On non-homogeneous viscous incompressible fluids. Existence of regular solutions

JÉRÔME LEMOINE

Abstract. We consider the flow of a non-homogeneous viscous incompressible fluid which is known at an initial time. Our purpose is to prove that, when Ω is smooth enough, there exists a local strong regular solution (which is global for small regular data).

Keywords: Navier-Stokes equations Classification: 35Q30, 76D05

Introduction

Let Ω be a bounded connected open subset of \mathbb{R}^3 , T > 0 and $Q_T = \Omega \times]0, T[$. A non homogeneous fluid is described by its velocity $u = (u_1, u_2, u_3)$, its density ρ , its viscosity $\nu = \nu(\rho)$ and its pressure p. It is modelized by

(1)
$$\begin{cases} \rho \,\partial_t u - \nabla \cdot \left(\nu(\rho)(\nabla u + {}^t \nabla u) \right) + \rho \,(u \cdot \nabla) u + \nabla p = \rho \, f, \\ \nabla \cdot u = 0, \\ \partial_t \rho + u \cdot \nabla \rho = 0, \end{cases}$$

(2)
$$u = 0 \text{ on } \Sigma_T = \partial \Omega \times]0, T[,$$

(3)
$$u|_{t=0} = u_0 \text{ and } \rho|_{t=0} = \rho_0 \text{ in } \Omega$$

The aim of this work is to prove the existence of a local regular solution of (1)–(3) in Q_T , when f and u_0 are regular data and ρ_0 is supposed to be regular and strictly greater than 0, i.e.

$$0 < M_1 \leq \rho_0$$
 in Ω .

When the viscosity does not depend on the density, S.A. Antonzev and A.V. Kajikov [1] proved the existence of weak solutions (see also J.L. Lions [7]). O.A. Ladyzenskaya and V.A. Solonnikov [5] proved the local existence of a strong regular solution and the global existence for small data.

When $\nu = \nu(\rho)$, E. Fernández-Cara and F. Guillén [3] obtained the existence of a weak solution for $u_0 \in L^2(\Omega)^3$, $\nabla \cdot u_0 = 0$ and $u_0 \cdot n = 0$, $\rho_0 \in L^\infty(\Omega)$, $\rho_0 \ge 0$, $f \in L^1(0,T; L^2(\Omega)^3)$ and $\nu \in \mathcal{C}(\mathbb{R}_+)$ such that $\nu(s) \ge \beta > 0$ for all $s \in \mathbb{R}_+$ (see also P.L. Lions [8]). According to uniqueness, M. Kabbaj [4] gives a result for a regular strong solution of (1)–(3) when ρ is supposed to be in $\mathcal{C}^2(\overline{Q}_T)$.

1. Existence result

In all the paper long, we suppose that

$$\begin{split} \Omega \text{ is a bounded open subset of } \mathbb{R}^3 \text{ with a } \mathcal{C}^2 \text{ boundary,} \\ \rho_0 \in \mathcal{C}^1(\overline{\Omega}) \text{ satisfies } M_2 \geq \rho_0(x) \geq M_1 > 0 \text{ for all } x \in \Omega, \\ \nu \in \mathcal{C}^1(]0, +\infty[), \, \nu(a) \geq \nu_1 > 0 \text{ for all } a > 0, \\ f \in L^q(Q_T)^3, \, u_0 \in W^{2-2/q,q}(\Omega)^3, \, \nabla \cdot u_0 = 0, \, u_0|_{\partial\Omega} = 0 \text{ with } q > 3. \end{split}$$

Under these hypotheses, one has the following result:

Theorem 1. There exists $t \leq T$ such that the equations (1)–(3) have a solution $(u, \nabla p, \rho)$ which satisfies

$$u \in \mathcal{W}_q^{2,1}(Q_t), \quad \nabla p \in L^q(Q_t)^3, \quad \rho \in \mathcal{C}^1(\overline{Q}_t).$$

Moreover, there exists R > 0 depending on Ω , ν , T, ρ_0 , such that if

$$||f||_{L^q(Q_T)^3} + ||u_0||_{W^{2-2/q,q}(\Omega)^3} \le R,$$

then $(u, \nabla p, \rho)$ is a solution of (1)–(3) for t = T.

Outline of the proof. We use a fixed point argument, decoupling the variables u and ρ . More precisely, let us consider $z \in W_q^{2,1}(Q_T)$ satisfying $\nabla \cdot z = 0$, $z(0) = u_0$ in Ω and $z|_{\Sigma_T} = 0$.

In the first part, we prove that there exists a unique regular solution $(u, \nabla p, \rho)$ of the equations

(4)
$$\begin{cases} \rho \,\partial_t u - \nabla \cdot \left(\nu(\rho)(\nabla u + {}^t \nabla u)\right) + \rho \,(z \cdot \nabla)u + \nabla p = \rho \,f \quad \text{in} \quad Q_T, \\ \nabla \cdot u = 0 \quad \text{in} \quad Q_T, \\ \partial_t \rho + z \cdot \nabla \rho = 0 \quad \text{in} \quad Q_T, \\ u(0) = u_0 \quad \text{and} \quad \rho(0) = \rho_0 \quad \text{in} \quad \Omega, \\ u|_{\Sigma_T} = 0. \end{cases}$$

In the second part, we prove that there exists R such that if $||f||_{L^q(Q_T)^3} + ||u_0||_{W^{2-2/q,q}(\Omega)^3} \leq R$ or if T is small enough, then $z \mapsto u$ is a continuous map from a convex closed bounded subset of $\mathcal{W}_q^{2,1}(Q_T)$ with the topology of a Banach space $X_{q,T}$ defined below into itself, where $\mathcal{W}_q^{2,1}(Q_T) \subset X_{q,T}$ with compact imbedding, and by Schauder's theorem, we infer the existence of a fixed point.

Remark. The proof of Theorem 1 is based on results of O.A. Ladyzenskaya and V.A. Solonnikov [5].

2. Functional spaces and preliminaries

Let $\mathcal{D}(\Omega)$ be the space of \mathcal{C}^{∞} functions with compact support in Ω , $\mathcal{D}'(\Omega)$ the space of distributions on Ω and $\langle , \rangle_{\Omega}$ the duality product between $\mathcal{D}(\Omega)$ and $\mathcal{D}'(\Omega)$.

For $1 \leq r < +\infty$, $L^{r}(\Omega)$ is the space of distributions f on Ω for which $|f|^{r}$ is integrable. This space is endowed with the norm

$$\|f\|_r = \left(\int_{\Omega} |f|^r\right)^{\frac{1}{r}}.$$

and $L^{\infty}(\Omega)$ is the space of distributions f on Ω locally integrable and satisfying

$$||f||_{\infty} = \operatorname{supess} |f| < +\infty.$$

For $1 \leq s \leq +\infty$, the Sobolev spaces are defined by

$$W^{1,s}(\Omega) = \{ v \in L^s(\Omega) : \nabla v \in L^s(\Omega)^3 \},\$$

$$W^{1,s}_0(\Omega) = \text{ closure of } \mathcal{D}(\Omega) \text{ in } W^{1,s}(\Omega),\$$

$$W^{-1,s}(\Omega) = \Big\{ v \in \mathcal{D}'(\Omega) : v = v_0 + \sum_{i=1}^3 \partial_i v_i : v_i \in L^s(\Omega), \ i = 0, \dots, 3 \Big\},\$$

and we denote $H^1(\Omega) = W^{1,2}(\Omega), \ H^1_0(\Omega) = W^{1,2}_0(\Omega), \ H^{-1}(\Omega) = W^{-1,2}(\Omega)$ and

$$\mathcal{V} = \{ v \in \mathcal{D}(\Omega)^3 : \nabla \cdot v = 0 \},\$$
$$V = \{ v \in H_0^1(\Omega)^3 : \nabla \cdot v = 0 \}.$$

Let us recall that V coincides with the closure of \mathcal{V} in $H^1(\Omega)^3$ (cf. Temam [12]).

Let $\mathcal{W}_q^{2,1}(Q_T)$ be the space of distributions $u \in L^q(0,T; W^{2,q}(\Omega)^3)$ such that $\partial_t u \in L^q(Q_T)^3$. This space, endowed with the norm

$$\|u\|_{q,Q_T}^{(2,1)} = \|\partial_t u\|_{L^q(Q_T)^3} + \|\nabla(\nabla u)\|_{L^q(Q_T)^{27}} + \|\nabla u\|_{L^q(Q_T)^9} + \|u\|_{L^q(Q_T)^3}$$

is a Banach space. All functions of $\mathcal{W}_q^{2,1}(Q_T)$ are in $\mathcal{C}_u(0,T; W^{2-2/q,q}(\Omega)^3)$, where $\mathcal{C}_u(0,T) = \mathcal{C}([0,T])$, so we can define $||| |||_T$ on $\mathcal{W}_q^{2,1}(Q_T)$ by

$$|||u|||_T = ||u||_{q,Q_T}^{(2,1)} + \sup_{0 \le t \le T} ||u||_{W^{2-2/q,q}(\Omega)^3}.$$

Endowed with this norm, $\mathcal{W}_q^{2,1}(Q_T)$ is a Banach space. Let us recall that for all $u \in \mathcal{W}_q^{2,1}(Q_T)$ and all $t, 0 \le t \le T$ we have (cf. V.A. Solonnikov [11]):

$$\|u(t)\|_{W^{2-2/q,q}(\Omega)^3} \le \|u_0\|_{W^{2-2/q,q}(\Omega)^3} + c\|u\|_{q,Q_t}^{(2,1)},$$

where c is independent of $t \in [0, T]$.

We denote by

 $|||(u, \nabla p)|||_T = |||u|||_T + ||\nabla p||_{L^q(Q_T)^3}.$

Finally, let $\mathcal{C}^{\varepsilon}(\overline{\Omega})$, $0 < \varepsilon < 1$, be the set of functions $f \in \mathcal{C}(\overline{\Omega})$ which satisfy $|f(x) - f(y)| \le c|x - y|^{\varepsilon}$ for all $x, y \in \overline{\Omega}$ and $\mathcal{C}^{1,\varepsilon}(\overline{\Omega})$ the set of functions $f \in \mathcal{C}^1(\overline{\Omega})$ which satisfy $|\nabla f(x) - \nabla f(y)| \le c'|x - y|^{\varepsilon}$ for all $x, y \in \overline{\Omega}$.

Let us now give an evolution case of De Rham's theorem (cf. J. Simon [10, Lemma 2, p. 1096]).

Lemma 2. Let $h \in \mathcal{D}'(0,T; H^{-1}(\Omega)^3)$ satisfy $\langle h, v \rangle_{\Omega} = 0$ for all $v \in \mathcal{V}$. Then there exists $g \in \mathcal{D}'(0,T; L^2(\Omega))$ such that $h = \nabla g$.

Now one gives a compactness result:

Lemma 3. There exists $1 > \varepsilon_q > 0$ such that

$$\mathcal{W}_{q}^{2,1}(Q_{T}) \subset \left(L^{q}\left(0,T;\mathcal{C}^{1,\varepsilon_{q}}(\overline{\Omega})^{3}\right) \cap \mathcal{C}_{u}\left(0,T;\mathcal{C}(\overline{\Omega})^{3}\right) \right) =: X_{q,T}$$

with compact imbedding.

The proof is based on the following result (see J. Simon [9, Corollary 8, p. 90])

Lemma 4. Let X and Y be two Banach spaces, $X \subset Y$ with corresponding compact imbedding and B a Banach space, $X \subset B \subset Y$, such that there exists C and θ , $0 < \theta < 1$ such that

$$\|v\|_B \le C \|v\|_X^{1-\theta} \|v\|_Y^{\theta} \quad \forall v \in X.$$

Let $1 \leq s_0 \leq +\infty$, $1 \leq s_1 \leq +\infty$ and let \mathcal{F} be a bounded subset of $L^{s_0}(0,T;X)$ such that $\partial_t \mathcal{F}$ is bounded in $L^{s_1}(0,T;Y)$. Then,

(i) if $\theta(1-1/s_1) \le (1-\theta)/s_0$, \mathcal{F} is relatively compact in $L^s(0,T;B) \ \forall s < s_*$, where $1/s_* = (1-\theta)/s_0 - \theta(1-1/s_1)$;

(ii) if $\theta(1-1/s_1) > (1-\theta)/s_0$, \mathcal{F} is relatively compact in $\mathcal{C}_u(0,T;B)$. PROOF OF LEMMA 3:

(i) One has $\mathcal{W}_q^{2,1}(Q_T) \subset L^q(0,T;\mathcal{C}^{1,\varepsilon_q}(\overline{\Omega})^3)$ with corresponding compact imbedding.

For $X = W^{2,q}(\Omega)^3$ and $Y = L^q(\Omega)^3$, since we have $W^{2,q}(\Omega)^3 \subset L^q(\Omega)^3$ with compact imbedding, using Lemma 4(i), with $s_1 = s_0 = q$, we obtain for all $\theta \leq 1/q$

$$\mathcal{W}_{q}^{2,1}(Q_{T}) \subset L^{q}(0,T; (W^{2,q}(\Omega)^{3}, L^{q}(\Omega)^{3})_{\theta}) = L^{q}(0,T; H_{q}^{2(1-\theta)}(\Omega)^{3})$$

with compact imbedding (cf. H. Triebel [13, Theorem 2, p. 317] and [11, p. 185]).

In addition we have (cf. H. Triebel [13, p. 328]) $H_q^{2(1-\theta)}(\Omega)^3 \subset C^{1,\alpha}(\overline{\Omega})^3$ for $\alpha = 1 - 2\theta - 3/q > 0$. Therefore we have

$$\mathcal{W}_q^{2,1}(Q_T) \subset L^q(0,T;\mathcal{C}^{1,\varepsilon_q}(\overline{\Omega})^3)$$

with compact imbedding, where $\varepsilon_q = 1 - 2\theta - 3/q$ and $\theta < \inf\{1/q, (q-3)/2q\}$.

(ii) One has $\mathcal{W}_q^{2,1}(Q_T) \subset \mathcal{C}_u(0,T;\mathcal{C}(\overline{\Omega})^3)$ with corresponding compact imbedding.

Using Lemma 4 (ii) with $s_1 = s_0 = q$, we obtain for all $\theta > 1/q$

$$\mathcal{W}_q^{2,1}(Q_T) \subset \mathcal{C}_u(0,T; H_q^{2(1-\theta)}(\Omega)^3)$$

with compact imbedding.

In addition we have (cf. H. Triebel [13, p. 328]) $H_q^{2(1-\theta)}(\Omega)^3 \subset C(\overline{\Omega})^3$ for all $\theta < 1 - 3/2q$. Since 1/q < 1 - 3/2q (q > 3), we have

$$\mathcal{W}_q^{2,1}(Q_T) \subset \mathcal{C}_u(0,T;\mathcal{C}(\overline{\Omega})^3)$$

with compact imbedding.

3. Transport equation

Proposition 5. Let $z \in W_q^{2,1}(Q_T)$ satisfy $\nabla \cdot z = 0$ and $z|_{\Sigma_T} = 0$. Then for all $\rho_0 \in \mathcal{C}^1(\overline{\Omega})$, there exists a unique solution $\rho \in \mathcal{C}^1(\overline{Q}_T)$ of

(5)
$$\begin{cases} \partial_t \rho + z \cdot \nabla \rho = 0 & \text{in } Q_T, \\ \rho|_{t=0} = \rho_0. \end{cases}$$

It satisfies

$$\min_{x\in\overline{\Omega}}\rho_0(x) \le \rho(y,t) \le \max_{x\in\overline{\Omega}}\rho_0(x) \quad \forall (y,t) \in Q_T,$$

and the following estimates, for all $t \leq T$:

(6)
$$\|\nabla\rho\|_{L^{\infty}(Q_{t})^{3}} \leq \sqrt{3} \|\nabla\rho_{0}\|_{L^{\infty}(\Omega)^{3}} \exp\{\|\nabla z\|_{L^{1}(0,t;L^{\infty}(\Omega)^{9})}\},$$

(7)
$$\|\partial_t \rho\|_{L^{\infty}(Q_t)} \leq \sqrt{3} \|\nabla \rho_0\|_{L^{\infty}(\Omega)^3} \|z\|_{L^{\infty}(Q_T)^3} \exp\{\|\nabla z\|_{L^1(0,t;L^{\infty}(\Omega)^9)}\}.$$

Let K be a closed bounded subset of $\mathcal{W}_q^{2,1}(Q_T) \cap L^2(0,T;V)$. Then the map $z \mapsto \rho$ is continuous on K endowed with the topology of $X_{q,T}$ with values in $\mathcal{C}_u(0,T;\mathcal{C}^1(\overline{\Omega})).$

PROOF: The existence and uniqueness of such a solution, and the estimates (6)–(7) are given by O.A. Ladyzenskaya and V.A. Solonnikov [5].

Let us remark that if $z \in W_q^{2,1}(Q_T)$ satisfies $\nabla \cdot z = 0$, $z_{|\Sigma_T} = 0$, there exists a unique $y(\tau, t, x)$ (cf. O.A. Ladyzenskaya and V.A. Solonnikov [5]) solution of

(8)
$$y^{k}(\tau, t, x) = x^{k} - \int_{\tau}^{t} z^{k} (y(\xi, t, x), \xi) d\xi.$$

In addition, for all τ , t, $y(\tau, t, \cdot)$ is a one to one map on Ω with Jacobian equal to 1 (cf. V.A. Solonnikov [11]). The solution ρ of (5) satisfies

$$\rho(x,t) = \rho_0(y(0,t,x)).$$

Let us prove the continuity of the map $z \mapsto \rho$. It is well known, (see [5]) that if ρ_1 and ρ_2 are two solutions of (5) associated to z_1 and z_2 belonging to $\mathcal{W}_q^{2,1}(Q_T)$ and satisfying $z_1|_{\Sigma_T} = z_2|_{\Sigma_T} = 0$, $\nabla \cdot z_1 = \nabla \cdot z_2 = 0$, we have for all $t, 0 < t \leq T$, the following estimate:

$$\|\rho_1 - \rho_2\|_{L^{\infty}(Q_t)} \le \|\nabla\rho_2\|_{L^{\infty}(Q_t)^3} \int_0^t \|z_1 - z_2\|_{L^{\infty}(\Omega)^3} d\tau.$$

So the map $z \mapsto \rho$ is continuous from K endowed with the topology of $X_{q,T}$ with values in $\mathcal{C}(Q_T)$.

Now, denoting $y_i(\xi) = y_i(\xi, t, x)$, we have:

$$\begin{aligned} \left|\partial_{j}\rho_{2}(x,t) - \partial_{j}\rho_{1}(x,t)\right| &\leq \left|\sum_{k} \left(\partial_{k}\rho_{0}\left(y_{2}(0)\right) - \partial_{k}\rho_{0}\left(y_{1}(0)\right)\right)\partial_{j}y_{2}^{k}(0)\right| \\ &+ \left|\sum_{k} \left(\partial_{k}\rho_{0}\right)\left(y_{1}(0)\right)\left(\partial_{j}y_{1}^{k}(0) - \partial_{j}y_{2}^{k}(0)\right)\right|.\end{aligned}$$

Since $\rho_0 \in \mathcal{C}^1(\overline{\Omega})$ and $y_2 \in \mathcal{C}^1(\overline{Q}_T)^3$, we have:

$$\begin{split} \|\nabla(\rho_2 - \rho_1)\|_{L^{\infty}(Q_t)^3} \\ &\leq 3\|\nabla y_2(0)\|_{L^{\infty}(Q_t)^9}\|(\nabla\rho_0)(y_1(0)) - (\nabla\rho_0)(y_2(0))\|_{L^{\infty}(Q_t)^3} \\ &\quad + 3\|\nabla\rho_0\|_{L^{\infty}(\Omega)^3}\|\nabla(y_1(0) - y_2(0))\|_{L^{\infty}(Q_t)^9}. \end{split}$$

To prove the continuity of the map $z \mapsto \rho$, since $\nabla \rho_0 \in \mathcal{C}(\overline{\Omega})^3$, it is enough to prove that if $z_1 \to z_2$ in $X_{q,T}$, then $y_1(0) \to y_2(0)$ in $\mathcal{C}_u(0,T;\mathcal{C}^1(\overline{\Omega}))$. To prove this property we will estimate $\|y_1(0) - y_2(0)\|_{L^{\infty}(Q_T)^3}$ and $\|\nabla (y_1(0) - y_2(0))\|_{L^{\infty}(Q_T)^9}$ in terms of $\|z_1 - z_2\|_{X_{q,T}}$.

Estimate of $||y_2(0) - y_1(0)||_{L^{\infty}(Q_t)^3}$. We have, according to (8):

$$\left|y_{1}^{k}(\tau) - y_{2}^{k}(\tau)\right| \leq \int_{\tau}^{t} \left|z_{1}^{k}(y_{1}(\xi),\xi) - z_{1}^{k}(y_{2}(\xi),\xi)\right| + \left|z_{1}^{k}(y_{2}(\xi),\xi) - z_{2}^{k}(y_{2}(\xi),\xi)\right| d\xi.$$

Since $z_1 \in L^1(0,T; \mathcal{C}^1(\overline{\Omega})^3)$, for all $x, y \in \Omega$ and almost all $t \in]0,T[$ we have:

$$|z_1(x,t) - z_1(y,t)| \le \|\nabla z_1(t)\|_{L^{\infty}(\Omega)^9} |x-y|.$$

In addition, taking into account that $y_2(\xi, t, \cdot)$ is a one to one map on Ω and z_i is in $\mathcal{C}(\overline{Q})^3$, we obtain:

$$\begin{aligned} \left| y_1^k(\tau) - y_2^k(\tau) \right| \\ &\leq \int_{\tau}^t \| \nabla z_1(\xi) \|_{L^{\infty}(\Omega)^9} |y_1(\xi) - y_2(\xi)| \, d\xi + \int_{\tau}^t \| z_1^k(\xi) - z_2^k(\xi) \|_{L^{\infty}(\Omega)^3} \, d\xi. \end{aligned}$$

So, using Gronwall lemma, we obtain:

$$\|y_2(\tau) - y_1(\tau)\|_{L^{\infty}(Q_t)^3} \le ct \|z_1 - z_2\|_{X_{q,t}} \exp\left\{ct^{1/q'} \|z_1\|_{X_{q,t}}\right\},\$$

where q' satisfies 1/q + 1/q' = 1.

Estimate of $\|\nabla (y_1(0) - y_2(0))\|_{L^{\infty}(Q_t)^9}$. We have

$$\begin{aligned} \left| \partial_{i} y_{1}^{k}(\tau) - \partial_{i} y_{2}^{k}(\tau) \right| &\leq \left| \sum_{\ell} \int_{\tau}^{t} \left((\partial_{\ell} z_{1}^{k}) \big(y_{1}(\xi), \xi \big) - (\partial_{\ell} z_{1}^{k}) \big(y_{2}(\xi), \xi \big) \big) \, \partial_{i} y_{1}^{\ell}(\xi) \, d\xi \right| \\ &+ \left| \sum_{\ell} \int_{\tau}^{t} \left((\partial_{\ell} z_{1}^{k}) \big(y_{2}(\xi), \xi \big) - (\partial_{\ell} z_{2}^{k}) \big(y_{2}(\xi), \xi \big) \big) \, \partial_{i} y_{1}^{\ell}(\xi) \, d\xi \right| \\ &+ \left| \sum_{\ell} \int_{\tau}^{t} (\partial_{\ell} z_{2}^{k}) \big(y_{2}(\xi), \xi \big) \, \partial_{i} \big(y_{1}^{\ell}(\xi) - y_{2}^{\ell}(\xi) \big) \, d\xi \right|. \end{aligned}$$

Since $z_1 \in L^1(0,T; C^{1,\varepsilon_q}(\overline{\Omega})^3)$, for all $x, y \in \Omega$ and almost all $t \in [0,T]$ we have:

$$|\nabla z_1(x,t) - \nabla z_1(y,t)| \le b(t)|x-y|^{\varepsilon_q},$$

where $b(t) = \|\nabla z_1(t)\|_{\mathcal{C}^{\varepsilon_q}(\Omega)^9}$ is in $L^1(0,T)$. In addition, $y_2(\xi,t,\cdot)$ is a one to one map on Ω and ∇z_i is in $L^1(0,T;\mathcal{C}(\overline{\Omega})^9)$, so we have, using the estimate of $|y_1(\tau) - y_2(\tau)|$:

Using the Gronwall lemma, we deduce the estimate

$$\begin{aligned} \left| \nabla \big(y_1(0) - y_2(0) \big) \right| &\leq c \| \nabla y_1 \|_{L^{\infty}(Q_t)^9} \exp \left\{ c t^{1/q'} \| z_2 \|_{X_{q,t}} \right\} \Big(t^{\varepsilon_q} \| z_1 - z_2 \|_{X_{q,t}}^{\varepsilon_q} \\ &\times \| b \|_{L^1(0,t)} \exp \left\{ c t^{1/q'} \varepsilon_q \| z_1 \|_{X_{q,t}} \right\} + t \| z_1 - z_2 \|_{X_{q,t}} \Big), \end{aligned}$$

which yields

$$\begin{split} \|\nabla \big(y_1(0) - y_2(0)\big)\|_{L^{\infty}(Q_t)^9} \\ &\leq c \|\nabla y_1\|_{L^{\infty}(Q_t)^9} \exp\left\{ct^{1/q'}\|z_2\|_{X_{q,t}}\right\} \Big(t^{\varepsilon_q}\|z_1 - z_2\|_{X_{q,t}}^{\varepsilon_q} \\ &\times \|b\|_{L^1(0,t)} \exp\left\{ct^{1/q'}\varepsilon_q\|z_1\|_{X_{q,t}}\right\} + t\|z_1 - z_2\|_{X_{q,t}}\Big). \end{split}$$

With all these estimates, we deduce the continuity of the map $z \mapsto y(0)$, and the proof of Proposition 5 is complete.

4. Existence and uniqueness of a solution of the uncoupled equations $\left(4\right)$

4.1 The result.

Proposition 6. Let $z \in W_q^{2,1}(Q_T)$ satisfy $\nabla \cdot z = 0$, $z|_{t=0} = u_0$ in Ω , $z|_{\Sigma_T} = 0$. Under the hypothesis of Theorem 1, there exists a unique

$$u \in \mathcal{W}_q^{2,1}(Q_T), \quad \nabla p \in L^q(Q_T)^3, \quad \rho \in \mathcal{C}^1(\overline{Q}_T)$$

solution of (4).

It satisfies

(9) $|||(u, \nabla p)|||_T$ $\leq c\mathcal{M}_1^{\frac{2}{1-\alpha}}(1+Te^{T/2}+Te^{T/2}||z||_{L^{\infty}(Q_T)^3}^{\frac{2}{1-\alpha}})\Big(||f||_{L^q(Q_T)^3}+||u_0||_{W^{2-2/q,q}(\Omega)^3}\Big),$

where $\mathcal{M}_1 = (\overline{M}_3^9 + \overline{M}_4)^3 \overline{M}_3^{12}$, $M_3 = \|\nabla \rho\|_{L^{\infty}(Q_T)^3}$, $M_4 = \|\partial_t \rho\|_{L^{\infty}(Q_T)}$, $\overline{M}_i = M_i + 1$, $\alpha = 3(q-2)[3(q-2) + 4q]^{-1}$ and c does not depend on T, M_3 and M_4 .

The proof is given in several steps.

4.2 Simplified auxiliary equations. We consider here the following problem: Find a solution $(u, \nabla p)$ of

(10)
$$\begin{cases} \rho \partial_t u - \nu(\rho) \Delta u + \nabla p = f \text{ in } Q_T, \\ \nabla \cdot u = 0 \text{ in } Q_T, \\ u|_{t=0} = u_0 \text{ in } \Omega, \\ u|_{\Sigma_T} = 0. \end{cases}$$

We have the following result:

704

Proposition 7. Let $\rho \in C^1(\overline{Q}_T)$, $\rho(x,t) \geq M_1 > 0$ for all $(x,t) \in Q_T$. Under the hypothesis of Theorem 1, there exist

$$u \in \mathcal{W}_q^{2,1}(Q_T), \quad \nabla p \in L^q(Q_T)^3,$$

solving (10).

In addition, there exists at most one solution of (10) in the space $\left(\mathcal{C}_u(0,T;L^2(\Omega)^3) \cap L^2(0,T;H^1(\Omega)^3)\right) \times H^{-1}(Q_T)^3.$

PROOF: Existence. The existence of a solution of (10) in $\left(L^{\infty}(0,T;H^{1}(\Omega)^{3})\cap H^{1}(0,T;L^{2}(\Omega)^{3})\right) \times L^{2}(0,T;H^{-1}(\Omega)^{3})$ is well known (see for example [6]). Uniqueness. Let $(u_{1},\nabla p_{1})$ and $(u_{2},\nabla p_{2})$ be two solutions of (10) in $\left(\mathcal{C}_{u}(0,T;L^{2}(\Omega)^{3})\cap L^{2}(0,T;H^{1}(\Omega)^{3})\right) \times H^{-1}(Q_{T})^{3}$. Then $u = u_{1} - u_{2}, \nabla p = \nabla(p_{1} - p_{2})$ is a solution of

$$\begin{cases} \rho \partial_t u - \nu(\rho) \Delta u + \nabla p = 0 & \text{in } Q_T, \\ \nabla \cdot u = 0 & \text{in } Q_T, \\ u|_{t=0} = 0 & \text{in } \Omega, \\ u|_{\Sigma_T} = 0. \end{cases}$$

For all $\varphi \in \mathcal{D}(0,T;\mathcal{V})$, we have in $W^{-1,1}(0,T)$

$$\langle \rho \partial_t u, \varphi \rangle_{\Omega} - \langle \nu(\rho) \Delta u, \varphi \rangle_{\Omega} = 0.$$

Since $\langle \nu(\rho)\Delta u, \varphi \rangle_{\Omega} = -\int_{\Omega} \nabla (\nu(\rho)) \cdot \nabla u \cdot \varphi - \int_{\Omega} \nu(\rho) \nabla u \cdot \nabla \varphi$ is in $L^{1}(0,T)$, we have $\langle \rho \partial_{t} u, \varphi \rangle_{\Omega} \in L^{1}(0,T)$. In addition, $\varphi \mapsto \int_{\Omega} \nu(\rho) \nabla u \cdot \nabla \varphi$ and $\varphi \mapsto \int_{\Omega} \nabla (\nu(\rho)) \cdot \nabla u \cdot \varphi$ are continuous in the space $L^{2}(0,T;V)$ with values in $L^{1}(0,T)$, so $\varphi \mapsto \int_{\Omega} \rho \partial_{t} u \cdot \varphi$ is continuous in $L^{2}(0,T;V)$ with values in $L^{1}(0,T)$. Therefore, we deduce that for all $v \in L^{2}(0,T;V)$, we have in $L^{1}(0,T)$:

$$\int_{\Omega} \rho \partial_t u \cdot v + \int_{\Omega} \nabla \big(\nu(\rho) \big) \cdot \nabla u \cdot v + \int_{\Omega} \nu(\rho) \nabla u \cdot \nabla v = 0.$$

In particular, for v = u, we obtain in $L^1(0,T)$:

$$\frac{1}{2} \int_{\Omega} \rho \partial_t |u|^2 + \nu_1 \int_{\Omega} |\nabla u|^2 \leq \int_{\Omega} |\nabla (\nu(\rho)) \cdot \nabla u \cdot u|.$$

In addition, we have $\partial_t (\rho |u|^2) = \rho \partial_t |u|^2 + \partial_t \rho |u|^2$, so we obtain

$$\int_{\Omega} \partial_t (\rho |u|^2) + \nu_1 \int_{\Omega} |\nabla u|^2 \le c \int_{\Omega} \rho |u|^2,$$

where c depends only on ν , ρ , and we deduce from the Gronwall lemma that u = 0. The De Rham theorem implies that $\nabla p = 0$, and the uniqueness follows.

Regularity of such a solution. Choose p such that $\int_{\Omega} p/\nu(\rho) = 0$. Dividing by $\nu(\rho) \ge \nu_1 > 0$ and denoting $P = p/\nu(\rho)$, $\lambda = \rho/\nu(\rho)$, the equation (10) can be rewritten in the following form

$$\begin{cases} \lambda \partial_t u - \Delta u + \nabla P = \frac{f}{\nu(\rho)} - \frac{\nu'(\rho)\nabla\rho}{\nu(\rho)}P, \\ \nabla \cdot u = 0, \\ u|_{t=0} = u_0, \\ u|_{\Sigma_T} = 0, \end{cases}$$

with $\lambda \in \mathcal{C}^1(\overline{Q}_T)$ and $\lambda \geq \lambda_1 > 0$.

Let us consider the following equation:

(11)
$$\begin{cases} \lambda \partial_t u' - \Delta u' + \nabla P' = \frac{f}{\nu(\rho)} - \frac{\nu'(\rho) \nabla \rho}{\nu(\rho)} P, \\ \nabla \cdot u' = 0, \\ u'|_{t=0} = u_0, \\ u'|_{\Sigma_T} = 0, \end{cases}$$

where $P \in L^2(Q_T)$ is defined above. Since $f \in L^2(Q_T)^3$, there exists a unique solution $(u', \nabla P')$ of (11) in $(\mathcal{C}_u(0, T; L^2(\Omega)^3) \cap L^2(0, T; H^1(\Omega)^3)) \times H^{-1}(Q_T)^3$. In addition (cf. O.A. Ladyzenskaya and V.A. Solonnikov [5]), $u' \in \mathcal{W}_2^{2,1}(Q_T)$, $\nabla P' \in L^2(Q_T)^3$. Now, since $(u, \nabla P)$ is solution of (11) we deduce that $u \in \mathcal{W}_2^{2,1}(Q_T)$, $\nabla P \in L^2(Q_T)^3$, and therefore $\nabla p \in L^2(Q_T)^3$. Then, from Lemma 9 (in appendix) we deduce that $p \in L^{\sigma_0}(Q_T)$, where $\sigma_0 = \min(q, 8/3)$. Therefore, since $f \in L^q(Q_T)^3$, we deduce from the equation (11) that $u \in \mathcal{W}_{\sigma_0}^{2,1}(Q_T)$ and $\nabla p \in L^{\sigma_0}(Q_T)^3$ (see O.A. Ladyzenskaya, V.A. Solonnikov [5]). Repeating this process a finite number of times, we obtain Proposition 7.

4.3 Auxiliary equations. We consider now the following problem: Find a solution $(u, \nabla p)$ of

(12)
$$\begin{cases} \rho \partial_t u - \nabla \cdot \left(\nu(\rho) (\nabla u + {}^t \nabla u) \right) + \nabla p = f \text{ in } Q_T, \\ \nabla \cdot u = 0 \text{ in } Q_T, \\ u|_{t=0} = u_0 \text{ in } \Omega, \\ u|_{\Sigma_T} = 0. \end{cases}$$

We have the following result:

Proposition 8. Under the hypothesis of Proposition 7, there exist

$$u \in \mathcal{W}_q^{2,1}(Q_T), \ \nabla p \in L^q(Q_T)^3,$$

solving (12).

 $It \ satisfies$

(13)
$$|||(u, \nabla p)|||_T \le \mathcal{M}_1(||f||_{L^q(Q_T)^3} + ||u||_{L^q(Q_T)^3} + ||u_0||_{W^{2-2/q,q}(\Omega)^3}),$$

where $\mathcal{M}_1 = c(\overline{M}_3^9 + M_4)\overline{M}_3^{12}, \ \overline{M}_i = (M_i + 1), \ 1 \le i \le 4,$

(14)
$$|||(u, \nabla p)|||_t \le c\mathcal{M}_1^2 (||f||_{L^q(Q_t)^3} + ||u_0||_{W^{2-2/q,q}(\Omega)^3}) \exp\{c\mathcal{M}_1 t\},$$

for all $t, 0 \le t \le T$, where c depends only on ν , M_1 , M_2 , M_3 and M_4 .

In addition, there exists at most one solution of (12) in the space $\left(\mathcal{C}_u(0,T;L^2(\Omega)^3) \cap L^2(0,T;H^1(\Omega)^3)\right) \times H^{-1}(Q_T)^3.$

PROOF: Existence. The existence of a solution of (12) in $\left(L^{\infty}(0,T;H^{1}(\Omega)^{3})\cap H^{1}(0,T;L^{2}(\Omega)^{3})\right) \times L^{2}(0,T;H^{-1}(\Omega)^{3})$ is known (see for example [6]). As in Proposition 7, we can prove that there exists at most one solution of (12) in $\left(\mathcal{C}_{u}(0,T;L^{2}(\Omega)^{3})\cap L^{2}(0,T;H^{1}(\Omega)^{3})\right) \times H^{-1}(Q_{T})^{3}.$

Regularity of this solution. The first equation of (12) can be written in the form

$$\rho \partial_t u - \nu(\rho) \Delta u + \nabla p = f + \nabla (\nu(\rho)) (\nabla u + {}^t \nabla u).$$

Since $f + \nabla(\nu(\rho)) (\nabla u + {}^t \nabla u) \in L^2(Q_T)^3$, there exists (cf. Proposition 7) one solution $u' \in \mathcal{W}_2^{2,1}(Q_T), \, \nabla p' \in L^2(Q_T)^3$ of

(15)
$$\begin{cases} \rho \partial_t u' - \nu(\rho) \Delta u' + \nabla p' = f + \nabla (\nu(\rho)) (\nabla u + {}^t \nabla u), \\ \nabla \cdot u' = 0, \\ u'|_{t=0} = u_0, \\ u'|_{\Sigma_T} = 0, \end{cases}$$

where $(u, \nabla p)$ is the solution of (12). In addition, this solution is unique in the space $\left(\mathcal{C}_u(0,T;L^2(\Omega)^3) \cap L^2(0,T;H^1(\Omega)^3)\right) \times H^{-1}(Q_T)^3$. Since the solution $(u, \nabla p)$ of (12) is a solution of (15), we deduce that the solution of (12) verifies $u \in \mathcal{W}_2^{2,1}(Q_T)$, $\nabla p \in L^2(Q_T)^3$. Therefore (cf. Lemma 9), there exists σ_0 , $2 < \sigma_0 \leq q$ such that $u \in L^{\sigma_0}(0,T;W^{1,\sigma_0}(\Omega)^3)$. So we deduce from (15), since $f \in L^q(Q_T)^3$, that $u \in \mathcal{W}_{\sigma_0}^{2,1}(Q_T)$ and $\nabla p \in L^{\sigma_0}(Q_T)^3$. Repeating this process a finite number of times (until $\sigma_m = q$), we obtain the regularity.

Estimates. Choose p such that $\int_{\Omega} p = 0$. Then setting $P = p/\nu(\rho)$, (12) can be rewritten in the following way:

$$\begin{cases} \frac{\rho}{\nu(\rho)} \partial_t u - \Delta u + \nabla P = \frac{f}{\nu(\rho)} - \frac{\nu'(\rho)\nabla\rho}{\nu(\rho)} P + \frac{\nu'(\rho)\nabla\rho}{\nu(\rho)} \cdot (\nabla u + {}^t\nabla u), \\ \nabla \cdot u = 0, \\ u|_{t=0} = u_0, \\ u|_{\Sigma_T} = 0. \end{cases}$$

Since $\nu_2 \ge \nu(\rho) \ge \nu_1 > 0$ and $\nu'_2 \ge \nu'(\rho)$, we have the following estimate (cf. O.A. Ladyzenskaya, V.A. Solonnikov [5]),

$$\begin{aligned} \| (u, \nabla P) \|_{T} &\leq c \big(M_{4} + \overline{M}_{3}^{9} \big) \Big(\| f \|_{L^{q}(Q_{T})^{3}} + M_{3} \| P \|_{L^{q}(Q_{T})} + M_{3} \| \nabla u \|_{L^{q}(Q_{T})^{9}} \\ &+ \| u \|_{L^{q}(Q_{T})^{3}} + \| u_{0} \|_{W^{2-2/q,q}(\Omega)^{3}} \Big), \end{aligned}$$

where c depends on ν , M_1 and M_2 only. Then we obtain

$$|||(u, \nabla p)|||_T \le c \left(M_4 + \overline{M}_3^9 \right) \left(||f||_{L^q(Q_T)^3} + M_3 ||p||_{L^q(Q_T)} + M_3 ||\nabla u||_{L^q(Q_T)^9} + ||u||_{L^q(Q_T)^3} + ||u_0||_{W^{2-2/q,q}(\Omega)^3} \right),$$

where c depends on ν , M_1 and M_2 only.

Using (15) we have (cf. Lemma 9):

$$\|p\|_{L^{q}(Q_{t})} \leq c\overline{M}_{3}^{3} (\|f\|_{L^{q}(Q_{t})^{3}} + \overline{M}_{3}\|\nabla u\|_{L^{q}(Q_{t})^{9}} + \|\nabla u\|_{L^{q}(\Sigma_{t})^{9}}),$$

so we obtain

(16)
$$\| \|(u, \nabla p)\|_{T} \leq A_{2} \left(\|f\|_{L^{q}(Q_{T})^{3}} + \|\nabla u\|_{L^{q}(\Sigma_{T})^{3}} \right) + A_{1} \|\nabla u\|_{L^{q}(Q_{T})^{9}} + c \left(M_{4} + \overline{M}_{3}^{9} \right) \left(\|u\|_{L^{q}(Q_{T})^{3}} + \|u_{0}\|_{W^{2-2/q,q}(\Omega)^{3}} \right)$$

with

$$A_1 = c(\overline{M}_4 + \overline{M}_3^9)\overline{M}_3^5$$
$$A_2 = c(\overline{M}_4 + \overline{M}_3^9)\overline{M}_3^4,$$

where c depends on ν , M_1 and M_2 only.

Using the following interpolation inequalities (cf. O.A. Ladyzenskaya and V.A. Solonnikov [5]), since $(a^q + b^q) \leq (a + b)^q$ we have

$$\begin{aligned} \|\nabla u\|_{L^{q}(Q_{T})^{9}} &\leq \alpha_{1} \|\nabla(\nabla u)\|_{L^{q}(Q_{T})^{27}} + c\alpha_{1}^{-1} \|u\|_{L^{q}(Q_{T})^{3}}, \\ \|\nabla u\|_{L^{q}(\Sigma_{T})^{9}} &\leq \alpha_{2} \|\nabla(\nabla u)\|_{L^{q}(Q_{T})^{27}} + c\alpha_{2}^{-\frac{q+1}{q-1}} \|u\|_{L^{q}(Q_{T})^{3}}, \end{aligned}$$

for all $\alpha_i \in]0,1]$, and taking $\alpha_1 = (4A_1)^{-1}$ and $\alpha_2 = (4A_2)^{-1}$, we obtain:

$$A_{1} \|\nabla u\|_{L^{q}(Q_{T})^{9}} \leq \frac{1}{4} \|\nabla(\nabla u)\|_{L^{q}(Q_{T})^{27}} + cA_{1}^{2} \|u\|_{L^{q}(Q_{T})^{3}},$$

$$A_{2} \|\nabla u\|_{L^{q}(\Sigma_{T})^{9}} \leq \frac{1}{4} \|\nabla(\nabla u)\|_{L^{q}(Q_{T})^{27}} + cA_{2}^{2q/(q-1)} \|u\|_{L^{q}(Q_{T})^{3}}$$

where c depends on Ω and q only. With these estimates, (16) gives:

$$|||(u, \nabla p)|||_T \le c \Big(A_2 ||f||_{L^q(Q_T)^3} + A_1^2 ||u||_{L^q(Q_T)^3} + A_2^{2q/(q-1)} ||u||_{L^q(Q_T)^3} + \Big(M_4 + \overline{M}_3^9 \Big) \Big(||u||_{L^q(Q_T)^3} + ||u_0||_{W^{2-2/q,q}(\Omega)^3} \Big) \Big).$$

Now, since A_1^2 , A_2 and $A_2^{2q/(q-1)}$ are smaller than $c(\overline{M}_3^9 + \overline{M}_4)^3 \overline{M}_3^{12}$, we deduce from the previous inequality the estimate (13).

To prove the estimate (14), let

$$y(t) = \int_0^t \|u(\tau)\|_{L^q(\Omega)^3}^q d\tau = \|u\|_{L^q(Q_t)^3}^q.$$

We have $y \in W^{1,1}(0,T)$, y(0) = 0 and $y'(t) = ||u(t)||_q^q$. In addition, for all $t' \leq t$ we have:

$$y'(t') = \int_0^{t'} \frac{d}{d\tau} \|u(\tau)\|_q^q d\tau + \|u_0\|_q^q = \int_0^{t'} \int_\Omega \frac{d}{d\tau} (|u(\tau)|^2)^{\frac{q}{2}} d\tau + \|u_0\|_q^q$$

$$\leq q \|\partial_t u\|_{L^q(Q_{t'})^3} \|u\|_{L^q(Q_{t'})^3}^{q-1} + \|u_0\|_q^q$$

$$\leq q \mathcal{M}_1 \|u\|_{L^q(Q_{t'})^3}^q + q \mathcal{M}_1 (\|f\|_{L^q(Q_t)^3} + \|u_0\|_{W^{2-2/q,q}(\Omega)^3}) \|u\|_{L^q(Q_{t'})^3}^{q-1} + \|u_0\|_{W^{2-2/q,q}(\Omega)^3}^q.$$

Since $\mathcal{M}_1 > 1$, using Young's inequality we obtain:

$$y'(t') \le (2q-1)\mathcal{M}_1 y(t') + q^2 \mathcal{M}_1 \big(\|f\|_{L^q(Q_t)^3} + \|u_0\|_{W^{2-2/q,q}(\Omega)^3} \big)^q.$$

Integrating this equation from 0 to t we have:

$$y(t) \le q^2 \mathcal{M}_1 \big(\|f\|_{L^q(Q_t)^3} + \|u_0\|_{W^{2-2/q,q}(\Omega)^3} \big)^q \exp\{(2q-1)\mathcal{M}_1 t\}.$$

Now, taking into account that $\mathcal{M}_1 > 1$ we obtain:

$$\|u\|_{L^{q}(Q_{t})^{3}} \leq c\mathcal{M}_{1}(\|f\|_{L^{q}(Q_{t})^{3}} + \|u_{0}\|_{W^{2-2/q,q}(\Omega)^{3}})\exp\{c\mathcal{M}_{1}t\}.$$

Using this estimate, (13) gives

$$|||(u, \nabla p)|||_t \le c\mathcal{M}_1^2 (||f||_{L^q(Q_t)^3} + ||u_0||_{W^{2-2/q,q}(\Omega)^3}) \exp\{c\mathcal{M}_1 t\},$$

and the proof is complete.

709

4.4 Proof of Proposition 6.

Existence of a regular solution. We prove the existence by successive approximations. Let $u^0 = 0$ and for all $m \ge 1$:

(17)

$$\begin{cases}
\rho \partial_t u^m - \nabla \cdot \left(\nu(\rho)(\nabla u^m + {}^t \nabla u^m)\right) + \nabla p^m = \rho f - \rho(z \cdot \nabla) u^{m-1} \text{ in } Q_T, \\
\partial_t \rho + z \cdot \nabla \rho = 0 \text{ in } Q_T, \\
\nabla \cdot u^m = 0 \text{ in } Q_T, \\
u^m|_{t=0} = u_0 \text{ in } \Omega, \\
u^m|_{\Sigma_T} = 0, \\
\rho|_{t=0} = \rho_0 \text{ in } \Omega.
\end{cases}$$

It is known (cf. Proposition 8) that there exists a unique solution of (17). Denoting $w^m = u^m - u^{m-1}$, $\nabla P^m = \nabla (p^m - p^{m-1})$ and $\mathcal{W}_m(t) = |||(w^m, \nabla p^m)|||_t$, we deduce from (14) the following estimate

$$\begin{aligned} \mathcal{W}_{m}^{q}(t) &\leq c \|\nabla w^{m-1}\|_{L^{q}(Q_{t})^{3}}^{q} \leq c \int_{0}^{t} \|w^{m-1}\|_{W^{2,q}(\Omega)^{3}}^{q} d\tau \\ &\leq c \int_{0}^{t} \mathcal{W}_{m-1}^{q}(\tau) \, d\tau \leq c^{m-1} \frac{t^{m-1}}{(m-1)!} \mathcal{W}_{1}^{q}(t), \end{aligned}$$

which implies the convergence of the series $\sum \mathcal{W}_m(t)$ for all $t \leq T$. From this, it follows the convergence of u^m in $\mathcal{W}_q^{2,1}(Q_T)$ and ∇p^m in $L^q(Q_T)^3$.

The uniqueness of a such solution is obvious.

Estimation. We have the following estimate of $|||(u, \nabla p)|||_T$ given in Proposition 8

(18)
$$|||(u, \nabla p)|||_T \le \mathcal{M}_1 \big(F + ||u||_{L^q(Q_T)^3} + ||(z \cdot \nabla)u||_{L^q(Q_T)^3} \big)$$

where $F = ||f||_{L^q(Q_t)^3} + ||u_0||_{W^{2-2/q,q}(\Omega)^3}$.

Now, let us estimate each term of the right hand side of this inequality. Multiplying the first equation of (4) by u and integrating on Ω , we obtain

$$\int_{\Omega} \rho \left[\frac{1}{2} \partial_t (u^2) + (z \cdot \nabla) u \cdot u \right] + \int_{\Omega} \nu(\rho) (\nabla u + {}^t \nabla u) \cdot \nabla u = \int_{\Omega} \rho f \cdot u.$$

Since $\nu(\rho) \ge \nu_1 > 0$, we obtain, summing this equation with the transport equation multiplied by $(1/2)|u|^2$:

$$\frac{d}{dt}\int_{\Omega}\rho|u|^{2}+2\nu_{1}\int_{\Omega}|\nabla u|^{2}\leq 2\int_{\Omega}\rho f\cdot u.$$

So we deduce the following estimate:

$$\left(\int_{\Omega} |u|^2\right)(t) \le ce^t \left(\int_{0}^{t} ||f||_2^2 d\tau + ||u_0||_2^2\right),$$

where c depends on M_1 and M_2 only.

Now, using Hölder inequality, we have:

$$\left(\int_{\Omega} |u|^2 \right)(t) \le c e^t \left(\int_0^t ||f||_q^2 d\tau + ||u_0||_q^2 \right)$$

$$\le c e^t \left(\int_0^t ||f||_q^q d\tau \right)^{2/q} + c e^t ||u_0||_q^2$$

and therefore

(19)
$$||u||_2 \le ce^{t/2} (||f||_{L^q(Q_T)^3} + ||u_0||_q).$$

Using the fact that

$$\|u\|_q \le c (\|u\|_{W^{2,q}(\Omega)^3})^{\alpha} \|u\|_2^{1-\alpha}$$

with $\alpha = 3(q-2)[3(q-2) + 4q]^{-1}$ (cf. O.A. Ladyzenskaya and V.A. Solonnikov [5]), the previous estimate gives:

(20)
$$\|u\|_{L^q(Q_T)^3} \le c \|\|(u, \nabla p)\|\|_T^\alpha \Big(\int_0^T \|u\|_2^q dt\Big)^{(1-\alpha)/q}.$$

Since (19) gives

$$\left(\int_0^T \|u\|_2^q\right)^{1/q} \le cTe^{T/2}F,$$

we obtain from (20):

(21)
$$\|u\|_{L^q(Q_T)^3} \le c \||(u, \nabla p)||_T^\alpha (Te^{T/2}F)^{1-\alpha}.$$

Now, to estimate the last term of the right hand of (18), we remark that

$$||(z \cdot \nabla)u||_{L^q(Q_T)^3} \le ||z||_{L^\infty(Q_T)^3} ||\nabla u||_{L^q(Q_T)^9}$$

Since

$$\|\nabla u\|_{L^q(Q_T)^9} \le c \big(\|u\|_{L^q(0,T;W^{2,q}(\Omega)^3)}\big)^{1/2} \|u\|_{L^q(Q_T)^3}^{1/2},$$

we obtain

$$\begin{aligned} \|(z \cdot \nabla)u\|_{L^{q}(Q_{T})^{3}} &\leq c \|z\|_{L^{\infty}(Q_{T})^{3}} \|\|(u, \nabla p)\|_{T}^{1/2} \|u\|_{L^{q}(Q_{T})^{3}}^{1/2} \\ &\leq c \|z\|_{L^{\infty}(Q_{T})^{3}} \|\|(u, \nabla p)\|\|_{T}^{\frac{\alpha+1}{2}} (Te^{T/2}F)^{\frac{1-\alpha}{2}}. \end{aligned}$$

We deduce from this estimate and from the estimates (18) and (21)

(22)
$$\| \|(u, \nabla p)\| \|_{T} \leq c \mathcal{M}_{1} \Big(F + \| (u, \nabla p) \| \|_{T}^{\alpha} (T e^{T/2} F)^{1-\alpha} \\ + \| z \|_{L^{\infty}(Q_{T})^{3}} \| \|(u, \nabla p) \| \|_{T}^{\frac{\alpha+1}{2}} (T e^{T/2} F)^{\frac{1-\alpha}{2}} \Big),$$

where $\mathcal{M}_1 = c \left(\overline{M}_3^9 + \overline{M}_4\right)^3 \overline{M}_3^{12}$. Using the following Young's inequalities:

$$\mathcal{M}_1 ||| (u, \nabla p) |||_T^{\alpha} (Te^{T/2}F)^{1-\alpha} \le \alpha \varepsilon ||| (u, \nabla p) |||_T + (1-\alpha) \varepsilon^{-\frac{\alpha}{1-\alpha}} Te^{T/2}F \mathcal{M}_1^{\frac{1}{1-\alpha}},$$

and

$$\mathcal{M}_{1} \| z \|_{L^{\infty}(Q_{T})^{3}} \| (u, \nabla p) \|_{T}^{\frac{\alpha+1}{2}} (TFe^{T/2})^{\frac{1-\alpha}{2}} \\ \leq \frac{1+\alpha}{2} \varepsilon \| (u, \nabla p) \|_{T} + \frac{1-\alpha}{2} \varepsilon^{-\frac{1+\alpha}{1-\alpha}} (\mathcal{M}_{1} \| z \|_{L^{\infty}(Q_{T})^{3}})^{\frac{2}{1-\alpha}} TFe^{T/2},$$

with ε small enough, we deduce from (22) the following estimate, since $\mathcal{M}_1 \geq 1$:

$$|||(u,\nabla p)|||_T \le cF\mathcal{M}_1^{\frac{2}{1-\alpha}} \left(1 + Te^{T/2} + Te^{T/2} ||z||_{L^{\infty}(Q_T)^3}^{\frac{2}{1-\alpha}}\right),$$

and the proof is complete.

5. Proof of Theorem 1

As we have seen (cf. Proposition 6), for all $z \in W_q^{2,1}(Q_T)$ satisfying $z(0) = u_0$, $z|_{\Sigma_T} = 0$ and $\nabla \cdot z = 0$, there exists a unique solution $u \in W_q^{2,1}(Q_T)$, $\nabla p \in L^q(Q_T)^3$, $\rho \in \mathcal{C}^1(\overline{Q}_T)$ of (4).

Local existence. This proof is based on the Schauder theorem that can be found for example in N. Dunford, J.T. Schwartz [2, Theorem 5, p. 456].

In the first step, let us prove that there exist $T_M > 0$ and a convex compact subset K of X_{q,T_M} such that $z \mapsto u$ maps K into K.

For all $t \leq T$, we have:

$$|||(u, \nabla p)|||_t \le cF\mathcal{M}_1^{\frac{2}{1-\alpha}} \left(1 + te^{t/2} + te^{t/2} |||z|||_t^{\frac{2}{1-\alpha}}\right)$$

with $\mathcal{M}_1 = c(\overline{M_3}^9 + \overline{M_4})^3 \overline{M_3}^{12}$ and

$$\overline{M_3} = 1 + M_3 \le 1 + \sqrt{3} \|\nabla \rho_0\|_{L^{\infty}(\Omega)^3} \exp\{ct^{1/q'} \|\|z\|\|_t\},$$

$$\overline{M_4} = 1 + M_4 \le 1 + \sqrt{3} \|\nabla \rho_0\|_{L^{\infty}(\Omega)^3} \|z\|_{L^{\infty}(Q_t)^3} \exp\{ct^{1/q'} \|\|z\|\|_t\},$$

where q' satisfies 1/q + 1/q' = 1. Let q_1 be a real, $3 < q_1 < q$. Then

$$\|z\|_{L^{\infty}(Q_{t})^{3}} \leq c \sup_{0 \leq \tau \leq t} \|z\|_{W^{2-2/q_{1},q_{1}}(\Omega)^{3}} \leq c \big(\|u_{0}\|_{W^{2-2/q_{1},q_{1}}(\Omega)^{3}} + \|z\|_{q_{1},Q_{t}}^{(2,1)}\big),$$

where c is a constant which does not depend on t (see V.A. Solonnikov [11]). Moreover

$$||z||_{q_1,Q_t}^{(2,1)} \le ct^{(q-q_1)/qq_1} ||z||_{q,Q_t}^{(2,1)},$$

$$\Box$$

so, since $||u_0||_{W^{2-2/q_1,q_1}(\Omega)^3} \le c ||u_0||_{W^{2-2/q,q}(\Omega)^3}$,

$$\overline{M_4} \le 1 + c\sqrt{3} \|\nabla\rho_0\|_{L^{\infty}(\Omega)^3} \left(\|u_0\|_{W^{2-2/q,q}(\Omega)^3} + t^{(q-q_1)/qq_1} \|z\|_{q,Q_t}^{(2,1)} \right) \exp\{ct^{1/q'} \|\|z\|_t\}.$$

Therefore we have

$$|||(u, \nabla p)|||_t \le cH(t, |||z|||_t),$$

where H(t, a) is continuous function in (t, a) defined by

$$H(t,a) = F\left(1 + \sqrt{3} \|\nabla\rho_0\|_{L^{\infty}(\Omega)^3} (1 + \|u_0\|_{W^{2-2/q,q}(\Omega)^3} + t^{(q-q_1)/qq_1}a)\right)^{\frac{42}{1-\alpha}} \times \exp\{\frac{42}{1-\alpha} c t^{\frac{1}{q'}}a\} (1 + te^{t/2} + te^{t/2}a^{\frac{2}{1-\alpha}}).$$

Since H(0, a) = H(0, a) for all $a \ge 0$, for M = H(0, 0), there exists T_M such that, if $|||z|||_{T_M} \le M$, then $|||(u, \nabla p)|||_{T_M} \le M$.

Let us denote

$$K = \{ u \in \mathcal{W}_q^{2,1}(Q_{T_M}), u(0) = u_0, \ u|_{\Sigma_{T_M}} = 0, \ \nabla \cdot u = 0, |||u|||_{T_M} \le M \}.$$

Then K is a convex compact subset of X_{q,T_M} , and $z \mapsto u$ maps K into K.

In the second step, let us prove that $z \mapsto u$ is continuous from K endowed with the topology of X_{q,T_M} into itself. Let z_1 and z_2 be two elements of K. Then we obtain, setting $z = z_1 - z_2$, $u = u_1 - u_2$, $\nabla p = \nabla(p_1 - p_2)$ and $\rho = \rho_1 - \rho_2$:

$$\begin{split} & \left(\begin{array}{c} \rho_1 \partial_t u - \nabla \cdot \left(\nu(\rho_1) (\nabla u + {}^t \nabla u) \right) + \rho_1 (z_1 \cdot \nabla) u + \nabla p = G \quad \text{in} \quad Q_T, \\ & \nabla \cdot u = 0 \quad \text{in} \quad Q_T, \\ & \partial_t \rho + z_1 \cdot \nabla \rho = -z \cdot \nabla \rho_2 \quad \text{in} \quad Q_T, \\ & u|_{t=0} = 0 \quad \text{in} \quad \Omega, \\ & u|_{\Sigma_T} = 0, \\ & & \langle \rho|_{t=0} = 0 \quad \text{in} \quad \Omega, \end{split}$$

where

$$G = \rho f - \rho \partial_t u_2 + \nabla \cdot \left(\left(\nu(\rho_1) - \nu(\rho_2) \right) \left(\nabla u_2 + {}^t \nabla u_2 \right) \right) \\ - \rho_1 (z \cdot \nabla) u_2 + \rho (z_1 \cdot \nabla) u_2.$$

We deduce from (9) the following estimate:

$$|||(u,\nabla p)|||_{T_M} \le c ||G||_{L^q(Q_{T_M})^3} \mathcal{M}_1^{\frac{2}{1-\alpha}} (1 + Te^{T/2} + Te^{T/2} |||z_1|||_{T_M}^{\frac{2}{1-\alpha}}),$$

where $||G||_{L^q(Q_{T_M})^3}$ verifies

$$\begin{split} \|G\|_{L^{q}(Q_{T_{M}})^{3}} \leq \|\rho\|_{L^{\infty}(Q_{T_{M}})} \Big(\|f\|_{L^{q}(Q_{T_{M}})^{3}} + \|\partial_{t}u_{2}\|_{L^{q}(Q_{T_{M}})^{3}} \\ &+ \|z_{1}\|_{L^{\infty}(Q_{T_{M}})^{3}} \|\nabla u_{2}\|_{L^{q}(Q_{T_{M}})^{9}} \Big) \\ &+ \|\nabla \cdot \left(\left(\nu(\rho_{1}) - \nu(\rho_{2})\right) \left(\nabla u_{2} + {}^{t}\nabla u_{2}\right) \right)\|_{L^{q}(Q_{T_{M}})^{3}} \\ &+ \|\rho_{1}\|_{L^{\infty}(Q_{T_{M}})} \|z\|_{L^{\infty}(Q_{T_{M}})^{3}} \|\nabla u_{2}\|_{L^{q}(Q_{T_{M}})^{9}}. \end{split}$$

As we have proved in Proposition 5, if $z_2 \to z_1$ in X_{q,T_M} , then $\rho_2 \to \rho_1$ in the space $\mathcal{C}_u(0, T_M; \mathcal{C}^1(\overline{\Omega}))$. So, $\nu(\rho_2) \to \nu(\rho_1)$ in $\mathcal{C}_u(0, T_M; \mathcal{C}^1(\overline{\Omega}))$. From this, we obtain that if $z_2 \to z_1$ in X_{q,T_M} , then $\|G\|_{L^q(Q_{T_M})^3} \to 0$ and therefore $\|\|(u, \nabla p)\|\|_{T_M} \to 0$. This proves that the map $z \mapsto u$ is continuous. Using the Schuder fixed point theorem, we obtain that there exist $u \in K$ and $\nabla p \in L^q(Q_{T_M})^3$ solving (1)–(3).

Global existence. We have

$$|||(u,\nabla p)|||_T \le cF\mathcal{M}_1^{\frac{2}{1-\alpha}} \left(1 + Te^{T/2} + Te^{T/2} ||z||_{L^{\infty}(Q_T)^3}^{\frac{2}{1-\alpha}}\right)$$

Let M > 0 and suppose $|||z|||_T \leq M$. Then there exists R > 0 such that if $F = ||f||_{L^q(Q_T)^3} + ||u_0||_{W^{2-2/q,q}(\Omega)^3} \leq R$, then $|||u|||_T \leq M$. As in the proof of the local existence,

$$K = \{ u \in \mathcal{W}_q^{2,1}(Q_T), u(0) = u_0, \ u|_{\Sigma_T} = 0, \ \nabla \cdot u = 0, |||u|||_T \le M \}$$

is a convex compact subset of $X_{q,T}$, and $z \mapsto u$ maps continuously K into K. Therefore we deduce the existence of $u \in K$ and $\nabla p \in L^q(Q_T)^3$ solving (1)–(3).

Appendix

Lemma 9. Let $f \in L^q(Q_T)^3$ and let $(u, \nabla p)$ be the unique solution of (10) satisfying

$$u \in L^2(0,T; H^2(\Omega)^3), \ \partial_t u \in L^2(Q_T)^3, \ \nabla p \in L^2(Q_T)^3.$$

Suppose that $u \in L^{s}(0,T; W^{2,s}(\Omega)^{3}) \cap W^{1,s}(0,T; L^{s}(\Omega)^{3})$ and $\nabla p \in L^{s}(Q_{T})^{3}$ with $2 \leq s < q$. Choosing p such that $\int_{\Omega} p = 0$, there exists $\sigma, s < \sigma \leq q$ defined by

$$\sigma = \begin{cases} q & \text{if } s \ge 5, \\ \min\left(q, \frac{4s}{5-s}\right) & \text{if } 2 \le s < 5, \end{cases}$$

such that

$$u \in L^{\sigma}(0,T; W^{1,\sigma}(\Omega)^3), \ \nabla u|_{\Sigma_T} \in L^{\sigma}(\Sigma_T)^9 \ p \in L^{\sigma}(Q_T).$$

Moreover we have

$$\|p\|_{L^{\sigma}(Q_t)} \le c_3 \big(\|f\|_{L^{\sigma}(Q_t)^3} + \|\nabla u\|_{L^{\sigma}(Q_t)^9} + \|\nabla u\|_{L^{\sigma}(\Sigma_t)^9} \big),$$

where

$$c_3 = c \left[M_1^{-2} (M_2 + 1) M_3 + M_1^{-1} \right] M_2 \left(1 + M_1^{-4} M_2^2 M_3^2 \right).$$

A proof of this lemma is given by M. Kabbaj [4].

References

- Antonzev S.A., Kajikov A.V., Mathematical study of flows of nonhomogeneous fluids (in Russian), Lectures at the University of Novosibirsk, Novosibirsk, U.S.S.R., 1973.
- [2] Dunford N., Schwartz J.T., Linear Operators, Interscience, 1958.
- [3] Fernández-Cara E., Guillén F., Some new results for the variable density Navier-Stokes equations, Ann. Fac. Sci. Toulouse Math., Vol II, no. 2, 1993.
- [4] Kabbaj M., Thesis, Blaise Pascal University, France, 1994.
- [5] Ladyzenskaya O.A., Solonnikov V.A., Unique solvability of an initial-and boundary-value problem for viscous incompressible nonhomogeneous fluids, J. Soviet. Math. 9 (1978), 697– 749.
- [6] Lemoine J., Thesis, Blaise Pascal University, France, 1995.
- [7] Lions J.L., On Some Problems Connected with Navier-Stokes Equations in Nonlinear Evolution Equations, M.C. Crandall, ed., Academic Press, New York, 1978.
- [8] Lions P.L., Mathematical Topics in Fluids Mechanics, Vol. I, Incompressible Models, Clarendon Press, Oxford, 1996.
- [9] Simon J., Compact sets in the space L^p(0,T; B), Ann. Mat. Pura Appl., IV, Vol. CXLVI, (1987), 65–96.
- [10] Simon J., Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure, SIAM J. Math. Anal. 21 (1990), no. 5, 1093–1117.
- [11] Solonnikov V.A., Solvability of the initial-boundary-value problem for the equations of motion of a viscous compressible fluid, J. Soviet. Math. 14 (1980), no. 2, 1120–1133.
- [12] Temam R., Navier-Stokes Equations, North-Holland (second edition), 1979.
- [13] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland Publishing Company, 1978.

LABORATOIRE DE MATHÉMATIQUES APPLIQUÉES, CNRS UMR 6620, BLAISE PASCAL UNI-VERSITY (CLERMONT-FERRAND 2), 63177 AUBIÈRE CEDEX, FRANCE

(Received July 24, 1996)

 \square

 \square