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A note on Schroeder-Bernstein Property and

Primary Property of Orlicz function spaces

Yanzheng Duan, Shutao Chen

Abstract. It is shown in the note that every reflexive Orlicz function space has the
Schroeder-Bernstein Property and the Primary Property.
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Let G = [0, 1] and µ be the Lebesgue measure on G. We denote by M :
(−∞,+∞)→ [0,+∞) a continuous, convex and even function satisfyingM(u) =
0 iff u = 0 and M(u)/u → 0(+∞) as u → 0(+∞); by N(v) the complementary
function of M(u), i.e., N(v) := maxu{uv − M(u)}. We say M ∈ ∆2 if for any
u0 > 0 there exists K > 2 such that M(2u) ≤ KM(u), u ≥ u0. For every µ-
measurable function f : G → (−∞,+∞), let ̺M (f) =

∫

G
M(f(t)) dµ; then the

Orlicz space
LM = {f : ̺M (af) < +∞ for some a > 0}

endowed with the Luxemburg norm

‖f‖ = inf{r : ̺M (f/r) ≤ 1}

or Orlicz norm
‖f‖M = min

k>0
[1 + ̺M (kf)]/k

is a Banach space and ‖f‖M ≤ ‖f‖ ≤ 2‖f‖M for every f ∈ LM . More details
about Orlicz spaces can be found in [2] and [4].
Let Y be a closed subspace of a Banach space X . Y is called a complemented

subspace of X if there exists a linear, continuous and surjective projection from X
to Y . A Banach space X is said to have the Schroeder-Bernstein Property (SBP)
if for any Banach space Y , X is isomorphic to Y whenever X is isomorphic to
a complemented subspace of X . A Banach space X is said to have the Primary
Property if, for every linear, bounded projection P of X , X is isomorphic to PX
or (I − P )X . Many spaces, for example, Lp (1 < p < +∞) and James space J ,
have SBP and Primary Property (see [1]).
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Without loss of generality, let M(1) = 1. Then (LM , ‖ · ‖) is an r.i. (i.e.
rearrangement invariant) function space. More details about this space can be
found in [3]. By Proposition 2.b.5 in [3], the Boyd indices for LM are

pLM
= sup

{

p : inf
λ,t≥1

M(tλ)

M(λ)tp
> 0

}

and

qLM
= inf

{

q : sup
λ,t≥1

M(tλ)

M(λ)tp
< +∞

}

.

In general, 1 ≤ pLM
≤ qLM

≤ +∞.

Theorem 1. For the Orlicz space (LM , ‖ · ‖), we have

(1) qLM
< +∞ if and only if M ∈ ∆2;

(2) pLM
> 1 if and only if N ∈ ∆2.

Proof: (1) Necessity. If qLM
< +∞, then there exist constants K > 1 and

q0 ≥ 1 such that M(tλ)/(M(λ)tq0) ≤ K for all λ, t ≥ 1. Let t = 2, then
M(2λ) ≤ 2q0KM(λ) for all λ ≥ 1, i.e., M ∈ ∆2.

Sufficiency. Since M ∈ ∆2, by [4], there exists a constant K > 2 such that
M(2t) ≤ KM(t) for all t ≥ 1. Choose an integer n ≥ 0 such that 2n ≤ t < 2n+1;
then for all λ ≥ 1 and q > 1 satisfying K/2q ≤ 1, we have

M(tλ)

M(λ)tq
≤

M(2n+1λ)

2nqM(λ)
≤

Kn+1M(λ)

2nqM(λ)
= K

(

K

2q

)n

≤ K.

Thus, by the definition of qLM
, we have qLM

< +∞.

(2) Necessity. If pLM
> 1, then there exist ε > 0 and δ > 0 such that

M(tλ)/(M(λ)t1+2ε) ≥ δ for all λ, t ≥ 1. Choose t0 satisfying tε0δ ≥ 1, then
for all λ ≥ 1, we have

M(t0λ)

M(λ)t1+ε
0

≥ tε0δ ≥ 1.

Therefore, M(t0λ) ≥ t1+ε
0 M(λ) for all λ ≥ 1. So N ∈ ∆2 by [4].

Sufficiency. If N ∈ ∆2, then, by [4], there exists ε > 0 such that M(2λ) ≥
21+εM(λ) for all λ ≥ 1. Choose a positive integer k0 such that p = (1+ε)k0/(1+

k0) > 1. For all λ ≥ 1 and t ≥ 2k0 choose integer k such that 2k0 ≤ 2k ≤ t < 2k+1,
then

M(tλ)

M(λ)tp
≥

M(2kλ)

M(λ)2(k+1)p
≥
2(1+ε)kM(λ)

2(k+1)pM(λ)
= 2(1+ε)k−(k+1)p ≥ 20 = 1.

Note the last inequality of the above formula is assured by the monotone increasing
of the function f(x) = (1 + ε)x/(1 + x) (x > 0).
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On the other hand, for all λ ≥ 1 and t ∈ [1, 2k0), we have

M(tλ)

M(λ)tp
≥

M(λ)

2k0pM(λ)
=
1

2k0p
.

Therefore, for all λ, t ≥ 1, we have

M(tλ)

M(λ)tp
≥ min

{

1,
1

2k0p

}

> 0.

Thus, pLM
≥ p > 1. �

By [4] and Theorem 1, we immediately get the following corollary.

Corollary 2. LM is reflexive if and only if pLM
> 1 and qLM

< +∞.

Theorem 3. If LM is reflexive, then LM has SBP.

Proof: If LM is reflexive, then by Theorem 1, pLM
> 1 and qLM

< +∞. There-
fore, if a Banach space X is isomorphic to a complemented subspace of LM and
LM is also isomorphic to a complemented subspace of X , then Proposition 2.d.5
in [3] implies that LM is isomorphic to X . So LM has SBP. �

Theorem 4. If LM is reflexive, then LM has the Primary Property.

Proof: If LM is reflexive, then by [4] and Theorem 1, LM is separable, pLM
> 1

and qLM
< +∞. Since LM is an r.i. function space, Theorem 2.d.11 in [3] implies

that LM has the Primary Property. �
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