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Continuous functions between Isbell-Mrówka spaces

S. Garćıa-Ferreira

Abstract. Let Ψ(Σ) be the Isbell-Mrówka space associated to the MAD-family Σ. We
show that if G is a countable subgroup of the group S(ω) of all permutations of ω, then
there is a MAD-family Σ such that every f ∈ G can be extended to an autohomeo-
morphism of Ψ(Σ). For a MAD-family Σ, we set Inv(Σ) = {f ∈ S(ω) : f [A] ∈ Σ for
all A ∈ Σ}. It is shown that for every f ∈ S(ω) there is a MAD-family Σ such that
f ∈ Inv(Σ). As a consequence of this result we have that there is aMAD-family Σ such
that n+ A ∈ Σ whenever A ∈ Σ and n < ω, where n+ A = {n+ a : a ∈ A} for n < ω.
We also notice that there is no MAD-family Σ such that n ·A ∈ Σ whenever A ∈ Σ and
1 ≤ n < ω, where n · A = {n · a : a ∈ A} for 1 ≤ n < ω. Several open questions are
listed.
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1. Introduction

If X is a set, then [X ]ω = {A ⊆ X : |A| = ω}, and the meaning of [X ]<ω

and [X ]≤ω should be clear. For A, B ∈ [ω]ω, we write A ⊆∗ B if A − B is finite
and we write A =∗ B if A ⊆∗ B and B ⊆∗ A. The Stone-Čech compactification
β(ω) of the discrete space ω is identified with the set of all ultrafilters on ω and
its remainder ω∗ = β(ω)− ω is identified with the set of all free ultrafilters on ω.

For A ∈ [ω]ω, we write Â = clβ(ω)(A) and A∗ = Â − A. Observe that A =∗ B

iff A∗ = B∗ for A, B ∈ [ω]ω. For A ⊆ [ω]ω, we define A∗ = {A∗ : A ∈ A}. If
f : ω → ω is a function, then βf : β(ω) → β(ω) will stand for the Stone-Čech
extension of f . The group of permutations of ω is denoted by S(ω), where the
operation in S(ω) is the usual multiplication of permutations. If f : ω → ω is a
function, then f0 will denote the identity map on ω.

Definition 1.1. An almost disjoint (AD) family of subsets of ω is an infinite
subset Σ of [ω]ω such that |A ∩ B| < ω whenever A, B ∈ Σ and A 6= B. If Σ
is an AD-family of subsets of ω and it is not a proper subset of any AD-family,
then Σ is called a maximal almost disjoint (MAD-) family.

It is well-known that there is a MAD-family of cardinality equal to the con-
tinuum c (see [GJ, 6Q. 1]) and every MAD-family has cardinality strictly bigger
than ω (see [CN, Lemma 12.19]). We remark that if Σ is an AD-family, then Σ∗

is a set of pairwise disjoint clopen subsets of ω∗ and Σ is a MAD-family iff
⋃
Σ∗

is a dense subset of ω∗. Conversely, if O = {Ci : i ∈ I} is a set of pairwise disjoint
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clopen subsets of ω∗ and Σ = {Ai : i ∈ I} ⊆ [ω]ω satisfies that A∗
i = Ci for every

i ∈ I and |Ai ∩Bj | < ω whenever i, j ∈ I and i 6= j, then Σ is an AD-family with
O = Σ∗. The almost disjointness number is a = min{|Σ| : Σ is a MAD-family}.
Let Σ be an AD-family. The Isbell-Mrówka space Ψ(Σ) associated to Σ is

the space whose underlying set is ω ∪ Σ and ω is a discrete open subset of Ψ(Σ)
and a basic open neighborhood of A ∈ Σ has the form {A} ∪ E, where E is
a cofinite subset of A. The space Ψ(Σ) is a separable, locally compact, zero-
dimensional, Tychonoff space for any AD-family Σ. These spaces were discovered
independently by J. Isbell and S. Mrówka. It is shown in [Mr] that Σ is a MAD-
family if and only if the space Ψ(Σ) is pseudocompact. In this article, all the
Isbell-Mrówka spaces will be those associated to a MAD-family.
We are primarily concerned with determining when a permutation of ω can

be extended to a homeomorphism between two given Isbell-Mrówka spaces. We
begin Section 2 with some basic results and we show that if G is a countable
subgroup of S(ω), then there is a MAD-family Σ such that every element f
of G can be extended to an autohomeomorphism of Ψ(Σ). We also show here
that for every f ∈ S(ω) there is a MAD-family Σ such that f ∈ Inv(Σ), where
Inv(Σ) = {g ∈ S(ω) : g[A] ∈ Σ for all A ∈ Σ}. Hence, in particular, there
is a MAD-family Σ such that n + A ∈ Σ whenever A ∈ Σ and n < ω, where
n+ A = {n+ a : a ∈ A} for n < ω.

I thank V.I. Malykhin for helpful conversations on topics closely related to the
content of this paper. In particular, the idea which later grew to the present
Theorem 2.16.

2. Continuous extensions

The following lemma gives a condition for a function f : ω → ω to be extended
to a continuous function from Ψ(Σ0) to Ψ(Σ1), where Σ0 and Σ1 are MAD-
families.

Lemma 2.1. Let Σ0 and Σ1 be MAD-families and f : ω → ω a finite-to-one
function. Then, the following are equivalent:

(1) f extends to a continuous function h from Ψ(Σ0) to Ψ(Σ1) with
h[Σ0] ⊆ Σ1;

(2) for every A ∈ Σ0 there is B ∈ Σ1 such that f [A]∗ ⊆ B∗;

(3) for every A ∈ Σ0 there is B ∈ Σ1 such that f [A] ⊆∗ B;
(4) βf : β(ω) → β(ω) satisfies that for every A ∈ Σ0 there is B ∈ Σ1 such
that βf [A∗] ⊆ B∗.

Proof: (3)⇔ (4) is evident.

(1) ⇒ (2). Let h : Ψ(Σ0) → Ψ(Σ1) be a continuous extension of f and let
A ∈ Σ0. Put B = h(A). Since V = {B} ∪ B is a neighborhood of B, then
there is a finite subset F of A such that {A} ∪ (A − F ) ⊆ h−1(V ). Hence,
h[A − F ] = f [A − F ] ⊆ B and since F is finite, f [A] ⊆∗ B.
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(2)⇔ (3). This is evident.

(3)⇒ (1). For every A ∈ Σ0, we fix BA ∈ Σ1 such that f [A] ⊆∗ BA. Then, we
define h : Ψ(Σ0)→ Ψ(Σ1) by h |ω= f and h(A) = BA for every A ∈ Σ0. Choose
A ∈ Σ0 and let V = {BA} ∪ (BA − E), where E is a finite subset of BA. Set
F = f [A]−BA. Then, F is a finite set and hence U = {A}∪ (A− (f−1(E ∪F )))
is a neighborhood of A in Ψ(Σ0) and h[U ] ⊆ V . This shows that h is continuous
and extends f . �

If Σ0 and Σ1 are MAD-families and f : ω → ω is a finite-to-one function
that satisfies one of the conditions of Lemma 2.1, then the continuous extension
of f will be denoted by Ψ(f,Σ0,Σ1) : Ψ(Σ0) → Ψ(Σ1), if no confusion arises,
then we simply write Ψ(f). If f is finite-to-one, then the symbol Ψ(f,Σ0,Σ1)
(or Ψ(f)) will also mean that f can be extended to a continuous function from
Ψ(Σ0) to Ψ(Σ1). Notice that if f, g : ω → ω are functions, f extends to a
continuous function Ψ(f) : Ψ(Σ0) → Ψ(Σ1) and {n < ω : f(n) 6= g(n)} is
finite, then g extends to a continuous function Ψ(g) : Ψ(Σ0) → Ψ(Σ1) such that
Ψ(f)(A) = Ψ(g)(A) for each A ∈ Σ0. If Σ is a MAD-family, then Aut(Ψ(Σ))
will denote the set of all autohomeomorphisms of Ψ(Σ) and S(Σ) = {f ∈ S(ω) :
Ψ(f) ∈ Aut(Ψ(Σ))}. Notice that if S(ω) is equipped with the topology inherited
from the product space ωω, then S(Σ) is a dense subgroup of S(ω), for every
MAD-family Σ.

Example 2.2. There is a MAD-family Σ and a bijection f : ω → ω such that
f [A] = A for every A ∈ Σ and f does not have any fixed point. Let N0, N1 ∈ [ω]

ω

be such that N0 ∩ N1 = ∅ and N0 ∪ N1 = ω. Let Σ0 be a MAD-family on N0
and fix a bijection f : ω → ω such that f [N0] = f [N1], f [N1] = N0 and f2 is the
identity map. Then Σ1 = {f [A] : A ∈ Σ0} is a MAD-family on N1. Now for each
A ∈ Σ0 we define D(A) = A ∪ f [A]. Thus, Σ = {D(A) : A ∈ Σ0} is the required
MAD-family.

The following example shows the existence of a MAD-family Σ such that for
every f ∈ S(ω) without fixed points there is A ∈ Σ with f [A]∩A = ∅. We need a
lemma which was established by Katětov [Ka] (for a proof see [CN, Lemma 9.1]).

Lemma 2.3. Let α be a cardinal. If f : α → α is a function such that f(ξ) 6= ξ
for ξ < α, then there are subsets A0, A1 and A2 of α such that

(1) α = A0 ∪ A1 ∪ A2;
(2) Ai ∩ Aj = ∅ for i, j ≤ 2 and i 6= j; and
(3) Ai ∩ f [Ai] = ∅ for i ≤ 2.

Example 2.4. It is shown in [BV] that for every p ∈ ω∗ there is an AD-family
Ap = {AC : C ∈ p} such that AC ∈ [C]ω for every C ∈ p. We now extend Ap

to a MAD-family Σp for every p ∈ ω∗. Fix p ∈ ω∗. Let f ∈ S(ω) be without
fixed points. It follows from Lemma 2.3, that there is a partition {C0, C1, C2} of
ω such that f [Ci] ∩Ci = ∅ for every i ≤ 2. Since p is an ultrafilter, there is i ≤ 2
with Ci ∈ p. Then, ACi

∈ [Ci]
ω satisfies that f [ACi

] ∩ ACi
= ∅.



188 S.Garćıa-Ferreira

The following lemma is useful to see when Ψ(f) is a homeomorphism.

Lemma 2.5. Let Ψ(Σ0) and Ψ(Σ1) be MAD-families and f ∈ S(ω). If Ψ(f) :
Σ0 → Σ1 is a bijection, then Ψ(f) is a homeomorphism.

Proof: We shall show that f−1 can be extended to a continuous function from
Ψ(Σ1) to Ψ(Σ0). In fact, according to Lemma 2.1, it suffices to prove that f [A] =

∗

B whenever Ψ(f)(A) = B for A ∈ Σ0 and B ∈ Σ1. Indeed, suppose that
Ψ(f)(A) = B for A ∈ Σ0 and B ∈ Σ1. By Lemma 2.1, we have f [A] ⊆∗ B.
Assume that C = B − f [A] is infinite. Then f−1(C) is infinite as well. Hence,
there is D ∈ Σ0 such that f−1(C) ∩ D is infinite. Since f [D] ∩ B is infinite,
Ψ(f)(D) = B. Thus, Ψ(f)(A) = Ψ(f)(D) and A 6= D, which is a contradiction.

�

We remark that if Ψ(f,Σ0,Σ1) is a homeomorphism, then βf : β(ω) → β(ω)
satisfies that for every A ∈ Σ0 there is B ∈ Σ1 for which βf [A∗] = B∗. Notice
that for an arbitrary homeomorphism Ψ(f,Σ0,Σ1) the following property does
not hold in general: for every A ∈ Σ0 there is B ∈ Σ1 such that f [A] = B.

Example 2.6. Let {An : n < ω} ⊆ [ω]ω be a partition of ω. For each n < ω,

choose {an
j : j ≤ n} ⊆ An and {bn

j : j ≤ n} ⊆ An+1 − {an+1
j : j ≤ n + 1}.

Set A = {an
j : j ≤ n, n < ω} and B = {bn

j : j ≤ n, n < ω}. Then A =

{A, B} ∪ {An : n < ω} is an AD-family. By Zorn’s Lemma, we extend A to a
MAD-family Σ so that if D ∈ Σ − A, then D ∩ A = ∅ = D ∩ B. Now, define
f : ω → ω by f(an

j ) = bn
j and f(bn

j ) = an
j for j ≤ n and for n < ω, and f(k) = k if

k ∈ ω − (A ∪ B). Then, we have that Ψ(f) : Ψ(Σ)→ Ψ(Σ) is a homeomorphism
such that Ψ(f)(D) = D for all D ∈ Σ − {A, B}, Ψ(f)(A) = B, Ψ(f)(B) = A,

f [An] =
∗ An and f [An] − An = {an−1

j : j ≤ n − 1} ∪ {bn
j : j ≤ n} for every

1 ≤ n < ω.

Let Σ0 be a MAD-family and {An : n < ω} ⊆ Σ0. Define B0 = A0 and Bn =
An−

⋃
m<n Am for every 0 < n < ω. If Σ1 = (Σ0−{An : n < ω})∪{Bn : n < ω},

then {Bn : n < ω} is pairwise disjoint and Ψ(Σ0) and Ψ(Σ1) are homeomorphic.

Theorem 2.7. Let Σ0 and Σ1 be MAD-families. If h : Ψ(Σ0) → Ψ(Σ1) is a
homeomorphism, then f = h |ω is a permutation of ω, h = Ψ(f) and for every
A ∈ Σ0 there is B ∈ Σ1 such that f [A] =∗ B (equivalently, βf [A∗] = B∗).

Our next goal is to prove the main theorem of this section. First, we show
several preliminary results. We omit the proof of the following easy lemma.

Lemma 2.8. Let f ∈ S(ω) and A ∈ [ω]ω. Then the following are equivalent:

(1) {D ∈ [ω]ω : D = fk[A] for some k ∈ Z} is an AD-family;
(2) {D ∈ [ω]ω : D = fn[A] for some n < ω} is an AD-family;
(3) for every n < ω, either fn[A] = A or |A ∩ fn[A]| < ω.

We should remark that for A ∈ [ω]ω and f ∈ S(ω), the condition “for every
n < ω, either fn[A] =∗ A or |A ∩ fn[A]| < ω” does not necessarily imply that
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“{D ∈ [ω]ω : D = fk[A] for some k ∈ Z} is an AD-family”. Indeed, let A =
ω − {1} and define f ∈ S(ω) by f(0) = 1, f(1) = 0 and f(k) = k for every

1 < k < ω. Then, f2k[A] = A and f2k+1[A] = f [A] = (A − {0}) ∪ {1} for every
k < ω.
The next result is a direct consequence of Lemma 2.4 (for the details of the

proof, we referred the reader to [CN, Theorem 9.2 (a)]).

Lemma 2.9. If p ∈ β(ω) and f : ω → ω is a function, then βf(p) = p if and
only if {n < ω : f(n) = n} ∈ p.

The following lemma is essentially due to A.I. Baskirov [Ba, Lemma 2].

Lemma 2.10. Let f ∈ S(ω) be such that fn has no fixed points for every

1 ≤ n < ω. Then for every A ∈ [ω]ω there is B ∈ [A]ω such that {fk[B] : k ∈ Z}
is an infinite AD-family.

Baskirov’s Lemma may be generalized as follows.

Lemma 2.11. Let f ∈ S(ω). Then for every A ∈ [ω]ω there is B ∈ [A]ω such
that

{D ∈ [ω]ω : D = fk[B] for some k ∈ Z}

is an AD-family and if fk[B] ∩ B is infinite for some k < ω, then fk |B is the
identity map.

Proof: In virtue of Lemma 2.9 and Lemma 2.10, we may assume that there
is 1 ≤ n < ω such that {k ∈ A : fn(k) = k} is infinite. Without loss of
generality, we may assume that fn |A is the identity map and that n is the least
positive integer such that {k ∈ A : f i(k) = k} is finite for every 1 ≤ i < n. If
n = 1, then we put A = B. Suppose that 1 < n. Reasoning as in the proof
of Lemma 2 of [Ba], for every 1 ≤ i < n we can find Bi ∈ [A]ω such that
Bn−1 ⊆ Bn−2 ⊆ · · · ⊆ B1 ⊆ A and f i[Bi] ∩ Bi = ∅ for every 1 ≤ i < n.

Then, we put B = Bn−1. Hence, we have that {D ∈ [ω]ω : D = fk[B] for some
k ∈ Z} = {f1−n[B], . . . , f−1[B], B, f [B], . . . , fn−1[B]}. The conclusion follows
from Lemma 2.8. �

Lemma 2.12. Let {fn : n < ω} be a set of permutations. Then for every
A ∈ [ω]ω there is B ∈ [A]ω such that

{D∗ : D = fk
n [B] for some n < ω and for some k ∈ Z}

is a set of pairwise disjoint clopen subsets of ω∗. In addition, if there is m < ω
such that fk

m has no fixed points on A for every k ∈ Z, then {D∗ : D = fk
n [B] for

some n < ω and for some k ∈ Z} is infinite.

Proof: Enumerate the set {fk
n ◦ f j

m : (n, m) ∈ ω × ω, (k, j) ∈ Z × Z} as {gs :
s < ω}. By Lemma 2.11 and by induction, for each s < ω we may find Bs ∈ [A]ω

such that

(1) Bs ⊆ Bt whenever s < t < ω; and
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(2) {D ∈ [ω]ω : D = gk
s [Bs] for some k ∈ Z} is an AD-family and if gk

s [Bs]∩Bs

is infinite for some k ∈ Z, then gk
s |Bs

is the identity map.

Since ω∗ is an almost P -space (see [L]), there is B ∈ [A]ω such that B∗ ⊆⋂
s<ω B∗

s . Fix (n, m) ∈ ω × ω and (j, k) ∈ Z2. Then, we have that |fk
n [B]

∗ ∩

f j
m[B]

∗| = |βfk
n [B

∗] ∩ βf j
m[B

∗]| = |B∗ ∩ β(f−k
n ◦ f j

m)[B
∗]|. Choose t < ω so that

gt = f−k
n ◦ f

j
m and consider Bt. If βgt[B

∗
t ] ∩ B∗

t = ∅, then βgt[B
∗] ∩ B∗ = ∅ and

hence fk
n [B]

∗ ∩ f j
m[B]

∗ = ∅. Suppose that βgt[B
∗
t ] ∩ B∗

t 6= ∅. Then gt[Bt] ∩ Bt is
infinite. By clause (2), we obtain that gt |Bt

is the identity map and sinceB ⊆∗ Bt,

we must have that B∗ = βgt[B
∗] = β(f−k

n ◦f j
m)[B

∗]; that is, βfk
n [B

∗] = βf j
m[B

∗].

Assume that there is m < ω such that fk
m has no fixed points on A for every

k ∈ Z. By Lemma 2.10, we may choose C ∈ [A]ω so that {fk
m[C] : k ∈ Z} is an

infinite AD-family and B ⊆∗ C. Hence, {fk
m[B]

∗ : k ∈ Z} is infinite. �

Theorem 2.13. Let G be a countable subgroup of S(ω). Then there is aMAD-
family Σ such that

Ψ(f) ∈ Aut(Ψ(Σ)) for all f ∈ G.

Proof: Without loss of generality we may assume that there is h ∈ G such that
hn has no fixed points for every 1 ≤ n < ω: if such a function h is not in G,
then we add one to G. Now, enumerate [ω]ω as {Aξ : ξ < c}, where A0 satisfies
that O0 = {D∗ : D = f [A0], f ∈ G} is an infinite pairwise disjoint set (this is
possible because of Lemma 2.12). Notice that if D∗ ∈ O0, then βf [D∗] ∈ O0 for
ever f ∈ G. Now, we proceed by transfinite induction. Assume that for every
ξ < λ < c we have defined a set Bξ ∈ [ω]ω and an infinite set Oξ of pairwise
disjoint clopen subsets of ω∗ such that

(1) for every ξ < λ, either one of the following conditions holds:
a. there is Bξ ∈ [Aξ ]

ω such that βf [B∗
ξ ] ∈ Oξ for all f ∈ G; or

b. A∗
ξ ∩ D∗ 6= ∅ for some D∗ ∈ Oξ , in this case we have that Bξ = Bζ

for some ζ < ξ.
(2) Oξ = {D∗ : D = f [Bζ ], f ∈ G and ζ ≤ ξ}, for all ξ < λ.

We should remark that:

(3) Oξ ⊆ Oζ whenever ξ < ζ < λ;
(4) if D∗ ∈ Oξ , for some ξ < λ, then βf [D∗] ∈ Oξ for all f ∈ G;
(5) B∗

ξ ∈ Oξ for every ξ < λ.

Put O =
⋃

ξ<λ Oξ and observe that O is an infinite pairwise disjoint set, by

clause (3). We consider two cases:

Case I. Suppose that D∗ ∩ βf [A∗
λ] = ∅ for every f ∈ G and for every D∗ ∈

O. According to Lemma 2.12, we may find Bλ ∈ [Aλ]
ω such that {E∗ : E =

f [Bλ], f ∈ G} is pairwise disjoint and infinite. Then, we define Oλ =
⋃

ξ<λ Oξ ∪

{E∗ : E = f [Bλ], f ∈ G}. It is not hard to see that Oλ is pairwise disjoint.
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Case II. There are D∗ ∈ O and f ∈ G such that D∗ ∩ βf [A∗
λ] 6= ∅. Then, we

have that A∗
λ∩βf−1(D∗) 6= ∅ and βf−1(D∗) ∈ O. In this case we define Oλ = O

and Bλ = Bξ for some ξ < λ.

Put P =
⋃

ξ<c
Oξ . We have that P is a set of pairwise disjoint clopen subsets

of ω∗, because of clause (3). Choose Σ ⊆ [ω]ω so that Σ∗ = P and |A ∩ B| < ω
whenever A, B ∈ Σ and A 6= B. We have that Σ is an infinite AD-family. By
clause (1), we obtain that Σ is a MAD-family. Fix f ∈ G and A ∈ Σ. Then,
A∗ ∈ Oλ for some λ < c. By clause (4), we obtain that βf [A∗] ∈ Oλ and
hence βf [A∗] = B∗ for some B ∈ Σ. So f extends to a continuous function Ψ(f) :
Ψ(Σ)→ Ψ(Σ), by Lemma 2.1. It remains to show that Ψ(f) is a homeomorphism.
In virtue of Lemma 2.5, it suffices to prove that Ψ(f) is a bijection. Indeed,
suppose that Ψ(f)(A) = Ψ(f)(B) for A, B ∈ Σ. Then, βf [A∗] = βf [B∗]. Hence,
A∗ = B∗ since βf is a homeomorphism. But this is possible only for the case
when A = B, by the definition of Σ. This shows that Ψ(f) is one-to-one. Let
C ∈ Σ. Then C∗ = βh[B∗

ξ ] for some h ∈ G and for some ξ < c. Hence,

C∗ = βf [β(f−1 ◦ h)[B∗
ξ ]]. Since β(f−1 ◦ h)[B∗

ξ ] ∈ Oξ ⊆ P , β(f−1 ◦ h)[B∗
ξ ] = D∗

for some D ∈ Σ. Hence, Ψ(f)(D) = C. Thus, Ψ(f) is a surjection. Therefore,
Ψ(f) ∈ Aut(Ψ(Σ)). �

In Example 2.6, we saw that there are f ∈ S(ω) and a MAD-family Σ such
that Ψ(f) ∈ Aut(Ψ(Σ)) and f [A] /∈ Σ for some A ∈ Σ.
For a MAD-family Σ, we set

Inv(Σ) = {f ∈ S(ω) : f [A] ∈ Σ for all A ∈ Σ}.

Observe that Inv(Σ) is a subgroup of S(ω) and if f ∈ Inv(Σ), then Ψ(f) ∈
Aut(Ψ(Σ)), for everyMAD-family Σ. TheMAD-family Σ of Example 2.6 satisfies
that there is f ∈ S(ω) such that Ψ(f) ∈ Aut(Ψ(Σ)) and f /∈ Inv(Σ). It is not
hard to prove that Inv(Σ) 6= S(ω) for every MAD-family Σ (see Theorem 2.19
below). It was shown in Theorem 2.13 that for every countable subgroup G of
S(ω) there is a MAD-family Σ such that Ψ(f) ∈ Aut(Ψ(Σ)) for all f ∈ G. This
leads us to ask:

Question 2.14. If F ⊆ S(ω) is countable, does there a MAD-family Σ exist so
that F ⊆ Inv(Σ)?

Unfortunately, the previous question remains open. If F = {f} for f ∈ S(ω),
then the answer is in the positive fashion as it is shown in the next theorem.

Theorem 2.15. For every f ∈ S(ω) there is a MAD-family Σ such that f ∈
Inv(Σ).

Proof: Fix f ∈ S(ω). We consider two cases:

Case I. There is 1 ≤ n < ω such that {k < ω : fn(k) = k} is infinite. Let n be
the least positive integer with this property. If n = 1, then we choose a MAD-
family Σ0 of infinite subsets of F = {k < ω : fn(k) = k} and we define either
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Σ = Σ0 ∪ {ω − F} if ω − F is infinite or Σ = Σ0 otherwise. Suppose that 1 < n.
Then, we have that {k < ω : f i(k) = k} is finite for every 1 ≤ i < n. Following
the proof of Lemma 2.11, we may find an infinite subset B of {k < ω : fn(k) = k}
such that

{D ∈ [ω]ω : D = fk[B] for some k ∈ Z} =

= {f1−n[B], . . . , f−1[B], B, . . . , fn−1[B]}.

and f i[B] ∩ f j [B] = ∅, whenever −n < i < j < n and |j − i| < n. Let Σ1 be

a MAD-family on B. Set N = ω − (
⋃

k∈Z fk[B]) and notice that fk[N ] = N

for every k ∈ Z. Define either Σ = {f i[A] : A ∈ Σ1,−n < i < n} ∪ {N} if N
is infinite or Σ = Σ1 otherwise. Then, we have that Σ is an infinite AD-family
on ω. If C ∈ [ω]ω, then either C ∩ N is infinite or there is −n < i < n such
that C ∩ f i[B] is infinite. Then, f−i[C] ∩ B is infinite and hence there is A ∈ Σ1
such that |A ∩ f−i[C] ∩ B| = |C ∩ f i[A]| = ω. Thus, Σ is a MAD-family and
f ∈ Inv(Σ).

Case II. Suppose that {k < ω : fn(k) = k} is finite for every 1 ≤ n < ω. In
virtue of Lemma 2.9, we have that fn has no fixed points for every 1 ≤ n < ω.
Now, enumerate [ω]ω as {Eξ : ξ < c}. We shall proceed by transfinite induction.

By Lemma 2.10, choose A0 ∈ [E0]
ω so that {fk[A0] : k ∈ Z} is an infinite

AD-family. Suppose that for every ξ < λ < c we have defined Aξ ∈ [ω]ω such
that

(1)
⋃

ζ<ξ{f
k[Aζ ] : k ∈ Z} is an AD-family for every ξ < λ; and

(2) for every ξ < λ there is k ∈ Z such that Eξ ∩ fk[Aξ ] is infinite.

If there are ξ < λ and k ∈ Z such that Eλ ∩ fk[Aξ ] is infinite, then we put

Aλ = Aξ . Now, Suppose that |Eλ ∩ fk[Aξ ]| < ω for every ξ < λ and for every

k ∈ Z. By Lemma 2.10, we may find Aλ ∈ [Eλ]
ω such that {fk[Aλ] : k ∈ Z} is

an infinite AD-family. Let j, k ∈ Z and ξ < λ. Then,

|f j [Aλ] ∩ fk[Aξ ]| = |Aλ ∩ (f−j ◦ fk)[Aξ ]| =

= |Aλ ∩ fk−j[Aξ ]| ≤ |Eλ ∩ fk−j [Aξ ]| < ω.

Therefore,
⋃

ζ≤λ{D : D = fk[Aζ ], k ∈ Z} is an AD-family.

Finally, we define Σ =
⋃

ξ<c
{D : D = fk[Aξ ], k ∈ Z}. It follows from clauses

(1) and (2) that Σ is a MAD-family and f ∈ Inv(Σ). �

Corollary 2.16. There is aMAD-family Σ such that n+A ∈ Σ whenever A ∈ Σ
and n < ω, where n+A = {n+ a : a ∈ A} for n < ω.

Proof: Define τ : ω → ω by τ(k) = 1 + k for every k ∈ ω. If n < ω, then
τn(k) = n+ k for every k < ω. Applying Theorem 2.15, there is a MAD-family
Σ such that τn(A) = n+A ∈ Σ for every n < ω and for every A ∈ Σ. �

We shall verify that aMAD-family which is invariant under the multiplication
of positive integers does not exist:



Continuous functions between Isbell-Mrówka spaces 193

Theorem 2.17. There is no MAD-family Σ such that

n · A ∈ Σ,

for every A ∈ Σ and for every 1 ≤ n < ω, where n · A = {n · a : a ∈ A} for
1 ≤ n < ω.

Proof: We define

D = {D ∈ [ω]ω : |{d ∈ D : n \ d}| < ω for every 1 < n < ω}.

Suppose that Σ is a MAD-family such that n · A ∈ Σ, for every A ∈ Σ and
for every 1 ≤ n < ω. Fix A ∈ Σ and assume that A /∈ D. Then, there is
1 < n0 < ω such that B0 = {a ∈ A : n0 \ a} is infinite. Choose C0 ∈ [ω]

ω with
n0 · C0 = B0. We have that there is D0 ∈ Σ such that |D0 ∩ C0| = ω and so
n0 · D0 ∩ A is infinite. Since n0 · D0 ∈ Σ, we have n0 · D0 = A. If D0 /∈ D,
by an argument similar to the previous one, we may find 1 < n1 and D1 ∈ Σ
such that n1 · D1 = D0 and hence n0 · n1 · D1 = A. Since every positive natural
number has finitely many divisors, there must be Dr ∈ D∩Σ and n0, . . . , nr < ω
such that 1 < nj for each j ≤ r and n0 · . . . · nr · Dr = A. This shows that for
every A ∈ Σ either A ∈ D or there are D ∈ D ∩ Σ and 1 < n0 ≤ · · · ≤ nr < ω
such that n0 · . . . · nr · D = A. Now, enumerate the set of all prime numbers by
{pn : n < ω} and let P = {p0 · . . . · pn : n < ω}. It is clear that |P ∩ A| < ω
for every A ∈ D ∩ Σ. By the maximality of Σ, there is B ∈ Σ − D such that
P ∩ B is infinite. We may find D ∈ D ∩ Σ and 1 < n0 ≤ · · · ≤ nr < ω such that
n0 · . . . ·nr ·D = B. Let N < ω be such that pn does not divide nj for every j ≤ r
and for every N ≤ n < ω. Since P ∩B is infinite, the intersection {k : pN \k}∩D
must be infinite, but this is a contradiction. �

We pointed out that S(Σ) is a dense subgroup of S(ω) for everyMAD-family Σ.
This fact may be improved as follows. We need some notation to describe the
topology on S(ω).
If j < ω and n < ω, then we write [j, n] = {f ∈ S(ω) : f(j) = n}. We know

that {[j, n] : (j, n) ∈ ω × ω} forms a subbase for the topology on S(ω) which is
considered as a subspace of the product space ωω.

Theorem 2.18. For everyMAD-family Σ, we have that S(Σ)− Inv(Σ) is dense
in S(ω).

Proof: Let V =
⋂

j<n[j, kj ] 6= ∅ be a basic open subset of S(ω). Fix A ∈ Σ,

a ∈ A − (n ∪ {kj : j < n}) and b ∈ ω − (A ∪ n ∪ {kj : j < n}). Define f : ω → ω
by f(j) = kj for every j < n, f(kj) = j for every j < n, f(a) = b, f(b) = a and
f(k) = k for every k ∈ ω−(n∪{kj : j < n}∪{a, b}). It is clear that f ∈ S(Σ) and
f [A] =∗ A, but f [A] /∈ Σ, since f [A] 6= A. Therefore, f ∈ V ∩ (S(Σ)− Inv(Σ)).

�

As a particular case of Theorem 2.18 we have that S(Σ) 6= Inv(Σ) for every
MAD-family Σ.
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We do not know whether there is a MAD-family Σ such that Inv(Σ) is dense
in S(ω). Next we present some results related to the density of Inv(Σ), in S(Σ),
and an example of a MAD-family Σ for which Inv(Σ) is not dense in S(ω).
Let S = {s : s : n → ω is one-to-one, n < ω}. For n < ω and a one-to-one

function s : n → ω, hs : ω → ω will stand for an arbitrary extension of s (i.e.,
s ⊆ hs), and H = {hs : s ∈ S} will stand for an arbitrary set of these extensions.
Two different choices of extensions h′ss will produce two different sets H

′s.

Lemma 2.19. Let Σ be a MAD-family. Then Inv(Σ) is dense in S(ω) if and
only if there is a set H of extensions such that H ⊆ Inv(Σ).

Proof: Necessity. Suppose that Inv(Σ) is dense in S(ω) and fix s ∈ S. We
have that the domain of s is equal to n for some n < ω. Consider the basic
open V =

⋂
j<n+1[j, s(j)]. We have that V ∩ S(ω) 6= ∅. By assumption, there

is h ∈ V ∩ Inv(Σ). It is evident that h extends s. Thus, the set H satisfies the
conditions.

Sufficiency. Suppose that H ⊆ Inv(Σ) and let V =
⋂

j<n[j, kj ] be a basic

nonempty open set of S(ω). Notice that ki 6= kj provided that i < j < n. Define
s : n → ω by s(j) = kj for every j < n. Then, we have that s ∈ S. By hypothesis,
there is hs ∈ H ⊆ Inv(Σ) which extends s. Therefore, hs ∈ V ∩ Inv(Σ). This
shows that Inv(Σ) is dense in S(ω). �

We remark that if the condition of Question 2.14 holds for some of the countable
sets H, then there is a MAD-family Σ such that Inv(Σ) is dense in S(ω).

Definition 2.20. Let Σ be a MAD-family. We say that a finite set {a0, . . . , an}
of positive integers generates Σ if

{a0, . . . , an} ∩ A 6= ∅ for all A ∈ Σ.

Theorem 2.21. If Σ is a MAD-family generated by a finite set {a0, . . . , an} of
positive integers, then Inv(Σ) is not dense in S(ω).

Proof: Suppose that Inv(Σ) is dense in S(ω). According to Lemma 2.19, there
is a set H = {hs : s ∈ S} of extensions such that H ⊆ Inv(Σ). Since Inv(Σ) is
a subgroup of S(ω), h−1s ∈ Inv(Σ) for all s ∈ S. Fix A ∈ Σ. We have that ω−A is
infinite. Choose a one-to-one function s : m → ω, wherem = max{aj : j ≤ n}+1,

so that s(aj) ∈ ω −A for every j ≤ n. Consider hs ∈ H. Since h−1s (A) ∈ Σ there

is i ≤ n such that ai ∈ h−1s (A) and hence hs(ai) = s(ai) ∈ A, but this is
a contradiction. �

As a direct application of Theorem 2.21, we have that if Σ is a MAD-family,
then ∆ = {A∪ {0} : A ∈ Σ} is also a MAD-family such that Inv(∆) is not dense
in S(ω).
The proof of the next result is straightforward.



Continuous functions between Isbell-Mrówka spaces 195

Theorem 2.22. Let Σ be aMAD-family generated by the finite set {a0, . . . , an}.
If for every F ∈ [ω − {a0, . . . , an}]<ω there is A ∈ Σ such that A ∩ F = ∅, then f
is a permutation of {a0, . . . , an} for every f ∈ Inv(Σ).

Let Σ be aMAD-family generated by the set {a0, . . . , an}. We have that |Σ| >
ω and hence Σ can be enumerated as {Aξ : ξ < α}, where α is an uncountable

cardinal number. Enumerate [ω − {a0, . . . , an}]<ω as {Fn : n < ω}. Define
Bn = An − Fn for each n < ω and Bξ = Aξ for every ω ≤ ξ < α. Then,
{Bξ : ξ < α} is a MAD-family satisfying the conditions of Theorem 2.22.

Theorem 2.23. If Σ is a MAD-family satisfying that there is A ∈ Σ such that

(1) A ∩ B 6= ∅ for every B ∈ Σ; and
(2) for every B ∈ Σ− {A} there is C ∈ Σ such that B ∩ C = ∅,

then f [A] = A for every f ∈ Inv(Σ).

Proof: Let f ∈ Inv(Σ). If f−1(A) 6= A, then, by clause (2), there is C ∈ Σ
such that f−1(A) ∩ C = ∅ and hence A ∩ f [C] = ∅, which is a contradiction to
clause (1). Therefore, f−1(A) = A and hence f [A] = A. �

Let {A, B, C} be a partition of ω in three infinite subsets. Fix a0 and a1 two
different points of A. Let Σ0 and Σ1 be MAD-families on B and C, respectively.
Then,

Σ = {D ∪ {a0} : D ∈ Σ0} ∪ {D ∪ {a1} : D ∈ Σ1} ∪ {A}

is a MAD-family on ω that satisfies the conditions of Theorem 2.23.

Question 2.24. Is there a MAD-family Σ such that Inv(Σ) is dense in S(Σ)?

Question 2.25. Is there a MAD-family Σ such that Inv(Σ) is closed in S(Σ)?
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