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On non-homogeneous viscous incompressible fluids.
Existence of regular solutions

JEROME LEMOINE

Abstract. We consider the flow of a non-homogeneous viscous incompressible fluid which
is known at an initial time. Our purpose is to prove that, when €2 is smooth enough,
there exists a local strong regular solution (which is global for small regular data).

Keywords: Navier-Stokes equations
Classification: 35Q30, 76D05

Introduction

Let © be a bounded connected open subset of R3, T' > 0 and Q7 = Q2x]0, T .
A non homogeneous fluid is described by its velocity u = (u1, ug, u3), its density p,
its viscosity v = v(p) and its pressure p. It is modelized by

pOu—V . (v(p)(Vu+"Vu) +p(u. Viu+Vp=pf,
(1) V.u=0,
Op+u.Vp=0,

(2) u=0 on Xp=00x]0,T],

3) ult—o =up and pli—o =po in Q.

The aim of this work is to prove the existence of a local regular solution of
(1)=(3) in Q7, when f and wug are regular data and pg is supposed to be regular
and strictly greater than 0, i.e.

0< My <pg in Q.

When the viscosity does not depend on the density, S.A. Antonzev and A.V. Ka-
jikov [1] proved the existence of weak solutions (see also J.L. Lions [7]). O.A. La-
dyzenskaya and V.A. Solonnikov [5] proved the local existence of a strong regular
solution and the global existence for small data.

When v = v(p), E. Ferndndez-Cara and F. Guillén [3] obtained the existence of
a weak solution for ug € L?(Q)%, V. ug = 0 and ug . n = 0, pg € L>®(Q), po > 0,
f € LY0,T;L%(2)3) and v € C(Ry) such that v(s) > 3 > 0 for all s € Ry (see
also P.L. Lions [8]). According to uniqueness, M. Kabbaj [4] gives a result for a
regular strong solution of (1)~(3) when p is supposed to be in C2(Qrp).
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1. Existence result

In all the paper long, we suppose that

Q) is a bounded open subset of R3 with a C? boundary,

po € CH(Q) satisfies My > po(x) > My > 0 for all z € Q,

v e CL(]0, +o0[), v(a) > v > 0 for all a > 0,

fe Lq(QT)g, ug € W2_2/q’q(ﬂ)3, V . ug =0, uplgg = 0 with ¢ > 3.
Under these hypotheses, one has the following result:

Theorem 1. There exists t < T such that the equations (1)—(3) have a solution
(u, Vpp, p) which satisfies

ue WHH(Qy), VpeLUQy?, pect(@y).

Moreover, there exists R > 0 depending on ), v, T, po, such that if

1fllLa(@qryz + luollyp2-—2/a4a(0ys < R,

then (u, Vp, p) is a solution of (1)—(3) fort =T. O

Outline of the proof. We use a fixed point argument, decoupling the variables
u and p. More precisely, let us consider z &€ Wg ’1(QT) satisfying V . z = 0,
2(0) = up in Q and 2|y, = 0.

In the first part, we prove that there exists a unique regular solution (u, Vp, p)
of the equations

pOou —V . (V(p)(Vu—FtVu))—I—p(z.V)u—l—Vp:pf in Qr,
V.u=0 in Qp,

(4) Op+z.Vp=0 in Qr,
u(0) =ug and p(0) =pg in Q,
uly, = 0.

In the second part, we prove that there exists R such that if [|f|[1q(g.)s +
||U0HW2*2/q,q(Q)3 < R or if T is small enough, then z +— u is a continuous map
from a convex closed bounded subset of Wg ’I(QT) with the topology of a Banach

space X, defined below into itself, where Wg’l(QT) C X, with compact
imbedding, and by Schauder’s theorem, we infer the existence of a fixed point.

Remark. The proof of Theorem 1 is based on results of O.A. Ladyzenskaya and
V.A. Solonnikov [5].
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2. Functional spaces and preliminaries

Let D(£2) be the space of C*° functions with compact support in 2, D’(£2) the
space of distributions on Q and ( , )o the duality product between D(Q2) and
D'(Q).

For 1 <r < 400, L"(Q) is the space of distributions f on € for which |f|" is
integrable. This space is endowed with the norm

= ([ 177",

and L°°(9) is the space of distributions f on Q locally integrable and satisfying
[[flloo = supess | f| < +oc.
For 1 < s < 400, the Sobolev spaces are defined by
Whs(Q) = {v e L5(Q) : Vv e L5(Q)3},
WOI’S(Q) = closure of D(Q) in WhH5(Q),
3
wLs(Q) = {v ED(Q:v=rg+ > it v € L(Q), i =0,... ,3},
=1
and we denote H'(Q2) = Wh2(Q), H}(Q) = W, *(Q), H~1(Q) = W 12(Q) and
V={veDQ)?3:V.v=0}
V={ve HQ)?:V.v=0}
Let us recall that V coincides with the closure of V in H'(Q)3 (cf. Temam [12]).
Let Wg’l(QT) be the space of distributions u € L4(0,T; W29(Q)3) such that
dyu € LI(Q)3. This space, endowed with the norm
2.1
1ull %) = 118l L@y + IV (VO Lag@pyzr + IVull zag@pye + lull Laope
is a Banach space. All functions of Wg’l(QT) are in Cy(0,T; W2_2/q’q(9)3),
where Cy,(0,T) = C([0,T1]), so we can define ||| || on Wg’l(QT) by

_ (2,1)
ul|lr = ||u + sup ||u|lyir2—2/q, 3.
||| ||| H ||‘17QT Ogth” ”W /4:4(Q)

Endowed with this norm, Wg ’1(QT) is a Banach space. Let us recall that for all
u € Wg’l(QT) and all ¢, 0 < ¢t < T we have (cf. V.A. Solonnikov [11]):

2,1
1u(®)llyyr2-2/0.a()s < luolly2—2/aageys + cllull'g),
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where ¢ is independent of ¢ € [0, T7.
We denote by
l(w, VD)llr = llulllr + VPl La(Qr)e-

Finally, let C5(Q), 0 < € < 1, be the set of functions f € C(Q2) which satisfy
If(2) = f(y)| < c|z—yl¢ for all 2,y € @ and C1¥(Q) the set of functions f € C1(Q)
which satisfy |V f(z) — Vf(y)| < ¢|x — y|¢ for all z,y € Q.

Let us now give an evolution case of De Rham’s theorem (cf. J. Simon [10,
Lemma 2, p. 1096]).

Lemma 2. Let h € D’(O,T;H‘l(ﬂ)?’) satistfy (h,v)q = 0 for all v € V. Then
there exists g € D' (0,T; L%(Q)) such that h = Vg. O
Now one gives a compactness result:
Lemma 3. There exists 1 > ¢4 > 0 such that
Wi Qr) C (Lq(o,T;clvaq(ﬁ)?’) NCu (o,T;C(ﬁ)?’)) = X 7
with compact imbedding. O
The proof is based on the following result (see J. Simon [9, Corollary 8, p.90])

Lemma 4. Let X and Y be two Banach spaces, X C Y with corresponding
compact imbedding and B a Banach space, X C B C Y, such that there exists
C and 0, 0 < 6 < 1 such that

lvlls < Clloll ol Yo e X.

Let 1 < 59 < 400, 1 < 87 < 400 and let F be a bounded subset of L%°(0,T; X)
such that OvF is bounded in L*1(0,T;Y"). Then,

(1) if 6(1 —1/s1) < (1 —06)/so, F is relatively compact in L°(0,T;B) Vs < sy,
where 1/s, = (1 —0)/sg — 6(1 — 1/s1);

(ii) if 0(1 —1/s1) > (1 —0)/so, F is relatively compact in Cy,(0,T'; B). O
PROOF OF LEMMA 3:

(i) One has Wg’l(QT) C L9(0,T;CH%4(2)3) with corresponding compact imbed-
ding.

For X = W29(Q)3 and Y = L9(Q)3, since we have W24(Q)3 c L4(Q)3 with
compact imbedding, using Lemma 4 (i), with s; = sy = ¢, we obtain for all
0<1/q

2(1-6
W2 Qr) € L7(0, T3 (W9(), LQ)*)g) = L9(0,T; H '~ (@)%)
with compact imbedding (cf. H. Triebel [13, Theorem 2, p.317] and [11, p. 185]).

In addition we have (cf. H. Triebel [13, p.328]) H2'"7(Q)3 ¢ c1e(@)? for

a=1-20—3/q> 0. Therefore we have
Wel(@Qr) < L9(0,T;¢ 4 (Q)%)
with compact imbedding, where ¢4 =1 —260 — 3/q and 6 < inf{1/q, (¢ — 3)/2¢}.
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(ii) One has Wg’l(QT) C Cu(0,75C(9)3) with corresponding compact imbed-
ding.

Using Lemma 4 (ii) with s; = sg = ¢, we obtain for all § > 1/q

W2L(Qr) € Cu(0,T; HZ P ()3)

with compact imbedding.

In addition we have (cf. H. Triebel [13, p. 328]) Hg(l—@) Q)2 c C(Q)3 for all
0 <1-3/2q. Since 1/q < 1—3/2q (¢ > 3), we have

Wi (Qr) € Cu(0, T;C(@)°)
with compact imbedding. O

3. Transport equation

Proposition 5. Let z € Wg’l(QT) satisfy V. z =0 and 2|y, = 0. Then for all
po € CH(Q), there exists a unique solution p € C*(Qp) of

Op+2.Vp=0 in Qp,
() {

pli=0 = po-

It satisfies

min po(z) < p(y,t) <maxpo(z) V(y,t) € Qr,
e e

and the following estimates, for all t < T':

(6) V0l Lo (@uys < VB3IV p0ll oo (s exp{IIV2ll L1 (0,100 (02)9) }

(M) 10l Lo (@r) < VB3IV o0l Lo ()3 121l oo @)z €XPLIV 2N L1040 (02)9) -

Let K be a closed bounded subset of Wg’l(QT) N L2 (0,T;V). Then the map
z +— p Is continuous on K endowed with the topology of X, with values in

Cu (0, T;CH(%)).
PRrROOF: The existence and uniqueness of such a solution, and the estimates (6)—
(7) are given by O.A. Ladyzenskaya and V.A. Solonnikov [5].

Let us remark that if z € Wg’l(QT) satisfies V . 2 = 0, z)y,. = 0, there exists
a unique y(7,t,2) (cf. O.A. Ladyzenskaya and V.A. Solonnikov [5]) solution of

t
(8) o (r t,2) = ok / (6ot 1), €) de.
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In addition, for all 7, ¢, y(7,t,.) is a one to one map on ) with Jacobian equal to
1 (cf. V.A. Solonnikov [11]). The solution p of (5) satisfies

p(z,t) = po(y(0,t,2)).

Let us prove the continuity of the map z +— p. It is well known, (see [5])
that if p; and py are two solutions of (5) associated to z; and z2 belonging to

Wg’l(QT) and satisfying 21|x, = 225, =0, V. 21 = V. 23 = 0, we have for all
t, 0 <t <T, the following estimate:

t
o1 = p2llLe (@, < ||VP2HL°°(Q,5)3/O 21 = 22l Loc ()3 dT-
So the map 2z + p is continuous from K endowed with the topology of X, 7 with

values in C(Qr).
Now, denoting y;(&) = y;(&,t, z), we have:

|0 p2(x,t) — 9;p1(x, 1) <}Z Ipo(y2(0)) —3kpo(y1(0)))5jy§(0)}

+’Z Apo) (y1(0)) (3jylf(0)—3jy§(0))’-
k

Since pg € C1(Q) and y2 € C1(Qr)3, we have:
IV(p2 = p1)ll Loo (Q4)3
< 3(IVy2(0) || oo (g0 1 (Vp0) (1(0)) = (Vo) (y2(0)) | oo ()2
+3[[Vpoll oo ()3 1V (41(0) = 52(0)) || oo (0,)9

To prove the continuity of the map z — p, since Vpg € C(Q ) , it is enough to
prove that if 21 — 29 in X, 7, then y1(0) — y2(0) in C,, (0, T;C1()). To prove this

property we will estimate [|y1(0) —y2(0)[| oo ()3 and [V (y1(0) —y2(0 ))HLoo (Qr)°
in terms of ||z1 — 22]|x, 1

Estimate of [|y2(0) — y1(0)| oo (q,)s- We have, according to (8):

t
i (r)—5(7)] s/ |4 (.(6),€) = 21 (v2(6),€) |+ |21 (42(6). €) — 25 (12(6). €) | d.
Since z1 € L(0,T;C1(Q)3), for all 2,y € Q and almost all t €]0, T[ we have:

|z1(2,8) = 21(y, )] < [V21() ]| oo ()0l — yl.
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In addition, taking into account that ys(&,¢,.) is a one to one map on 2 and z; is

in C(Q)3, we obtain:
[ (1) = 5(7)]

t t & &
S/ |\V21(§)||Lw(9)9|y1(§)—y2(§)!d€+/ [27(€) = 23 ()l oo ()3 dE-

So, using Gronwall lemma, we obtain:
1 !
lya(r) = 17| e (ups < etller — 22llx, . exp {7 a1 ]1x,.,

where ¢’ satisfies 1/q+1/¢' = 1.
Estimate of ||V (y1(0) — y2(0)) [ 200 (q@)o- We have

t
0.k (r) - o) <[>0 / ((@eh) (91(6), €) = (@) (42(9). €)) v (€) ]
¢ T
t
+|3 / (@) (42(0), €) = (D05) (42(©). €)) v (€) ]
Y T
t
X [ @) (0.9 nluf©) - w5©)
Y T

Since 21 € L(0,T;CH44(Q)3), for all 2,y € Q and almost all ¢ €]0, T'[ we have:
Vi (z,t) — Vai(y, t)| < b(t)| —yl*,
where b(t) = [[Vz1(t)[[cea ()0 is in LY0,7). In addition, y2(&,t,.) is a one to
one map on  and Vz; is in L! (O,T;C(ﬁ)g), so we have, using the estimate of
ly1(7) = y2(7)]:
t
[V (11(7) = y2(7) | < e IVl oo () / IV (21 = 22) ()l oo ()0 d€
t t
19l [ HO( [ = 2Ol
t e
<exp {c [ IVa(Ollw(epdc}) " de

t
+/ IV 22(E) ] oo ()0 | V(w1 () — 92(€)) | dé)-
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Using the Gronwall lemma, we deduce the estimate

[¥(51(0) = 2(0)) | < cllVyall ey exp { /7 l12all x,., } (#9110 = 22T,

1 !
< bll 0,0y exp { et eqllz1ll g, o+l - 22llx,., )
which yields

IV (51(0) = y2(0)) [l Loo ()0
/ 15

< eIyl oo exp {7 Izl x,., } (1011 - 22T,

% bl 1 0.0y exp { etV eqll 21 x,., |+t = 2l ).
With all these estimates, we deduce the continuity of the map z — y(0), and the
proof of Proposition 5 is complete. O
4. Existence and uniqueness of a solution of the uncoupled

equations (4)

4.1 The result.

Proposition 6. Let z € Wg’l(QT) satisfy V. 2 =0, z|t=0 = ug in Q, 2|y, = 0.
Under the hypothesis of Theorem 1, there exists a unique

ue WH(Qr), VpeLiQr)®, pec'(@Qr)

solution of (4).
It satisfies

@) (w, VPl

2 2
< M (AT AT 22| 2 0 19) (1 oy +Iuollwa-2/aaas )

=9 w312 —

where M1 = (M3 + M4)3M3 , M3 = ||Vp||Loo(QT)3, My = ||8tp||Loo(QT), M; =

M; +1, a =3(q — 2)[3(q — 2) + 4¢] " and ¢ does not depend on T, M3 and Mj.
The proof is given in several steps.

4.2 Simplified auxiliary equations. We consider here the following problem:
Find a solution (u, Vp) of

pOu—v(p)Au+Vp=f in Qr,

V.u=0 in ,
(10) o

ul=p = ug in Q,

U|ZT =0.

We have the following result:
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Proposition 7. Let p € CY(Qy), p(x,t) > My > 0 for all (x,t) € Q. Under
the hypothesis of Theorem 1, there exist

we W2HQr), Vpe LYQr)?,

solving (10).
In addition, there exists at most one solution of (10) in the space

(a0, 75 L2()%) 0 22(0, 75 HYQ)®) ) x HH(Qr)*.

PRrROOF: Existence. The existence of a solution of (10) in (L°° (0,T; HI(Q)g) N
H! (0, T; L2(Q)3)) x L2(0,T; H=1(€)3) is well known (see for example [6]).
Uniqueness. Let (u1,Vp1) and (u2, Vpa) be two solutions of (10) in

(cu(o,T; L2(Q)3) N L2 (0,T;H1(9)3)) « H=Y(Qr)3. Then u = u1 — us, Vp =
V(p1 — p2) is a solution of

poru —v(p)Au+Vp=0 in Qrp,
V.u=0 in Q,

ult=g =0 in £,

uly, = 0.

For all ¢ € D(0,T;V), we have in W—11(0,7)
(pOru, o) — (v(p)Au, p)q = 0.

Since (v(p)Au,)q = — [q V(v(p)) . Vu .o — Jav(p)Vu . Ve is in LY0,7),
we have (pdyu, p)q € LY(0,T). In addition, ¢ — Jov(p)Vu . Vo and ¢ —
fQ V(V(p)) . Vu . ¢ are continuous in the space L%(0,T;V) with values in
LY(0,T), 50 ¢ — Jo PO . ¢ is continuous in L?(0,T;V) with values in L*(0,T).
Therefore, we deduce that for all v € L?(0,T; V), we have in L*(0,T):

/Qpatu.v—l—/QV(u(p)).Vu.v—i—/gu(p)Vu.szO.

In particular, for v = u, we obtain in Ll(O, T):

1
—/p3t|u|2—|—V1/ |Vu|2§/ IV (v(p)) - Vu . ul.
2 Ja Q Q

In addition, we have 9 (p|u|?) = pd¢|u|? + dp|ul?, so we obtain

[ ooty +on [ 19uP <c [ pluf
Q Q Q

705
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where ¢ depends only on v, p, and we deduce from the Gronwall lemma that
u = 0. The De Rham theorem implies that Vp = 0, and the uniqueness follows.

Regularity of such a solution. Choose p such that [, p/v(p) = 0. Dividing by
v(p) > v1 > 0 and denoting P = p/v(p), A = p/v(p), the equation (10) can be
rewritten in the following form

/
A~ Au+vp = LV ONep
vip)  v(p)
V.u=0,
ult=0 = uo,
ulg, =0,
with A € CH(Qp) and A > \; > 0.
Let us consider the following equation:
/
ol — Al +vp = LV ONVep
vip)  vip)

(11) V.u =0,
u'|i—o = uo,

Wy, =0,

where P € L?(Qr) is defined above. Since f € L?(Q7)3, there exists a unique so-
lution (u/, VP') of (11) in (cu(o,T; L2(Q)%) N L2 (o,T;Hl(Q)3)) % H=1(Qrp)3.
In addition (cf. O.A. Ladyzenskaya and V.A. Solonnikov [5]), v’ € W22’1(QT),
VP € L2(QT)3. Now, since (u,VP) is solution of (11) we deduce that u €

W22’1(QT), VP € L?(Qr)?, and therefore Vp € L?(Q7)3. Then, from Lemma 9
(in appendix) we deduce that p € L79(Qr), where og = min(q,8/3). Therefore,
since f € LY(Qr)3, we deduce from the equation (11) that u € Wg(’)l (Qr) and

Vp € L7°(Q7)3 (see O.A. Ladyzenskaya, V.A. Solonnikov [5]). Repeating this
process a finite number of times, we obtain Proposition 7. (|

4.3 Auxiliary equations. We consider now the following problem: Find a so-
lution (u, Vp) of

poru —V . (v(p)(Vu+'Vu)) +Vp=f in Qr,
V.u=0 in Q,

ulg=g = ug in Q,

(12)

’U,|ET =0.

We have the following result:



On non-homogeneous viscous incompressible fluids. Existence of regular solutions

Proposition 8. Under the hypothesis of Proposition 7, there exist

ue Wy (Qr), Vp e LYQr)?,

solving (12).
It satisfies

13) M@ Vp)llr < Mi (I sy + lullza@ry + ltolyz-2/naqys):
where My = C(Mg + M4)M5152, M;=(M;+1),1<i<4,

(14) Il Vp)llle < eME(If Nl Loy + luollyyz—2/a.0(qys) exp{eMit},

for allt, 0 <t < T, where c depends only on v, M1, Ma, M3 and M.
In addition, there exists at most one solution of (12) in the space

(cu(o,T; L2(2)3) N L2(0,T;H1(Q)3)) x H-YQr)?.

PRrROOF: Existence. The existence of a solution of (12) in (L°° (0,T; HI(Q)g) N
(0, T} L2(Q)3)) x L2(0,T; H=1(Q)3) is known (see for example [6]). As in

Proposition 7, we can prove that there exists at most one solution of (12) in
(a0, 75 L2()%) 0 L2(0,T5 HYQ)?) ) ¢ H1(@Qr)*.
Regularity of this solution. The first equation of (12) can be written in the form

pOsu — v(p)Au+ Vp = [+ V(v(p)) (Vu + V).

Since f + V(v(p))(Vu + 'Vu) € L?(Q7)3, there exists (cf. Proposition 7) one
solution u’ € WS’I(QT), vy € L2(Qr)3 of

poeu’ — v(p)Au' + Vp' = f + V(v(p)) (Vu + tVu),
V.u =0,
(15)

!
u'|t=0 = up,

|y, =0,

where (u, Vp) is the solution of (12). In addition, this solution is unique in the
space (Cu(O,T; L2(Q)%) N L2 (O,T;Hl(Q)?’)) x H™1(Qr)3. Since the solution
(u, Vp) of (12) is a solution of (15), we deduce that the solution of (12) verifies u €
W22’1(QT), Vp € L?(Q7)3. Therefore (cf. Lemma 9), there exists o, 2 < 0g < ¢
such that u € L0 (0, T; W1700(9)3). So we deduce from (15), since f € LI(Q7)3,

that u € Wg(’)l (Qr) and Vp € L7°(Q7)3. Repeating this process a finite number
of times (until oy, = ¢), we obtain the regularity.
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Estimates. Choose p such that [, p = 0. Then setting P = p/v(p), (12) can
be rewritten in the following way:

/ /
L - tuyvp =L vV p VOV (G gy,
v(p) v(p) v(p) v(p)
V.u=0,
ul¢=0 = uo,
U|ET =0.

Since v > v(p) > v1 > 0 and v > V/(p), we have the following estimate (cf.
O.A. Ladyzenskaya, V.A. Solonnikov [5]),

-9
16, VPl < (0 +T28) (1L arys + MslPl o) + MslVul ooy
+ llullpa@qpys + ||U0|\W2—2/q,q(g)3)a

where ¢ depends on v, M7 and My only. Then we obtain

(s V)l < e(Ma+ 313) (1 o(0pys + Malpll ooy + Mal Vatl agyo
+ lull Lag@rys + lluollyz-2/0.00)2)
where ¢ depends on v, M7 and My only.
Using (15) we have (cf. Lemma 9):
1Pl Lac@n) < M3 (1 f a0 + MslVull L@ + 1Vl La,s)
so we obtain
e, Vo)l <A2 (1l ooy + IVl asrye) + ALVl ooy
+ e(Ma + M3) (ull Larys + l1wolly2—2/0.0(0ys)
with
Ay = c(M + M3) M3
Ay = o(My + M3) M3,
where ¢ depends on v, My and M> only.

Using the following interpolation inequalities (cf. O.A. Ladyzenskaya and
V.A. Solonnikov [5]), since (a? + b7) < (a + b)? we have

IVull Lagorye < a1llV(V)ll Laqgry2r + cayllull Laggypys
_atl

IVull Lagsyo < @2llV(Vu)ll Lagpy2r + cag “ lull La@r)3s
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for all o; €]0, 1], and taking a; = (4A1)_1 and a9 = (4A2)_1, we obtain:
1 2
A VullLaryo < —HV(VU)IILq(QT 27 + CAlHuHLq(QT 3

A2Vl La(syyo < —HV(VU)IILq(QT a7+ A5V ul Loy,

where ¢ depends on Q and ¢ only. With these estimates, (16) gives:

2q/(q—1)

l(w, VD)l < c(Azllflqu (@) T Atlull Laggpys + A3 el oy

+ (Ma + 375) (el Lag@rye + l0lya-2/maays) )-

Now, since A2, Ay and qu/ (a=1) are smaller than C(Mg + M4) 3M§2, we deduce
from the previous inequality the estimate (13).
To prove the estimate (14), let

t
0= | WDl aays 7 = Nl

We have y € WH1(0,T), y(0) = 0 and /() = |u(t)||d. In addition, for all ¢ < ¢
we have:

t t q
v ©)= [ g+ ooy = [ [ 2 (umR)ar + uol

< g9l o, ) 3||u||Lq(Q s + [luolld
< aMillullLy 0 + aM1 (1 za@es + ol 2/aaay) lulltaiy s
02y
Since M7 > 1, using Young’s inequality we obtain:
y'(t') < (2 = YMay(t) + M (If 1l Lo,y + lwolle-2/a.a(ays)
Integrating this equation from 0 to ¢ we have:
y(t) < M1l Lo + luollya-2/a.0()s)* exp{(24 — )Mt}
Now, taking into account that My > 1 we obtain:
ull Laggiys < eMu(llfllLaiqns + Iluollyz—2/0.0(q)s) exp{eMat}.
Using this estimate, (13) gives
I, Vo)l < M3l paguys + luollya—s/naoys) expleMat),

and the proof is complete. (|
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4.4 Proof of Proposition 6.

Existence of a regular solution. We prove the existence by successive approxima-
tions. Let v = 0 and for all m > 1:

(17)

pOu™ =V . (v(p)(Vu™ + 'Vu™)) + Vp™ = pf — p(z - V)um_l in Qr,
Op+2.Vp=0 in Qp,

V.u"=0 in Qp,

u™ =0 = ug in £,

u™ s, =0,

pli=o = po in Q.

It is known (cf. Proposition 8) that there exists a unique solution of (17). Denoting
w™ = u™ — ™"l VP = V(p™ — p™ ) and Wi (t) = ||(w™, Vp™)|||t, we
deduce from (14) the following estimate

1 1
WA < V0 g0 <0 [ 10 oo o

/ T)dr < " 1LVV()
ml ( ) 1

which implies the convergence of the series Y Wy, (¢) for all ¢ < T. From this, it

follows the convergence of v in Wg ’1(QT) and Vp™ in LY(Qr)3.
The uniqueness of a such solution is obvious.

Estimation. We have the following estimate of |||(u, Vp)|||7 given in Proposition 8
(18) ll(u, VD)l < Ma(F + [|ull aggpys + 1(2 + V)ull Laggrs)

where F' = |[flla(q,)3 + H“0||W272/q,q(g)3~
Now, let us estimate each term of the right hand side of this inequality. Mul-
tiplying the first equation of (4) by u and integrating on 2, we obtain

/Qp[%ﬁt(iﬂ)—i—(z.V)u.u] +/Qu(p)(Vu+tVu) .Vu:/pr.u.

Since v(p) > 11 > 0, we obtain, summing this equation with the transport equa-
tion multiplied by (1/2)ul?:

d
pr |u|2—|—2ul/ |Vu|2<2/pf u.

So we deduce the followmg estimate:

(/Q |u|2)(t) < cet(/ot ||f||%d7-+ ||u0|\§),
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where ¢ depends on M7 and Ms only.
Now, using Holder inequality, we have:

2 t t 2 2
) @) < cet ([ 11 adr + ol
( /Q ) (f 1903 2)
t 2/q
< et /Ilfllda T celluol 2
and therefore

(19) lullz < ce' (I Il Laigqpys + luollq)-

Using the fact that .
o _
lullg < e(lullwz.a()s)” lully™

with o = 3(¢q — 2)[3(¢ — 2) + 4¢] ™" (cf. O.A. Ladyzenskaya and V.A. Solonnikov

[5]), the previous estimate gives:

ol [T (1-a)/q
(20) g < elltw. ol ([ g

T 1/q
([ 1) <ererir,
0

Since (19) gives

we obtain from (20):
T _
(21) el Laggrys < ell(u, Vp)IF (T /2F)
Now, to estimate the last term of the right hand of (18), we remark that

Iz - V)ullLa(@rys < Izllzee@rys IVl La@rye-

Since 2, 12
IVull Lagrye < e(lull Lago.r;w2ac3)) ™ “llull g (Qr)?
we obtain
/2, 41/2
I 9l sai@rys < bl el Tl g,

T
< ellzll el VR)IE (TeT2R)3"
We deduce from this estimate and from the estimates (18) and (21)
l(w, Vo)l < eMa(F + I (u, Vp)lll%(TeT/2F)1_a

+ 12l oo Qs Ml (us Vp)IIIT (T /2Ry ),

711



J. Lemoine
where M = C(Mg + M4)3Mé2. Using the following Young’s inequalities:
@ 1
Mll(u, Vp)IF(Te"2F)' = < aell(u, Vp)llr + (1 - )™ = T PEM{™,
and

Mallz]| L (@l Cu, Vp)IIIT (TFeT/Q)

1+
A

_l+a 2
I-a (MlH’Z”LOO(QT)?’) - TF@T/2,

with £ small enough, we deduce from (22) the following estimate, since M7 > 1:

10, Vo)l < P M (147602 + T2 T2 ),

and the proof is complete. (|

5. Proof of Theorem 1

As we have seen (cf. Proposition 6), for all z € Wg’l(QT) satisfying z(0) = uy,
zls, = 0 and V . z = 0, there exists a unique solution u € Wg’l(QT), Vp €
LYQr)?, p € CH(@Qr) of (4).

Local existence. This proof is based on the Schauder theorem that can be found
for example in N. Dunford, J.T. Schwartz [2, Theorem 5, p. 456].

In the first step, let us prove that there exist Th; > 0 and a convex compact
subset K of X, 7, such that 2z — u maps K into K.

For all t < T, we have:

_2 _2
1 (w, Vp)lle < cEMI (1 + tel/? + tet2)|2]) 177

with My = c(35" + M1)* M3 and

Mz =1+ Ms < 1+ V3| Vpo| oo (s exp{et™/? |2]]1},
My =1+ My < 1+ V3| Vpol oo (e 1 2ll Lo ()3 expiet™ [I2]]1e

where ¢’ satisfies 1/q +1/¢' = 1. Let g1 be a real, 3 < q; < ¢. Then

2, 1
el < e s lzly-zrmm e < elluolly-2/am oy + 1015,
_T_

where ¢ is a constant which does not depend on t (see V.A. Solonnikov [11]).
Moreover

Hz”(?,l) < ctla—a)/an HZ”Eféglt) 7
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so, since HUJOHW2*2/q1»q1 Q)3 < CHUOHW?f?/q,q(Q)Sv

My <1+ C\/§||VPOHL°°(Q)3 (HUOHW2*2/Q»(1(Q)3

/a2 200 expfer /7 2]}

Therefore we have
1(u, VD)[e < cH, [[[2]]l¢),

where H(t,a) is continuous function in (¢, a) defined by

42

H(t,a) = F(1 + V3] Vol oo ez (1 + [[uollyy2-2/0.0y5 + t<q—q1>/qq1a)) -

1 2
ctv a}(1+ tet/? 4 tet/zaﬂ).

xexp{l_a

Since H(0,a) = H(0,a) for all a > 0, for M = H(0,0), there exists Tjs such that,
if 2]z, < M, then |[[(u, Vp)ll1,, <M.

Let us denote
K = {ue Wp'(Qry,),u(0) = uo, uls,, =0, V.u=0,|ullr, <M}

Then K is a convex compact subset of X, 1, , and z — u maps K into K.

In the second step, let us prove that z — wu is continuous from K endowed with
the topology of X, 1, into itself. Let 21 and 22 be two elements of K. Then we
obtain, setting z = 21 — 29, u = u; —ug, Vp = V(p1 — p2) and p = p1 — po:
p10su —V . (v(p1)(Vu + tVu)) +p1(21.V)u+Vp=G in Qr,
V.u=0 in Qp,

Oip+21.Vp=—2.Vpy in Qr,
ulg=0 =0 in £,
ulz, =0,

pli=o =0 in Q,
where

G =pf = pdruz +V . ((v(p1) = v(p2)) (Vuz + 'Vuz))
—p1 (z . V)ug + p(zl . V)uz.

We deduce from (9) the following estimate:

2 2
1w Vo)llzy, < ellGllzaar, s ME = (1 +Te™2 + T2z | 5 %),
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where ||GHL‘1(QTM)3 verifies

1G11za(@r, 3 <lollze(@ry,) (1Flo@r, )5 + 122] gy, 0

+ ||zl||Loo(QTM)3 HvquLQ(QTM)g)
+ IV ((v(p1) = v(p2)) (Vuz + 'Vu2))ll La(gy, 12
+letllLe@ry 120 Lo (@r, )3 IV U2l L0 (G, o

As we have proved in Proposition 5, if 2o — 21 in X, 7,,, then po — p1
in the space Cy(0,Ts;CL(Q)). So, v(p2) — v(p1) in Cu(0,Ths;CH(Q)). From
this, we obtain that if 20 — 21 in X, 7,,, then ||G||Lq(QTM)3 — 0 and there-

fore [||(u, Vp)||T,, — 0. This proves that the map z ~— wu is continuous. Us-
ing the Schauder fixed point theorem, we obtain that there exist v € K and

Vp € Lq(QTM)3 solving (1)—(3).
Global existence. We have

_2 _2
i, V)l < eFMe (14 Tel/2 4 TP 2a) 2 ).

Let M > 0 and suppose ||z]|7 < M. Then there exists R > 0 such that if
F = |flLa@m)3 —|—||u0||W2,2/q,q(Q)3 < R, then ||ul|7 < M. As in the proof of
the local existence,

K={ue Wg’l(QT),u(O) =ug, uly, =0, V.u=0,|lul|r <M}

is a convex compact subset of X, 7, and 2z — u maps continuously K into K.
Therefore we deduce the existence of u € K and Vp € L4(Qr)? solving (1)-(3).
O

Appendix
Lemma 9. Let f € L4(Q7)? and let (u,Vp) be the unique solution of (10)
satisfying

ue L2(0.7; HA(Q)®), dyu € L*(Qr)*, Vp € L2(Qr)®.

Suppose that u € L*(0,T; W25(Q)3) n Whs(0,T; L5(Q)3) and Vp € L5(Qr)?
with 2 < s < q. Choosing p such that fgp = 0, there exists 0, s < 0 < q defined

by
{ q if s>5,
0= . 4s .
mln(q,ﬁ) if 2<s<5,
such that

we L7(0,T; Who(Q)3), Vuls, € L7(27)? p e L7(Qr).
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Moreover we have

Il Lo @iy < es(1f Lo (@uys + IVullLo(quye + 1Vl Loz, )0)

where
c3 = c[My*(Ma + 1)Ms + My Y| Ma(1 + M *MZM3).
([l
A proof of this lemma is given by M. Kabbaj [4]. O
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