jϕ(p)(y) dy dt

=

p
∑

j=0

(−1)j
(

p

j

)
∫ b

a
tj ϕ(t)

p−j
∑

k=0

(−1)k
(p− j)!

(p− j − k)!
tp−j−kϕ(p−k−1)(t) dt

=

p
∑

j=0

p−j
∑

k=0

(−1)j+k p!

j!(p− j − k)!

∫ b

a
tp−kϕ(t)ϕ(p−k−1)(t) dt

=

p
∑

k=0

(−1)k
p!

(p− k)!
Jp−k

p−k
∑

j=0

(−1)j
(

p

j

)

.

Here we have denoted by Jp−k =
∫ b
a t

p−kϕ(t)ϕ(p−k−1)(t) dt, where, if k = p,

ϕ(−1)(t) stands for
∫ t
a ϕ(y) dy. For any q = p − k > 0, however, it holds (see

[6, §21.5–1(b)]) :
∑q

j=0(−1)
j
(q
j

)

= 0. Whence Ip = (−1)
p p! J0. As for the

remaining term with p− k = j = 0, we get, by our assumption,

J0 =

∫ b

a
ϕ(t)

(
∫ t

a
ϕ(y) dy

)

dt =

∫ b

a

(
∫ t

a
ϕ(y) dy

)

d

(
∫ t

a
ϕ(y) dy

)

=
1

2

(
∫ t

a
ϕ(y) dy

)2
∣

∣

∣

∣

∣

b

a

=
1

2
.

This proves equation (1). �

Lemma 2. Let u and v be distributions in D′(Rm) such that u(x) =
∏m

i=1 u
i(xi),

v(x) =
∏m

i=1 v
i(xi) with each u

i and vi in D′(R), and suppose that their em-

beddings in G(R) satisfy ũi.ṽi ≈ wi, for i = 1, . . . ,m. Then ũ.ṽ ≈ w, where
w =

∏m
i=1w

i(xi).

Proof: Suppose we have confined ourselves to the subspace of test-functions
ψ(x) =

∏m
i=1 ψi(xi), with each ψi in D(R). In view of the tensor-product struc-

ture of the distributions u, v in D′(Rm) as well as that of the elements ϕ of
A0(R

m), by applying a Fubini-type theorem for tensor-product distributions (see
[4, §4.3]), we get :

〈ũ(ϕε, x)ṽ(ϕε, x), ψ(x)〉 =

m
∏

i=1

〈ũi(χε, xi)ṽ
i(χε, xi), ψi(xi)〉

=
m
∏

i=1

(

〈wi(xi), ψi(xi)〉+ f
i(ε)
)

.
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Here, by assumption, one has the asymptotic evaluation f i(ε) = o(1) (ε→0)
for each i = 1, . . . ,m. Thus

lim
ε→0

〈ũ(ϕε, x)ṽ(ϕε, x), ψ(x)〉 =

m
∏

i=1

〈wi, ψi〉 = 〈w,ψ〉,

where w =
∏m

i=1w
i(xi) is a uniquely determined distribution in D′(Rm). More-

over, since ψ(x) =
∏m

i=1 ψi(xi) is running a dense subset of D(R
m) ([4, §4.3]), it

follows, by Definition 2, that the product ũ.ṽ in G(Rm) admits w as associated
distribution. �

3. Main results

Proposition 1. For an arbitrary p in Nm
0 , let δ̃

(p)(x) and x̃p
+ be the embeddings

in G(Rm) of the distributions δ(p)(x) and x
p
+ = {xp for x ≥ 0, = 0 elsewhere} in

D′(Rm). Then

(2) x̃p
+ . δ̃

(p)(x) ≈
(−1)|p| p!

2m
δ(x).

Proof: In the one-variable case (x ∈ R, p ∈ N0), x̃
p
+ is represented by

x̃p
+(ϕε, x) = ε

−1
∫ ∞

0
yp ϕ((y − x)/ε) dy =

∫ ∞

−x/ε
(x+ εt)p ϕ(t) dt,

where the substitution (y − x)/ε = t is made. Also, on differentiation in D′(R),
we have

δ̃(p)(ϕε, x) = (−1)
pε−p−1〈δy , ϕ

(p)((y − x)/ε)〉 = (−1)pε−p−1ϕ(p)(−x/ε).

Now if supp ϕ(x) ⊆ [a, b] for some a, b in R, then supp ϕ(−x/ε) ⊆ [−εb,−εa].
Thus, replacing x→ y = −x/ε, we get for any ψ(x) in D(R)

〈x̃
p
+(ϕε, x) δ̃

(p)(ϕε, x), ψ(x)〉

=
(−1)p

εp+1

∫ −aε

−bε

(

∫ b

−x/ε
(x+ εt)pϕ(t) dt

)

ϕ(p)(−x/ε)ψ(x) dx

=

∫ b

a
ψ(−εy)ϕ(p)(y)

∫ b

y
(y − t)pϕ(t) dt dy.

By the Taylor theorem, we have ψ(−εy) = ψ(0) + (−εy)ψ′(ηy) for some η ∈
[0, 1]. Now the integrand function in the latter equation, that reads

yψ′(ηy)ϕ(p)(y)

∫ b

y
(y − t)pϕ(t) dt = yψ′(ηy)ϕ(p)(y)

(−1)p

p+ 1

(

tp+1− ∗ ϕ(t)
)

(y),
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is clearly a product of differentiable functions, and is thus integrable on the finite
interval [a, b]. Therefore, by taking the limit as ε→0 and applying the Dirichlet
formula for changing the order of integration (which is permissible here), we get

(3)

lim
ε→0

〈x̃p
+(ϕε, x) δ̃

(p)(ϕε, x), ψ(x)〉 =

∫ b

a
ψ(0)ϕ(p)(y)

∫ b

y
(y − t)pϕ(t) dt dy

= ψ(0)

∫ b

a
ϕ(t)

∫ t

a
(y − t)pϕ(p)(y) dy dt.

Employing now Lemma 1, we obtain equation (2) for m = 1.
Further, in the multi-variable case, in view of the tensor-product structure of

the distributions xp
+ and δ

(p)(x) in D′(Rm), we can apply Lemma 2 that yields

x̃
p
+.δ̃
(p)(x) =

m
∏

i=1

x̃
pi

i+.δ̃
(pi)(xi) ≈

m
∏

i=1

(

(−1)pipi!

2
δ(xi)

)

=
(−1)|p| p!

2m
δ(x),

which completes the proof. �

Corollary 1. If x̃p
− is the embedding of the distribution x

p
−, then it holds for

any p in Nm
0

(4) x̃p
− . δ̃

(p)(x) ≈
p!

2m
δ(x).

Proof: For any p in Nm
0 , we have x

p
− = (−x)

p
+. The result in (4) therefore follows

by replacing x→ − x in equation (2) and taking into account that δ(p)(−x) =

(−1)|p|δ(p)(x). �

Remark 1. Equations (2) and (4) are consistent in dimension one with the known
formula in D′(R)

(5) xp δ(p)(x) = (−1)p p! δ(x) (p ∈ N0).

Indeed, taking in view that xp = xp
+ + (−1)

pxp
−, the equations in consideration

combine to give (5).

Notation 2. Extending further the multiindex notation, consider now the or-
dered m-tuples a = (a1, . . . , am) in R

m with the vector operations there. We
specify that a + k stands for (a1 + k, . . . , am + k) for any k in Z (integers) and
that 0 denotes the zero-vector in Rm. Then we shall use the short-hand notations
xa = (xa1

1 , . . . , x
am
m ) and

∏m
i=1 Γ(ai) = Γ(a) (= p! whenever a − 1 = p ∈ Nm

0 ).
Finally, we denote Ω = {a ∈ R : a 6= −1,−2, . . .} and by Ωm the m-fold tensor
product Ω× . . .× Ω. Now one has the following:
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Proposition 2. The product of the generalized functions x̃a
+ and x̃

b
− in G(Rm)

admits an associated distribution for any a, b in Ωm such that a+ b+ 1 = 0, and
it holds

(6) x̃a
+.x̃

b
− ≈

Γ(a+ 1)Γ(b+ 1)

2m
δ(x).

Proof: In the one-variable case (x, a ∈ R), recall first the definition of the
distribution xa

+. If a > −1, then x 7→ xa
+ is locally-integrable, thus defining

the distribution 〈xa
+, ψ〉 =

∫∞
0 xaψ(x) dx (ψ ∈ D(R)), and it also holds xa

+ =

(a+1)−1∂xx
(a+1)
+ . Now we can define a distribution xa

+ for any a in Ω, choosing
a k in N0 subject to the condition a+ k + 1 > 0, if we set

xa
+ =

1

(a+ k)(a+ k − 1) . . . (a+ 1)
∂k
xx

a+k
+ =

Γ(a+ 1)

Γ(a+ k + 1)
∂k
xx

a+k
+ .

Suppose further that k in N0 is such that k > max{−a− 1,−b− 1}. Then, to
get the embedding in G(Rm) of the distribution xa

+ we use the notion of derivative
in Colombeau algebra, which gives:

x̃a
+(ϕε, x) = ε

−1 Γ(a+ 1)

Γ(a+ k + 1)
∂k
x

∫ ∞

0
(ya+k)ϕ((y − x)/ε) dy

= (−1)kε−1−k Γ(a+ 1)

Γ(a+ k + 1)

∫ ∞

0
ya+kϕ(k)((y − x)/ε) dy

= (−1)kε−k Γ(a+ 1)

Γ(a+ k + 1)

∫ d

−x/ε
(x+ εu)a+kϕ(k)(u) du,

where, it is assumed that supp ϕ(x) ⊆ [c, d] for some c, d in R and the substitution
u = (y − x)/ε is made. Similarly, with the same choice of k, we have

x̃b
−(ϕε, x) = (−1)

kε−1−k Γ(b + 1)

Γ(b+ k + 1)

∫ 0

−∞
(−y)b+kϕ(k)((y − x)/ε) dy

= (−1)kε−k Γ(b+ 1)

Γ(b + k + 1)

∫ −x/ε

c
(−x− εv)b+kϕ(k)(v) dv.

Then, for any ψ in D(R),
(7)

〈x̃a
+(ϕε, x) x̃

b
−(ϕε, x), ψ(x)〉 =

Γ(a+ 1)Γ(b + 1)

Γ(a+ k + 1)Γ(b + k + 1)
×

×ε−2k
∫ −cε

−dε
ψ(x)

∫ d

−x/ε
ϕ(k)(u)

∫ −x/ε

c
(x+ εu)a+k(−x− εv)b+kϕ(k)(v) dv du dx

≡
Γ(a+ 1)Γ(b + 1)

Γ(a+ k + 1)Γ(b + k + 1)
Iab(ε).
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Here it is taken into account that c ≤ −x/ε ≤ d, and thus −dε ≤ x ≤ −cε.
Further, on making the substitution w = −x/ε and taking in view the require-

ment a+ b + 1 = 0, we obtain

Iab(ε) =

∫ d

c
ψ(−εw)

∫ d

w
ϕ(k)(u)

∫ w

c
(u− w)a+k(w − v)b+kϕ(k)(v) dv du dw.

Now, by the same argument as that used in Proposition 1 and by changing twice
the order of integration, we get for Iab := limε→0 Iab(ε)

Iab =

∫ d

c
ψ(0)ϕ(k)(u)

∫ u

c

∫ w

c
(u − w)a+k(w − v)b+kϕ(k)(v) dv dw du

= ψ(0)

∫ d

c
ϕ(k)(u)

∫ u

c
ϕ(k)(v)

∫ u

v
(u − w)a+k(w − v)b+k dw dv du.

Then the substitution w→t = (w − v)/(u − v), together with the relations
w− v = (u− v)t, u−w = (u− v)(1− t), and the definition of the first-order Euler
integral ([6, §21.4–4]) yield
(8)

Iab = ψ(0)

∫ d

c
ϕ(k)(u)

∫ u

c
(u− v)a+b+2k+1ϕ(k)(v)

(
∫ 1

0
(1 − t)a+ktb+kdt

)

dv du

= ψ(0)
Γ(a+ k + 1)Γ(b + k + 1)

(2k)!

∫ d

c
ϕ(k)(u)

∫ u

c
(u− v)2kϕ(k)(v) dv du,

where the requirement a+ b+ 1 = 0 is again taken into account.
Hence, by equations (7) and (8), we have

limε→0 〈x̃
a
+(ϕε, x) x̃

b
−(ϕε, x), ψ(x)〉

Γ(a+ 1)Γ(b+ 1)
=
ψ(0)

(2k)!

∫ d

c
ϕ(k)(u)

∫ u

c
(u− v)2kϕ(k)(v) dv du

=
(−1)kψ(0)

(2k)!

∫ d

c
ϕ(u) ∂k

u

(
∫ u

c
(u − v)2kϕ(k)(v) dv

)

du

=
(−1)kψ(0)

k!

∫ d

c
ϕ(u)

∫ u

c
(u− v)kϕ(k)(v) dv du =

ψ(0)

2
,

where finally the result of Lemma 1, for the particular choice of k in N0, is applied.
Thus, in the one-variable case, we get, by Definition 2,

x̃a
+.x̃

b
− ≈

Γ(a+ 1)Γ(b+ 1)

2
δ(x).

To prove our result in G(Rm), it only remains to apply Lemma 2 : for any
a = (ai, . . . am), b = (bi, . . . , bm) in Ω

m such that a+ b+ 1 = 0, we have

x̃a
+.x̃

b
− =

m
∏

i=1

x̃ai

i+.x̃
bi

i− ≈
m
∏

i=1

(

Γ(ai + 1)Γ(bi + 1)

2
δ(xi)

)

=
Γ(a+ 1)Γ(b+ 1)

2m
δ(x).

This finishes the proof. �
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Remarks 2. The result of the above proposition, symmetric in the parameters
a, b, can be rewritten taking into account the connection between them : replacing
b = −a− 1 or, respectively, a = −b − 1 in (6), we have by [6, §21.4–1(c)] that,
for any a ∈ R\Z,

(9) x̃a
+.x̃

−a−1
− = x̃−a−1

+ .x̃a
− ≈

Γ(1 + a)Γ(−a)

2m
δ(x) = (−π/2)m cosec(πa)δ(x).

3. The proofs of equations (2), (4) and (6) can be modified — in dimension one
only — so as to obtain the same formulas for the regularized model product of
the corresponding distributions (denoted by [, ]; see [7, Chapter 2]). This is due
to the fact that, replacing ϕ(x) by ρ (−x), where ϕ is in A0(R) (which is the only
requirement on ϕ we have used), we get for any ψ in D(R) :
limε→0 〈ũ(ϕε, x) ṽ(ϕε, x), ψ(x)〉 = limε→0 〈(u ∗ ρε)(v ∗ ρε), ψ〉 = 〈[u, v], ψ〉, where
ρ satisfies exactly the requirements imposed on the mollifiers for general model
products. Finally, we note that equations (2), (4) and (9) were derived in [2] and
[3] for dimension one and for the particular choice of the mollifiers ρ(x) being
even functions of x.

Acknowledgments. The author is very much indebted to Prof. J. Jeĺınek for
some suggestions and improvements of the work. It was partly supported by the
Ministry of Science and Education of Bulgaria under NFSR Grant φ 610.

References

[1] Colombeau J.-F., New Generalized Functions and Multiplication of Distributions, North
Holland Math. Studies 84, Amsterdam, 1984.

[2] Fisher B., The product of distributions, Quart. J. Oxford 22 (1971), 291–298.
[3] Fisher B., The divergent distribution product xλ

+xµ
−
, Sem. Mat. Barcelona 27 (1976), 3–10.

[4] Friedlander F.G., Introduction to the Theory of Distributions, Cambridge Univ. Press,
Cambridge, 1982.
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