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Continuity of order-preserving functions

Boris Lavrič

Abstract. Let the spaces Rm and Rn be ordered by cones P and Q respectively, let A
be a nonempty subset of Rm, and let f : A −→ Rn be an order-preserving function.
Suppose that P is generating in Rm, and that Q contains no affine line. Then f is
locally bounded on the interior of A, and continuous almost everywhere with respect
to the Lebesgue measure on Rm. If in addition P is a closed halfspace and if A is
connected, then f is continuous if and only if the range f(A) is connected.
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0. Introduction

Some well known results concerning continuity and local boundedness of real
nondecreasing functions are extended on order-preserving functions acting be-
tween finite dimensional ordered vector spaces. For convenience and to fix the
notation we collect some of the definitions and results on finite dimensional or-
dered spaces. A subset P ⊆ Rm is called a cone if it is closed under addition
and closed under multiplication by nonnegative scalars. A cone P is said to be
pointed if P ∩ (−P ) = {0}. A cone P induces on Rm an order relation ≤ defined
by x ≤ y whenever y − x ∈ P . We shall say in such a case that the space Rm

is ordered by the cone P . If P is pointed then Rm with the induced order is a
partially ordered vector space.
Let A be a nonempty subset of the space Rm ordered by a cone P . Then A

is said to be order bounded if it is contained in some order interval [x, y] = {z ∈
Rm : x ≤ z ≤ y}, x, y ∈ Rm. A is said to be solid if x, y ∈ A implies [x, y] ⊆ A.
The smallest solid set containing A is called the solid cover of A and equals

S(A) = {x ∈ Rm : a ≤ x ≤ b for some a, b ∈ A}.

A cone P in Rm is said to be generating if P −P = Rm. It is well known that
P is generating if and only if it has a nonempty interior int P (with respect to
the norm topology of Rm). This implies that P has a nonempty relative interior
(in the subspace P − P ). An element e ∈ Rm belongs to int P if and only if
there exists ǫ > 0 such that P contains the open ǫ-ball Bǫ(e) or equivalently
Bǫ(0) ⊆ [−e, e]. Since in addition the condition that [x, y] is a neighborhood of 0
implies −x ∈ int P , it follows that P is generating if and only if bounded subsets
of Rm are order bounded.
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The dual cone P ∗ of P is given by

P ∗ = {y ∈ Rm : 〈y, x〉 ≥ 0 for all x ∈ P},

where 〈 , 〉 denotes the usual inner product of Rm. Evidently P ∗∩(−P ∗) = P⊥ =

(P − P )⊥, hence P ∗ is pointed if and only if P is generating.
The second dual P ∗∗ equals the closure cl P of P , [5, Corollary 11.7.2] or

[3, 3.1.7]. It follows that the cone cl P is pointed if and only if the dual P ∗ is
generating. We shall need some other equivalent descriptions of this property.
Suppose that the cone cl P is not pointed. Then Rx ⊆ cl P for some nonzero
x ∈ Rm. This implies (use for example [5, Theorem 6.1]) that P contains all
affine lines y+Rx with y from the relative interior of P . On the other hand, if P
contains an affine line v +Ru, then Ru ⊆ cl P , hence cl P is not pointed. Thus,
the cone cl P is pointed if and only if P contains no affine line.
It is easy to verify that P contains no affine line if and only if P induces on

Rm an almost archimedean order, that is, if and only if x, y ∈ Rm and lx ≤ y for
all integers l imply x = 0. Another useful description of this property is related
to the norm topology. We may infer from [3, 3.2.8, 3.4.2] that P contains no
affine line if and only if there exists some real α > 0 such that 0 ≤ x ≤ y implies
‖x‖ ≤ α‖y‖. It follows immediately that if P contains no affine line, then order
bounded subsets ofRm are bounded. The converse holds as well since v+Ru ⊆ P
with u 6= 0 implies that the order interval [0, 2v] contains v+Ru and is therefore
not bounded.
Recall finally that a function f acting between ordered spaces is said to be

order-preserving if x ≤ y implies f(x) ≤ f(y).

1. Solid sets

For further purposes we need some topological properties of solid subsets of
finite dimensional ordered vector spaces.

Proposition 1. Let A be a nonempty solid subset of the space Rm ordered by

a generating cone P . Then the following statements holds.

(1) The interior of A is solid and satisfies int A = int cl A.
(2) There exist order intervals [xk, yk], k ∈ N, such that yk − xk ∈ int P for
all k, and

int A =

∞
⋃

k=1

[xk , yk] =

∞
⋃

k=1

cl [xk, yk].

Proof: (1) Suppose that x, y ∈ int A and x ≤ z ≤ y. There exists an element
e ∈ int P such that x − e ∈ A and y + e ∈ A. It follows that [x − e, y + e]
is a neighborhood of z contained in A. Therefore z ∈ int A, and hence int A is
solid. To prove that int A = int cl A take an element w ∈ int cl A and choose
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e ∈ int P such that w ± 2e ∈ cl A. Then [w − 3e, w − e] and [w + e, w + 3e] are
neighborhoods of w − 2e and w + 2e respectively, hence there exist elements

u ∈ A ∩ [w − 3e, w − e], v ∈ A ∩ [w + e, w + 3e].

This implies that the neighborhood [w − e, w + e] of w is contained in [u, v].
Since A is solid, [u, v] is a subset of A and therefore w ∈ int A. It follows that
int cl A ⊆ int A. The reverse inclusion is obvious.

(2) Let D be a countable dense subset of int A. We shall prove that int A is
the union of order intervals of the form

[x, y], x, y ∈ D, y − x ∈ int P,

as well as the union of its closures cl [x, y]. Let z ∈ int A. There exists e ∈ int P
such that z ± e ∈ int A. Take ǫ > 0 such that Bǫ(e) ⊂ int P . Since D is dense
in int A, there exist elements x, y ∈ D such that

(z − e)− x ∈ Bǫ(0) and y − (z + e) ∈ Bǫ(0).

It follows that z − x ∈ int P and y − z ∈ int P , hence z ∈ [x, y] and y − x =
(z − x) + (y − z) ∈ int P . For the remaining part of the proof choose δ > 0 such
that

Bδ(x) ⊂ int A, Bδ(y) ⊂ int A,

and use the fact that int A is solid to see that cl [x, y] ⊆ [x, y] +Bδ(0) ⊆ int A.
�

Lemma 2. Let A be a solid subset of the space Rm ordered by a generating

cone P , and let

A+ = {x ∈ cl A : A ∩ (x+ int P ) = ∅},

A− = {x ∈ cl A : A ∩ (x − int P ) = ∅}.

Then the boundary bd A of A equals A+ ∪ A−, and

(A+ − A+) ∩ int P = ∅, (A− − A−) ∩ int P = ∅.

Proof: If v ∈ int A, then there exists e ∈ int P such that v ± e ∈ A. It follows
that v /∈ A+∪A−, hence A+∪A− ⊆ bd A. To prove the reverse inclusion suppose
that x ∈ bd A \ (A+ ∪ A−). This implies that there exist elements y, z ∈ A such
that y ∈ x − int P , z ∈ x+ int P . Therefore x ∈ [y, z] ⊆ A and

x − y +Bǫ(0) ⊂ P, z − x+Bǫ(0) ⊂ P

for sufficiently small ǫ > 0. It follows that Bǫ(x) ⊆ [y, z], thus x ∈ int A. This
contradicts x ∈ bd A, hence bd A ⊆ A+ ∪ A−.
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Suppose now that u − v ∈ int P for some u ∈ cl A and v ∈ Rm. Take ǫ > 0
such that Bǫ(u − v) ⊂ int P and choose an element w ∈ A ∩ Bǫ(u). Then

w − v = (u − v) + (w − u) ∈ u − v +Bǫ(0) ⊂ int P,

and therefore w ∈ A∩(v+int P ). It follows that v /∈ A+, so (A+−A+)∩int P = ∅.
The equality (A− − A−) ∩ int P = ∅ can be proved similarly. �

We are prepared to prove an interesting measure-theoretic property of solid
subsets of an ordered vector space Rm. The result is a generalization of [4,
Proposition].

Proposition 3. Let A be a solid subset of the space Rm ordered by a generating

cone P . Then its boundary bd A is of Lebesgue measure zero.

Proof: By Lemma 2 it suffices to prove that A+ and A− are of Lebesgue measure
zero. To this end suppose that A+ is nonempty, take an element e ∈ int P , and

denote by p : Rm −→ Rm the orthogonal projection onto the subspace e⊥ of Rm.
We claim that p is injective on A+. Indeed, if x, y ∈ A+ and p(x) = p(y), then
x − y = te for some t ∈ R. Since t 6= 0 implies x − y ∈ int P or y − x ∈ int P ,
Lemma 2 shows that t = 0 and therefore x = y. It follows that there exists a
function h : p(A+) −→ R such that

A+ = {u+ h(u)e : u ∈ p(A+)}.

We shall prove that every pair u, v ∈ p(A+) satisfies

|h(u)− h(v)| ≤ ǫ−1‖u − v‖,

where ǫ > 0 is such that Bǫ(e) ⊂ int P . By the way of contradiction, suppose
that h(u)− h(v) > ǫ−1‖u − v‖ for some u, v ∈ p(A+). Then

w = (h(u)− h(v))−1(u − v) ∈ Bǫ(0)

and therefore e+ w ∈ int P . Since

x = u+ h(u)e ∈ A+, y = v + h(v)e ∈ A+,

and
x − y = (h(u)− h(v))(e+ w) ∈ int P,

Lemma 2 yields the desired contradiction. The established inequality shows that
h is continuous, therefore A+ is of Lebesgue measure zero. The proof for A− is
similar. �

Remark. The condition that P is generating is not superfluous in Proposition 3.
More precisely, if Rm is ordered by a nongenerating pointed cone P , then there
exists a solid subset A ⊆ Rm such that bd A is not of Lebesgue measure zero. A
can be constructed as follows. Take a subset D ⊆ P⊥ such that D and P⊥ \ D

are both dense in P⊥, choose a point e from the relative interior of P , and put

A = (D + P ) ∪ (P⊥ \ D + P + e).

Then A is solid, and bd A contains a cylinder Bǫ/2(e/2) + P⊥, where ǫ > 0 is

such that Bǫ(e) ∩ (P − P ) ⊆ P . The proof is left to the reader.
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2. Order-preserving functions

In this section we extend some well known results concerning properties of
real nondecreasing functions on order-preserving functions acting between finite
dimensional ordered vector spaces. We begin with local boundedness.

Theorem 4. Let the spaces Rm and Rn be ordered by cones P and Q respec-
tively, and let A be a nonempty subset of Rm.

(1) If P is generating and if Q contains no affine line, then every order-
preserving function f : A −→ Rn is locally bounded on cl A ∩ int S(A).

(2) If P = Rm and if Q is pointed, then every order-preserving function
f : A −→ Rn is constant and therefore locally bounded.

(3) In all other cases there exists an order-preserving function g : Rm −→ Rn

such that g is locally unbounded at every point of Rm.

Proof: (1) Suppose that P is generating and that Q contains no affine line. Let
a function f : A −→ Rn be order preserving and let x ∈ cl A ∩ int S(A). There
exists e ∈ int P such that the neighborhood [x − e, x + e] of x is contained in
S(A). Since x± e ∈ S(A), there exist elements y, z ∈ A such that y ≤ x− e and
x + e ≤ z. It follows that f maps the neighborhood [y, z] of x into the interval
[f(y), f(z)] of Rn. Since Q contains no affine line the order interval [f(y), f(z)]
is bounded, hence f is locally bounded at x.

(2) Let f : A −→ Rn be order-preserving, and let P = Rm. If x, y ∈ A, then
x ≤ y and y ≤ x, hence f(x) ≤ f(y) and f(y) ≤ f(x). If Q is pointed, this implies
f(x) = f(y).

(3) Let β : N −→ Q be a bijection, and let g0 : R −→ R be defined by
g0(β(n)) = n for all n ∈ N and g0(t) = 0 for all t ∈ R \Q. Then g0 is locally
unbounded at every point of R. Consider now three cases.

For the first case suppose that P is not generating. Then there exists a nonzero
element y ∈ P⊥. Take an element z ∈ Rn \ {0}, and define g : Rm −→ Rn by

g(x) = g0(〈x, y〉)z, x ∈ Rm.

It is straightforward to check that g is order-preserving and everywhere locally
unbounded.

For the second case suppose that Q is not pointed. Take a nonzero w ∈
Q ∩ (−Q), and define g : Rm −→ Rn by g(x) = g0(‖x‖)w, x ∈ Rm. It is evident
that g is order-preserving, and easy to see that g is everywhere locally unbounded.

For the third case suppose that P 6= Rm, and that Q is pointed and contains
an affine line. Observe first that P 6= Rm implies P ∗ 6= {0}. Then take a nonzero
w ∈ P ∗ and linearly independent vectors u, v ∈ Rn such that Q contains the
affine line u+Rv. Define g : Rm −→ Rn by

g(x+ tw) = tu+ g0(t)v, x ∈ w⊥, t ∈ R.
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Since the halfspace Pw = w⊥⊕R+w contains P , and since r > 0 implies ru+sv ≥
0 for all s ∈ R, g is order-preserving. It is easy to see that g is locally unbounded
at every point of Rm. �

It is well known that the set of all points of discontinuity of a real nondecreasing
function is at most countable. A similar result holds for vector-valued functions
with real domains.

Theorem 5. Let the space Rn be ordered by a cone Q containing no affine line,
and let A be a nonempty subset of R with the standard order. Then the set of
all points of discontinuity of an order-preserving function f : A −→ Rn is at most

countable.

Proof: Since Q contains no affine line, Q∗ is generating and therefore contains
a basis {b1, . . . , bn} of Rn. The functions fi : A −→ R defined by

fi(x) = 〈bi, f(x)〉, i = 1, . . . , n,

are order-preserving, hence the set D(fi) of all points of discontinuity of fi is at
most countable. Since the set of all points of discontinuity of f equals the union
of all D(fi), i = 1, . . . , n, the proof is complete. �

It is natural to ask whether Theorem 5 can be extended to order-preserving
functions with domain contained in an ordered space Rm with m > 1. We cannot
expect that the set of points of discontinuity of such a function is countable.
Indeed, if Rm is ordered by a cone P 6= Rm, then the characteristic function of
the set Pw from the proof of Theorem 4(3) is order-preserving and discontinuous

at every point of the hyperplane w⊥. However, this function is continuous almost
everywhere with respect to the Lebesgue measure. Our next result clarifies the
general situation. In fact, we use the results of the first section to transplant
smoothly the proof of the main result from [4] to the general situation. For the
sake of convenience to the reader we present a complete proof.

Theorem 6. Let the spaces Rm and Rn be ordered by cones P and Q respec-
tively, and let A be a nonempty subset of Rm.

(1) If P is generating and if Q contains no affine line, then every order-
preserving function f : A −→ Rn is continuous almost everywhere with respect

to the Lebesgue measure on Rm.

(2) If P = Rm and if Q is pointed, then every order-preserving function
f : A −→ Rn is constant and therefore continuous.

(3) In all other cases there exists an order-preserving function g : Rm −→ Rn

such that g is discontinuous at every point of Rm.

Proof: (1) If m = 1, (1) is covered by Theorem 5 and by (2), so we assume that
m > 1. Consider first the case n = 1, Q = R+. An order-preserving function
f : A −→ R can be extended by

f(x) = sup{f(a) : a ∈ A, a ≤ x}, x ∈ S(A),
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to an order-preserving function f : S(A) −→ R, hence we may suppose that A
is solid. Moreover, it follows easily from Propositions 1(2) and 3 that we may
assume A = cl [0, e] with e ∈ int P . For every x ∈ int [0, e] set

g(x) = inf{f(x+ te)− f(x − te), 0 < t ∈ R}.

Observe that for sufficiently small s > 0 the neighborhood [x − se, x+ se] of x is
contained in int [0, e], and that f maps this neighborhood into the real interval
[f(x − se), f(x+ se)] containing f(x). Therefore f is continuous at x if and only
if g(x) = 0. Put

Dk = {x ∈ int [0, e] : g(x) ≥
1

k
}, k = 1, 2, . . . ,

and note that the set D of all points of discontinuity of f satisfies

D ∩ int [0, e] =
⋃

k∈N

Dk.

Thus, we have to prove that each Dk is of Lebesgue measure zero.
We claim that Dk = cl Dk ∩ int [0, e]. Take any x ∈ int [0, e] \ Dk, and pick

s > 0 such that

[x − se, x+ se] ⊆ [0, e], f(x+ se)− f(x − se) <
1

k
.

Note that every y ∈ [x − (s/2)e, x+ (s/2)e] satisfies

[y −
s

2
e, y +

s

2
e] ⊆ [x − se, x+ se],

hence g(y) ≤ f(y + (s/2)e)− f(y − (s/2)e) < 1/k, and so y /∈ Dk. This implies
that the neighborhood [x − (s/2)e, x+ (s/2)e] of x does not intersect Dk. Hence
x /∈ cl Dk, and the claim follows.
Fix r > 0 and note that it suffices to prove that Dk ∩ Br(0) is of Lebesgue

measure zero. Assume that Dk ∩ Br(0) is nonempty, and let ǫ > 0.
For each fixed x ∈ cl [0, e] consider the real function h : t 7−→ f(x+ te). Since h

is nondecreasing and jumps for at least 1/k at every t satisfying x+ te ∈ Dk, the
set Dk ∩ (x+Re) contains finitely many points or it is empty. Using the equality
cl Dk ∩ int [0, e] = Dk and the fact that (x+Re) ∩ bd [0, e] contains at most two
points, we see that the set cl Dk ∩ (x+Re) contains finitely many points or it is
empty.
Remove from the line x+Re finitely many disjoint relatively open intervals of

common length less than ǫ and containing cl Dk ∩ (x+Re). Denote by R(x) the
remaining set, observe that d = dist (R(x), Dk) > 0 and put

T (x) = {y ∈ Rm : dist (y, x+Re) < min{d, 1} }.
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From the open covering {T (x) : x ∈ Kr} of the compact setKr = cl [0, e]∩cl Br(0)
extract a finite subcovering {Ti = T (xi) : i = 1, . . . , p}. Accept T0 = ∅ and set

Ui = Ti \
⋃

j<i

Tj .

Let E = e⊥, and observe that by construction Ui ∩ Dk is contained in a subset
of Lebesgue measure less or equal ǫµE(Ui ∩ E), where µE denotes the (m−1)-
dimensional Lebesgue measure in the subspace E ⊂ Rm. It follows that Dk ∩
Br(0) is contained in a subset of Lebesgue measure less or equal

ǫ

p
∑

i=1

µE(Ui ∩ E) = ǫµE(

p
⋃

i=1

Ui ∩ E).

Since Ui ∩ E ⊆ Br+1(0) for i = 1, . . . , p, this implies that Dk ∩ Br(0) is of
Lebesgue measure zero.

Consider now the general case. Suppose that the conditions in (1) are satisfied
and proceed similarly as in the proof of Theorem 5. Let {b1, . . . , bn} be a basis
of Rn contained in Q∗, and fi : A −→ R, i = 1, . . . , n, functions defined by
fi(x) = 〈bi, f(x)〉. It follows from the first part of the proof of this theorem that
each fi is continuous almost everywhere with respect to the Lebesgue measure,
hence f is continuous almost everywhere as well.
(2) and (3) follow from Theorem 4. �

Remark. We give here an application of the above results to utility theory.
Let X be a nonempty set ordered by an irreflexive and transitive relation <. It
is pointed out by the referee that in utility theory the existence and continuity
of real-valued order-preserving functions defined on X are investigated (see for
example [2, Chapters 2, 3] and [1]). Theorems 4 and 6 can be applied when X
is a subset of Rm equipped with an irreflexive and transitive order relation <
which is compatible with the vector space structure of Rm (i.e., x < y implies
x+ z < y+ z for all z and λx < λy for all real λ > 0). Such a relation is induced
by a cone P = {x ∈ Rm : x > 0}∪ {0} in an obvious way: x < y whenever x 6= y
and x ≤ y with respect to P (or y − x ∈ P \ {0}). Since P is generating if and
only if the order < is directed (i.e., each pair of different incomparable elements
have a strict upper bound), Theorems 4 and 6 give the following result:

Let Rm be ordered by a directed compatible irreflexive and transitive order
relation <, and let X be a nonempty subset of Rm equipped with the induced
order. Then every order preserving function f : X −→ R is locally bounded on
the interior of X , and continuous almost everywhere with respect to the Lebesgue
measure on Rm.
It is well known and easy to see that a real-valued nondecreasing function de-

fined on a connected subset of R is continuous if and only if its range is connected.
This result can be generalized as follows.
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Theorem 7. Let the spaces Rm and Rn be ordered by cones P and Q respec-
tively, and let A be a nonempty connected subset of Rm.

(1) If P is a closed halfspace and if Q contains no affine line, then an order-
preserving function f : A −→ Rn is continuous if and only if its range f(A) is
connected.

(2) If P = Rm and if Q is pointed, then every order-preserving function
f : A −→ Rn is constant.

(3) Under the additional conditions int A 6= ∅ and Q 6= {0}, in all other
cases there exists an order-preserving function g : A −→ Rn such that g(A) is
connected and g is not continuous.

Proof: (1) If f is continuous, then its range f(A) is connected. To prove the
reverse implication suppose that the conditions in (1) are satisfied. Then H =
bd P ⊆ Rm is a hyperplane contained in P , and Rm = H ⊕Rw holds for some
w ∈ P \ {0}. Since Q is pointed, this implies that an order-preserving function
f : A −→ Rn is constant on (H + tw) ∩A for each fixed t ∈ R. Observe that the
subset

A0 = {t ∈ R : (H + tw) ∩ A 6= ∅}

of R is connected, and define f0 : A0 −→ R
n by

f0(t) = f(x+ tw), t ∈ A0, x ∈ H, x+ tw ∈ A.

Then f0 is order-preserving with respect to the usual order in A0 ⊆ R, and has
the same range as f . Note also that if f0 is continuous, then f is continuous as
well. Therefore, it suffices to show that the discontinuity of f0 implies that f0(A0)
is disconnected.
Let f0 be discontinuous at some point t0 ∈ A0. Then at least one of the

numbers

d+ = inf {‖f0(t)− f0(t0)‖ : t ∈ A0, t > t0},

d− = inf {‖f0(t)− f0(t0)‖ : t ∈ A0, t < t0}

is strictly positive. Suppose that d+ > 0, put

F = {y ∈ Rn : y ≤ f0(t0)},

and observe that f0(t0) ∈ f0(A0 ∩ (−∞, t0]) ⊆ F . Since Q contains no affine
line, there exists α > 0 such that 0 ≤ u ≤ v implies ‖u‖ ≤ α‖v‖. Suppose that
f0(t) = y + z for some t ∈ A0 satisfying t > t0, and for some y ∈ F . Then
z = f0(t)− y ≥ f0(t)− f0(t0) ≥ 0, and therefore ‖z‖ ≥ α‖f0(t)− f0(t0)‖ ≥ αd+.
It follows that

f0(A0 ∩ (t0,+∞)) ∩ (F +Bαd+(0)) = ∅.
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Since f0(A0 ∩ (t0,+∞)) is nonempty and since F +Bαd+(0) is open and contains

cl F , the range f0(A0) is disconnected. If d+ = 0, then d− > 0, and the proof is
similar.

(2) is a part of Theorem 4.

(3) Using a translation and a homothety in Rm (to construct the appropriate
function g : A −→ Rn) we may suppose that A contains the unit ball B1(0).
Consider now four cases.

For the first case suppose that P is not generating. Denote by p : Rm −→ Rm

the orthogonal projection on the nontrivial subspace P⊥, take a nonzero w ∈ Rn,
and define g : Rm −→ Rn by g(x) = ‖p(x)‖w if x /∈ P − P , and g(x) = w if
x ∈ P −P . It can be seen easily that g is order-preserving and discontinuous at 0.
The subset {‖p(x)‖ : x ∈ A} of R is connected and contains the open interval
(0, 1), hence the range g(A) is connected.

For the second case suppose that Q is not pointed. Take a nonzero w ∈
Q ∩ (−Q), and define g : Rm −→ Rn by g(x) = ‖x‖w if x 6= 0, and g(0) = w.
Evidently g is order-preserving and discontinuous at 0. Similarly as in the previous
case we can see that the range of g is connected.

For the third case suppose that P is a closed halfspace, and that Q is pointed
containing an affine line. Then H = bd P is a hyperplane in Rm, and Rm =
H ⊕Rw for some w ∈ P \ {0}. Take an affine line u +Rv contained in Q, such
that u and v are linearly independent. Define g : Rm −→ Rn by

g(x+ tw) = tu+ (sin
1

t
)v if x ∈ H, t ∈ R \ {0},

and by g(x) = 0 if x ∈ H . Since r > 0 implies ru + sv ≥ 0 for all s ∈ R, g is
order-preserving. It is easy to see that g is discontinuous at 0, and that the range
g(A) is connected.

For the last case suppose that P is generating, P 6= Rm, and that P is not
a closed halfspace. Denote by L = P ∩ (−P ) the linearity space of P , and by

p : Rm −→ Rm the orthogonal projection on L⊥. Observe that k = dimL⊥ > 1,
and that P0 = P ∩ L⊥ is a pointed and generating cone in L⊥. It follows that
P0 is contained in a maximal pointed cone P1 in L⊥. Since L⊥ is totally ordered
by P1, there exists an isomorphism φ of L⊥ (ordered by P1) onto the space R

k

ordered by the lexicographic order. For each ǫ > 0 define gǫ : R
k −→ R by

gǫ(x1, . . . , xk) =











sgn x1 if x1 6= 0,

sgn x2 if x1 = 0, |x2| > ǫ,

ǫ−1x2 if x1 = 0, |x2| ≤ ǫ,

and note that gǫ is order-preserving. Since φ is a homeomorphism, there exists
an ǫ > 0 such that the open ǫ-ball Bǫ(0) of R

k is contained in φ(p(A)). Take a
nonzero w ∈ Q, and define g : A −→ Rn by

g(x) = gǫ(φ(p(x)))w, x ∈ A.
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Observing that p(P ) ⊆ P0, and using the fact that φ and gǫ are order-preserving,

we see that g is order-preserving as well. Since φ(p(A)) contains Bǫ(0) ⊆ Rk, it
follows easily from the definition of g that the range g(A) equals {tw : |t| ≤ 1} and
is therefore connected. Since gǫ is discontinuous at every point x ∈ Rk satisfying
x1 = 0, g is discontinuous. �
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