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A note on Schroeder-Bernstein Property and
Primary Property of Orlicz function spaces

YANZHENG DUAN, SHUTAO CHEN

Abstract. It is shown in the note that every reflexive Orlicz function space has the
Schroeder-Bernstein Property and the Primary Property.
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Let G = [0,1] and p be the Lebesgue measure on G. We denote by M :
(=00, +00) — [0, +00) a continuous, convex and even function satisfying M (u) =
0 iff u =0 and M(u)/u — 0(4+00) as u — 0(4+00); by N(v) the complementary
function of M(u), i.e., N(v) := maxy{uv — M(u)}. We say M € Ay if for any
ug > 0 there exists K > 2 such that M (2u) < KM (u), u > ug. For every pu-
measurable function f : G — (—o00,+00), let opr(f) = [ M(f(t)) dy; then the
Orlicz space

Ly ={f:om(af) < +oo for some a > 0}

endowed with the Luxemburg norm

[fII = inf{r : oar(f/r) <1}

or Orlicz norm
[ fllar = min [1 + opr (kf)]/k
k>0

is a Banach space and || fllar < || fll < 2||f|lar for every f € Lp;. More details
about Orlicz spaces can be found in [2] and [4].

Let Y be a closed subspace of a Banach space X. Y is called a complemented
subspace of X if there exists a linear, continuous and surjective projection from X
to Y. A Banach space X is said to have the Schroeder-Bernstein Property (SBP)
if for any Banach space Y, X is isomorphic to Y whenever X is isomorphic to
a complemented subspace of X. A Banach space X is said to have the Primary
Property if, for every linear, bounded projection P of X, X is isomorphic to PX
or (I — P)X. Many spaces, for example, LP (1 < p < 4+00) and James space J,
have SBP and Primary Property (see [1]).
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Without loss of generality, let M (1) = 1. Then (L, | - ) is an ri. (i.e.
rearrangement invariant) function space. More details about this space can be
found in [3]. By Proposition 2.b.5 in [3], the Boyd indices for L;; are

. M(t))
: f
)\}?21 M(N\)tp = 0}

DLy, = sup {p

and

. M(tA
ALy :mf{q: sup ()

At>1 M(A)EP = +OO}'

In general, 1 < pr,, <qr,, < +oo.

Theorem 1. For the Orlicz space (Lyy,| - ||), we have

(1) qr,, < +oo if and only if M € As;
(2) pr,, > 1ifand only if N € As.

PROOF: (1) Necessity. If q7,, < 400, then there exist constants K > 1 and
qgo > 1 such that M(t\)/(M(M\)t?) < K for all \,;t > 1. Let t = 2, then
M(2N) <29KM() for all A > 1, ie., M € Ag.

Sufficiency. Since M € Ag, by [4], there exists a constant K > 2 such that
M(2t) < KM(t) for all t > 1. Choose an integer n > 0 such that 2" <t < on+l.
then for all A > 1 and ¢ > 1 satisfying K/29 < 1, we have

M(tN) - M(Qn—i-l/\) _ Kn+1M()\) K (K)n <K

M\)td = 2naM(N) —  279M(N) 29

Thus, by the definition of qy,,,, we have qr,,, < +oo.

(2) Necessity. If pr,, > 1, then there exist ¢ > 0 and § > 0 such that
M(tN)/(M(M\)t'+2) > § for all A\,t > 1. Choose t satisfying t50 > 1, then
for all A > 1, we have

M (toA)

MO\tTe

Therefore, M(tg\) > t5TM()) for all A > 1. So N € Ay by [4].

Sufficiency. If N € Ag, then, by [4], there exists € > 0 such that M(2)\) >
21€ M () for all X > 1. Choose a positive integer kg such that p = (14¢)ko/(1+
ko) > 1. Forall A > 1land ¢ > 2k0 choose integer k such that 2ko < 2k <t< 2k+1,
then

> t50 > 1.

M(A) M(2F)) < 2k pr()) _ o(l+e)k—(k+1)

> > P >90—1.
MNP = M N2+ = 2(k+1p pr())

Note the last inequality of the above formula is assured by the monotone increasing
of the function f(z) = (1 +¢)x/(1+z) (x> 0).
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On the other hand, for all A > 1 and ¢ € [1,2%0), we have

M@ M) 1
MNP = 2kopMf(N)  2kop

Therefore, for all A\,¢ > 1, we have

MEN i {1, -2V S0
M)t = mm{ ’Qkop} -0

Thus, pr,, > p> 1. ([

By [4] and Theorem 1, we immediately get the following corollary.
Corollary 2. L)y is reflexive if and only if pr,, > 1 and qr,,, < +00.
Theorem 3. If L), is reflexive, then Lj; has SBP.

PRrROOF: If Ly is reflexive, then by Theorem 1, pr,,, > 1 and q,,, < +oo. There-
fore, if a Banach space X is isomorphic to a complemented subspace of Lj; and
Ly is also isomorphic to a complemented subspace of X, then Proposition 2.d.5
in [3] implies that L; is isomorphic to X. So Lj; has SBP. O

Theorem 4. If L), is reflexive, then Ljs has the Primary Property.

PROOF: If L)y is reflexive, then by [4] and Theorem 1, Lj; is separable, pr,,, > 1
and qr,,, < +oo. Since Ly is an r.i. function space, Theorem 2.d.11 in [3] implies
that Lj; has the Primary Property. (Il
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