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Finite row-column exchangeable arrays

Bruno Bassan, Marco Scarsini∗

Abstract. We generalize well known results about the extendibility of finite exchange-
able sequences and provide necessary conditions for finite and infinite extendibility of a
finite row-column exchangeable array. These conditions depend in a simple way on the
correlation matrix of the array.
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1. Introduction

A random vector, whose law is invariant under permutations, is called exchange-
able. An exchangeable random vector of length n is called r-extendible if it is the
initial segment of an exchangeable random vector of length r (r > n). It is well
known (see e.g. de Finetti [4]) that not every exchangeable random vector is ex-
tendible. We talk about infinite extendibility when r-extendibility holds for every
r ∈ N. By de Finetti’s theorem, the law of infinitely extendible sequences can be
represented as a mixture of independent laws and much stronger properties hold
for infinitely extendible exchangeable sequences. Weaker forms of exchangeabil-
ity have been studied by different authors, mainly in the infinite setting. Finite
partially exchangeable sequences and the problem of their extendibility have been
studied by von Plato [11] and Scarsini and Verdicchio [9]. The reader is referred
to this last paper for references on the extendibility of exchangeable vectors.
Aldous [1] studied random arrays whose law is invariant with respect to per-

mutations of rows and columns (row-column exchangeable arrays) and provided
interesting representation results for them (see also Aldous [2], [3], Hoover [6], [7]).
In this paper we consider finite row-column exchangeable matrices and provide

necessary conditions for their finite and infinite extendibility. These conditions,
based on the analysis of the correlation matrix, are the natural generalization of
the results obtained by de Finetti [4] for exchangeable sequences and by Scarsini
and Verdicchio [9] for partially exchangeable sequences.
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2. Results

All the random quantities in the paper will be defined on the probability space
(Ω,A, P ).

Definition 1. A random vector Y ≡ [Yi], i = i, . . . , n is called exchangeable if

P (Y1 ∈ A1, Y2 ∈ A2, . . . , Yn ∈ An) = P (Yπ(1) ∈ A1, Yπ(2) ∈ A2, . . . , Yπ(n) ∈ An)

for all n-permutations π, for all Borel sets A1, A2, . . . , An. The vector Y is called
r-extendible if there exists a vector V such that the vector (Y,V) has dimension
r and is exchangeable.

The following well known necessary condition for r-extendibility can be found
in de Finetti [4].

Theorem 2 (de Finetti [4]). If Y is exchangeable and r-extendible, then

Corr(Y1, Y2) ≥ −(r − 1)−1.

Definition 3. A random matrix X ≡ [Xij ], i = 1, . . . , n, j = 1, . . . , m, is called
row-column exchangeable if

P (X11 ∈ A11, X12 ∈ A12, . . . , X1m ∈ A1m, X21 ∈ A21, X22 ∈ A22, . . . ,

X2m ∈ A2m, . . . , Xn1 ∈ An1, Xn2 ∈ An2, . . . , Xnm ∈ Anm) =

P (Xσ(1)π(1) ∈ A11, Xσ(1)π(2) ∈ A12, . . . , Xσ(1)π(m) ∈ A1m,

Xσ(2)π(1) ∈ A21, Xσ(2)π(2) ∈ A22, . . . , Xσ(2)π(m) ∈ A2m, . . . ,

Xσ(n)π(1) ∈ An1, Xσ(n)π(2) ∈ An2, . . . , Xσ(n)π(m) ∈ Anm),

for all n-permutations σ and m-permutations π, for all Borel sets A11, A12, . . . ,
A1m, A21, A22, . . . , A2m, . . . , An1, An2, . . . , Anm.
For r > n and q > m the matrix X is called (r, q)-extendible if there exist

matrices T, Z,W, with

T ≡ [Xij ] i = 1, . . . , n, j = m+ 1, . . . , q,

Z ≡ [Xij ] i = n+ 1, . . . , r, j = 1, . . . , m,

W ≡ [Xij ] i = n+ 1, . . . , r, j = m+ 1, . . . , q,

such that

(1) X∗ ≡

[

X T

Z W

]

is row-column exchangeable. A matrix that is (r, q) extendible for all r > n and
q > m is called infinitely extendible.

Representation results for infinitely extendible row-column exchangeable ma-
trices can be found in Aldous [1], [2], [3], Hoover [6], [7].
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Row-column exchangeability implies the following form for the covariance ma-
trix of X:

Var(Xij) = σ2 ∀ i ∈ {1, . . . , n}, ∀ j ∈ {1, . . . , m},(2)

Cov(Xij , Xik) = σ2ρ ∀ i ∈ {1, . . . , n}, ∀ j, k ∈ {1, . . . , m}, j 6= k,(3)

Cov(Xij , Xhj) = σ2β ∀ j ∈ {1, . . . , m}, ∀ i, h ∈ {1, . . . , n}, i 6= h,(4)

Cov(Xij , Xhk) = σ2α ∀ i, h ∈ {1, . . . , n}, ∀ j, k ∈ {1, . . . , m}, j 6= k, i 6= h.(5)

The following theorem gives necessary conditions for the (r, q)-extendibility of
a (n × m) row-column exchangeable matrix.

Theorem 4. Let r, q ≥ 4. If a row-column exchangeable random matrix X is
(r, q)-extendible, then

1 + α ≥ ρ+ β,(6)

1 + (k − 1)ρ ≥ |β + (k − 1)α|, ∀ k ∈ {1, . . . , q},(7)

1 + (h − 1)β ≥ |ρ+ (h − 1)α|, ∀h ∈ {1, . . . , r},(8)

1 + (k − 1)ρ+ (h − 1)β + (h − 1)(k − 1)α ≥ 0, ∀ k ∈ {1, . . . , q},(9)

∀h ∈ {1, . . . , r}.

Several lemmata will be needed in order to prove the above theorem.

Lemma 5. If a row-column exchangeable random matrix X is (r, q)-extendible,
then

(1− ρ − β + α)(h−1)(k−1)(1 + (h − 1)β − ρ − (h − 1)α)k−1·

(1+ (k− 1)ρ− β − (k− 1)α)h−1(1+ (h− 1)β+(k− 1)ρ+(h− 1)(k− 1)α) ≥ 0,

for all h ∈ {1, . . . , r}, k ∈ {1, . . . , q}.

Proof: LetX∗ be a row-column exchangeable matrix obtained by extendingX as
in (1). By definition of row-column extendibility, for i ∈ {1, . . . , r}, Xi1, . . . , Xiq

are exchangeable, hence, by Theorem 2

(10) ρ ≥ −(q − 1)−1,

and, for j ∈ {1, . . . , q}, X1j , . . . , Xrj are exchangeable, hence,

(11) β ≥ −(r − 1)−1.

Consider the column vector vec(X) obtained by stacking the columns of X.
Conditions (2), (3), (4), (5) imply that the correlation matrix of vec(X) is

Corr(vec(X)) =









B A · · · A

A B · · · A
...

. . .

A A · · · B









,
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where

B =









1 β · · · β

β 1 · · · β
...

. . .

β β · · · 1









,

and

A =









ρ α · · · α

α ρ · · · α
...

. . .

α α · · · ρ









.

For any n × n matrix C of the form

C =









γ δ · · · δ

δ γ · · · δ
...

. . .

δ δ · · · γ









,

we have
det(C) = (γ + (n − 1)δ)(γ − δ)n−1.

Repeated applications of the above result yield

det(Corr(vec(X))) = det(B+ (m−1)A) · det(B−A)m−1

= (1−ρ−β + α)(n−1)(m−1)(1 + (n−1)β−ρ−(n−1)α)m−1×

(1 + (m−1)ρ−β−(m−1)α)n−1×

(1 + (n−1)β + (m−1)ρ+ (n−1)(m−1)α).

The correlation matrix of vec(X∗) will have the same structure and the same
parameters (just a different number of lines) as the correlation matrix of vec(X).
Any correlation matrix is positive semidefinite, and therefore its determinant and
all its principal minors are nonnegative. Hence

(12) (1− ρ − β + α)(h−1)(k−1)(1 + (h − 1)β − ρ − (h − 1)α)k−1×

(1+ (k− 1)ρ− β − (k− 1)α)h−1(1+ (h− 1)β+(k− 1)ρ+(h− 1)(k− 1)α) ≥ 0,

for all h ∈ {1, . . . , r}, k ∈ {1, . . . , q}. �

Define

A = (1− ρ − β + α),

B(h) = (1 + (h − 1)β − ρ − (h − 1)α),

C(k) = (1 + (k − 1)ρ − β − (k − 1)α),

D(h, k) = (1 + (h − 1)β + (k − 1)ρ+ (h − 1)(k − 1)α).

Thus (12) reads

A(h−1)(k−1)B(h)k−1C(k)h−1D(h, k) ≥ 0.

The following result is obvious.



Finite row-column exchangeable arrays 141

Lemma 6. The functions B(·) and C(·) are linear on N. The function D(·, ·) is
linear in each of its two arguments. Since B(1) = 1 − ρ, either B(h) is always
positive, or it is negative for all h larger than some value h0. Analogously for

C(k).

Lemma 7. D(h, k) ≥ 0 ∀h ∈ {1, . . . , r}, ∀ k ∈ {1, . . . , q}.

Proof: We have

0 ≤ Var(

h
∑

i=1

k
∑

j=1

Xij)

=
h

∑

i=1

k
∑

j=1

h
∑

u=1

k
∑

v=1

Cov(Xij , Xuv)

= hk

h
∑

i=1

k
∑

j=1

Cov(Xij , X11)

= hk

[

Var(X11) +
h

∑

i=2

Cov(Xi1, X11)

+

k
∑

j=2

Cov(X1j , X11) +

h
∑

i=2

k
∑

j=2

Cov(Xij , X11)

]

= σ2hk[1 + (h − 1)β + (k − 1)ρ+ (h − 1)(k − 1)α]

= σ2hkD(h, k).

�

Lemma 8. Let r, q ≥ 2. Then D(h, k) > 0 ∀h ∈ {1, . . . , r − 1}, ∀ k ∈ {1, . . . ,

q − 1}.

Proof: Observe that D(1, 1) = 1 and, by Lemma 7, D(1, q) ≥ 0. For any
k ∈ {1, . . . , q − 1}, we have D(1, k) > 0, since D is linear in the second argument
(Lemma 6). Furthermore, again by Lemma 7, we have that D(r, k) ≥ 0, and
hence D(h, k) > 0 ∀h ∈ {1, . . . , r − 1}, since D is linear in its first argument. �

Lemma 9. Let r, q ≥ 3. Then A ≥ 0, B(2) ≥ 0, C(2) ≥ 0.

Proof: We have

A = (1− ρ − β + α),

B(2) = (1− ρ+ β − α),

C(2) = (1 + ρ − β − α).
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Thus

A+B(2) = 2− 2ρ ≥ 0,(13)

A+ C(2) = 2− 2β ≥ 0,(14)

B(2) + C(2) = 2− 2α ≥ 0.(15)

Hence, the family {A, B(2), C(2)} cannot contain two (or more) strictly negative
terms.
By Lemma 5 we know that

A · B(2) · C(2) · D(2, 2) ≥ 0.

By Lemma 8, we have D(2, 2) > 0, and hence

(16) A · B(2) · C(2) ≥ 0.

Suppose that there exists a strictly negative term. Then (16) can be satisfied only
if there is another negative (possibly zero) term. But this is impossible, since the
sum of these two terms would be strictly negative. Thus, the claim follows. �

Lemma 10. If A = 0, then B(h) ≥ 0 for all h ∈ N and C(k) ≥ 0 for all k ∈ N.

Proof: If A = 0, then 1− ρ = β − α, hence

B(h) = (1− ρ+ (h − 1)(β − α)) = h(1− ρ) ≥ 0, ∀h ∈ N,

and 1− β = ρ − α, hence

C(k) = (1− β + (k − 1)(ρ − α)) = k(1 − β) ≥ 0, ∀ k ∈ N.

�

Lemma 11. If either B(h) ≡ 0, or C(k) ≡ 0, then A = 0.

Proof: If B(h) ≡ 0, then α = β, and ρ = 1, hence A = 0. If C(k) ≡ 0, then
α = ρ, and β = 1, hence A = 0. �

Lemma 12. Let r, q ≥ 2. The following are equivalent:

(a) D(1, q) = 0,
(b) ρ = −(q − 1)−1,
(c) there exists c ∈ R such that

∑q
j=1X1j = c, a.s.

Any of the above implies:

(d) β + (q − 1)α = 0,
(e) C(q) = 0.
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Proof: First recall that

(17) D(1, q) = 1 + (q − 1)ρ =
1

σ2q
Var(

q
∑

j=1

X1j)

(see also the proof of Lemma 7). Conditions (a) and (b) are obviously equiva-
lent. Formula (17) implies that D(1, q) = 0 iff

∑q
j=1X1j is a degenerate random

variable, i.e. iff (c) holds.
Next, observe that

1 + (k−1)ρ−[β + (k−1)α] = D(1, k)−[β + (k−1)α] = C(k),(18)

1 + (k−1)ρ+ [β + (k−1)α] = D(1, k) + [β + (k−1)α] = D(2, k).(19)

If D(1, q) = 0, then D(2, q) = 0. In fact

D(2, q) = Var(

q
∑

j=1

(X1j +X2j)) = Var(2c) = 0.

Thus, if D(1, q) = 0, taking k = q in (19) yields (d). Condition (e) follows
immediately from (d) and (18). �

Lemma 13. Let r, q ≥ 2. The following are equivalent:

(a) D(r, 1) = 0,
(b) β = −(r − 1)−1,
(c) there exists c ∈ R such that

∑r
i=1Xi1 = c, a.s.

Any of the above implies:

(d) ρ+ (r − 1)α = 0,
(e) B(r) = 0.

Proof: The proof is similar to the previous one. �

Lemma 14. Let r, q ≥ 4. Then B(r) ≥ 0 and C(q) ≥ 0.

Proof: Let us prove C(q) ≥ 0. The proof of B(r) ≥ 0 is similar.
If D(1, q) = 0, the claim follows from Lemma 12. Let D(1, q) > 0. If A = 0 the

result follows from Lemma 10. Assume A > 0. Since D(1, q) > 0 and D(r, q) ≥ 0
(Lemma 7), we have

(20) D(2, q) > 0 and D(3, q) > 0.

By Lemma 5, we have

A(h−1)(k−1)(B(h))k−1(C(k))h−1D(h, k) ≥ 0, ∀h ∈ {1, . . . , r}, ∀ k ∈ {1, . . . , q},
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which implies

(B(2))k−1C(k) ≥ 0, ∀ k ∈ {1, . . . , q},(21)

(B(3))k−1(C(k))2 ≥ 0, ∀ k ∈ {1, . . . , q}.(22)

The above inequalities stem from Lemma 8 for k ∈ {1, . . . , q − 1} and from (20)
for k = q.
Suppose that C(q) < 0. Then (21) (with k = q) and Lemma 9 imply that

B(2) = 0. We cannot have B(1) = B(2) = B(3) = . . . = 0, in view of Lemma 11.
Hence, by the linearity of B and by the relation B(1) = 1−ρ ≥ 0, we get B(3) < 0.
Then

[B(3)(C(2))2 ≤ 0.

This, together with (22), yields C(2) = 0. Thus, we have: A > 0, B(2) = C(2) =
0. From equations (13), (14) and (15) we obtain: ρ < 1, β < 1, α = 1. Hence,

C(4) = 1− β + 3(ρ − α) < 1− β + ρ − α = C(2) = 0.

Therefore
(B(3))3(C(4))2 < 0,

which contradicts (22). Hence C(q) ≥ 0. �

Proof of Theorem 4: Condition (6) has been proved in Lemma 9. Next,
observe that, in view of (18) and (19), in order to prove (7) it is enough to
check that C(k) ≥ 0 and D(2, k) ≥ 0 for k ∈ {1, . . . , q}. Lemma 7 ensures that
D(2, k) ≥ 0. The relation C(k) ≥ 0 stems from Lemma 10 when A = 0, and
from Lemma 14 and the linearity of C, when A > 0. The proof of (8) is similar.
Condition (9) was proved in Lemma 7. �

Corollary 15. If X is infinitely extendible, then

max(0, ρ+ β − 1) ≤ α ≤ min(ρ, β).

Proof: Conditions (7) and (8) and a passage to the limit yield α ≤ ρ and α ≤ β.
The condition α ≥ ρ + β − 1 is just A ≥ 0 (proved in Lemma 9). The condition
α ≥ 0 stems from (9) and a passage to the limit. �

Remark 16. In complete analogy with the case of exchangeable and partially ex-
changeable sequences, the extendibility conditions depend only on the parameters
of the correlation matrix.

Remark 17. A weaker exchangeability property was proposed by Silverman [10],
Gaifman [5], Krauss [8]. It makes sense only for square (or infinite) matrices and
it coincides with the property of Definition 3, except that σ = π, namely, the two
permutations that operate on the rows and columns are the same. If we assume
this weaker property for X, its implications for the correlation matrix are the
same as before, therefore the necessary extendibility conditions do not change.

Acknowledgment. The authors are greatly indebted to a referee for pointing
out some flaws in the proof of the main theorem in previous versions of the paper.
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