Continuous functions between Isbell-Mrówka spaces

S. GARCÍA-FERREIRA

Abstract. Let $\Psi(\Sigma)$ be the Isbell-Mrówka space associated to the MAD-family Σ . We show that if G is a countable subgroup of the group $\mathbf{S}(\omega)$ of all permutations of ω , then there is a MAD-family Σ such that every $f \in G$ can be extended to an autohomeomorphism of $\Psi(\Sigma)$. For a MAD-family Σ , we set $Inv(\Sigma) = \{f \in \mathbf{S}(\omega) : f[A] \in \Sigma$ for all $A \in \Sigma\}$. It is shown that for every $f \in \mathbf{S}(\omega)$ there is a MAD-family Σ such that $f \in Inv(\Sigma)$. As a consequence of this result we have that there is a MAD-family Σ such that $n + A \in \Sigma$ whenever $A \in \Sigma$ and $n < \omega$, where $n + A = \{n + a : a \in A\}$ for $n < \omega$. We also notice that there is no MAD-family Σ such that $n \cdot A \in \Sigma$ whenever $A \in \Sigma$ and $1 \le n < \omega$, where $n \cdot A = \{n \cdot a : a \in A\}$ for $1 \le n < \omega$. Several open questions are listed.

Keywords: MAD-family, Isbell-Mrówka space Classification: 54A20, 54A35

1. Introduction

If X is a set, then $[X]^{\omega} = \{A \subseteq X : |A| = \omega\}$, and the meaning of $[X]^{<\omega}$ and $[X]^{\leq\omega}$ should be clear. For $A, B \in [\omega]^{\omega}$, we write $A \subseteq^* B$ if A - B is finite and we write $A =^* B$ if $A \subseteq^* B$ and $B \subseteq^* A$. The Stone-Čech compactification $\beta(\omega)$ of the discrete space ω is identified with the set of all ultrafilters on ω and its remainder $\omega^* = \beta(\omega) - \omega$ is identified with the set of all free ultrafilters on ω . For $A \in [\omega]^{\omega}$, we write $\widehat{A} = cl_{\beta(\omega)}(A)$ and $A^* = \widehat{A} - A$. Observe that $A =^* B$ iff $A^* = B^*$ for $A, B \in [\omega]^{\omega}$. For $A \subseteq [\omega]^{\omega}$, we define $\mathcal{A}^* = \{A^* : A \in \mathcal{A}\}$. If $f : \omega \to \omega$ is a function, then $\beta f : \beta(\omega) \to \beta(\omega)$ will stand for the Stone-Čech extension of f. The group of permutations of ω is denoted by $\mathbf{S}(\omega)$, where the operation in $\mathbf{S}(\omega)$ is the usual multiplication of permutations. If $f : \omega \to \omega$ is a function, then f^0 will denote the identity map on ω .

Definition 1.1. An almost disjoint (AD) family of subsets of ω is an infinite subset Σ of $[\omega]^{\omega}$ such that $|A \cap B| < \omega$ whenever $A, B \in \Sigma$ and $A \neq B$. If Σ is an AD-family of subsets of ω and it is not a proper subset of any AD-family, then Σ is called a maximal almost disjoint (MAD-) family.

It is well-known that there is a *MAD*-family of cardinality equal to the continuum c (see [GJ, 6Q. 1]) and every *MAD*-family has cardinality strictly bigger than ω (see [CN, Lemma 12.19]). We remark that if Σ is an *AD*-family, then Σ^* is a set of pairwise disjoint clopen subsets of ω^* and Σ is a *MAD*-family iff $\bigcup \Sigma^*$ is a dense subset of ω^* . Conversely, if $\mathcal{O} = \{C_i : i \in I\}$ is a set of pairwise disjoint clopen subsets of ω^* and $\Sigma = \{A_i : i \in I\} \subseteq [\omega]^{\omega}$ satisfies that $A_i^* = C_i$ for every $i \in I$ and $|A_i \cap B_j| < \omega$ whenever $i, j \in I$ and $i \neq j$, then Σ is an *AD*-family with $\mathcal{O} = \Sigma^*$. The almost disjointness number is $\mathfrak{a} = \min\{|\Sigma| : \Sigma \text{ is a } MAD\text{-family}\}.$

Let Σ be an AD-family. The Isbell-Mrówka space $\Psi(\Sigma)$ associated to Σ is the space whose underlying set is $\omega \cup \Sigma$ and ω is a discrete open subset of $\Psi(\Sigma)$ and a basic open neighborhood of $A \in \Sigma$ has the form $\{A\} \cup E$, where E is a cofinite subset of A. The space $\Psi(\Sigma)$ is a separable, locally compact, zerodimensional, Tychonoff space for any AD-family Σ . These spaces were discovered independently by J. Isbell and S. Mrówka. It is shown in [Mr] that Σ is a MADfamily if and only if the space $\Psi(\Sigma)$ is pseudocompact. In this article, all the Isbell-Mrówka spaces will be those associated to a MAD-family.

We are primarily concerned with determining when a permutation of ω can be extended to a homeomorphism between two given Isbell-Mrówka spaces. We begin Section 2 with some basic results and we show that if G is a countable subgroup of $\mathbf{S}(\omega)$, then there is a MAD-family Σ such that every element fof G can be extended to an autohomeomorphism of $\Psi(\Sigma)$. We also show here that for every $f \in \mathbf{S}(\omega)$ there is a MAD-family Σ such that $f \in Inv(\Sigma)$, where $Inv(\Sigma) = \{g \in \mathbf{S}(\omega) : g[A] \in \Sigma \text{ for all } A \in \Sigma\}$. Hence, in particular, there is a MAD-family Σ such that $n + A \in \Sigma$ whenever $A \in \Sigma$ and $n < \omega$, where $n + A = \{n + a : a \in A\}$ for $n < \omega$.

I thank V.I. Malykhin for helpful conversations on topics closely related to the content of this paper. In particular, the idea which later grew to the present Theorem 2.16.

2. Continuous extensions

The following lemma gives a condition for a function $f : \omega \to \omega$ to be extended to a continuous function from $\Psi(\Sigma_0)$ to $\Psi(\Sigma_1)$, where Σ_0 and Σ_1 are *MAD*families.

Lemma 2.1. Let Σ_0 and Σ_1 be *MAD*-families and $f : \omega \to \omega$ a finite-to-one function. Then, the following are equivalent:

- (1) f extends to a continuous function h from $\Psi(\Sigma_0)$ to $\Psi(\Sigma_1)$ with $h[\Sigma_0] \subseteq \Sigma_1$;
- (2) for every $A \in \Sigma_0$ there is $B \in \Sigma_1$ such that $f[A]^* \subseteq B^*$;
- (3) for every $A \in \Sigma_0$ there is $B \in \Sigma_1$ such that $f[A] \subseteq^* B$;
- (4) $\beta f : \beta(\omega) \to \beta(\omega)$ satisfies that for every $A \in \Sigma_0$ there is $B \in \Sigma_1$ such that $\beta f[A^*] \subseteq B^*$.

PROOF: $(3) \Leftrightarrow (4)$ is evident.

 $(1) \Rightarrow (2)$. Let $h: \Psi(\Sigma_0) \to \Psi(\Sigma_1)$ be a continuous extension of f and let $A \in \Sigma_0$. Put B = h(A). Since $V = \{B\} \cup B$ is a neighborhood of B, then there is a finite subset F of A such that $\{A\} \cup (A - F) \subseteq h^{-1}(V)$. Hence, $h[A - F] = f[A - F] \subseteq B$ and since F is finite, $f[A] \subseteq^* B$.

 $(2) \Leftrightarrow (3)$. This is evident.

 $(3) \Rightarrow (1)$. For every $A \in \Sigma_0$, we fix $B_A \in \Sigma_1$ such that $f[A] \subseteq^* B_A$. Then, we define $h: \Psi(\Sigma_0) \to \Psi(\Sigma_1)$ by $h \mid_{\omega} = f$ and $h(A) = B_A$ for every $A \in \Sigma_0$. Choose $A \in \Sigma_0$ and let $V = \{B_A\} \cup (B_A - E)$, where E is a finite subset of B_A . Set $F = f[A] - B_A$. Then, F is a finite set and hence $U = \{A\} \cup (A - (f^{-1}(E \cup F)))$ is a neighborhood of A in $\Psi(\Sigma_0)$ and $h[U] \subseteq V$. This shows that h is continuous and extends f. \square

If Σ_0 and Σ_1 are *MAD*-families and $f: \omega \to \omega$ is a finite-to-one function that satisfies one of the conditions of Lemma 2.1, then the continuous extension of f will be denoted by $\Psi(f, \Sigma_0, \Sigma_1) : \Psi(\Sigma_0) \to \Psi(\Sigma_1)$, if no confusion arises, then we simply write $\Psi(f)$. If f is finite-to-one, then the symbol $\Psi(f, \Sigma_0, \Sigma_1)$ (or $\Psi(f)$) will also mean that f can be extended to a continuous function from $\Psi(\Sigma_0)$ to $\Psi(\Sigma_1)$. Notice that if $f, g: \omega \to \omega$ are functions, f extends to a continuous function $\Psi(f)$: $\Psi(\Sigma_0) \to \Psi(\Sigma_1)$ and $\{n < \omega : f(n) \neq g(n)\}$ is finite, then g extends to a continuous function $\Psi(g): \Psi(\Sigma_0) \to \Psi(\Sigma_1)$ such that $\Psi(f)(A) = \Psi(g)(A)$ for each $A \in \Sigma_0$. If Σ is a MAD-family, then $Aut(\Psi(\Sigma))$ will denote the set of all autohomeomorphisms of $\Psi(\Sigma)$ and $\mathbf{S}(\Sigma) = \{f \in \mathbf{S}(\omega) :$ $\Psi(f) \in Aut(\Psi(\Sigma))$. Notice that if $\mathbf{S}(\omega)$ is equipped with the topology inherited from the product space ω^{ω} , then $\mathbf{S}(\Sigma)$ is a dense subgroup of $\mathbf{S}(\omega)$, for every MAD-family Σ .

Example 2.2. There is a MAD-family Σ and a bijection $f: \omega \to \omega$ such that f[A] = A for every $A \in \Sigma$ and f does not have any fixed point. Let $N_0, N_1 \in [\omega]^{\omega}$ be such that $N_0 \cap N_1 = \emptyset$ and $N_0 \cup N_1 = \omega$. Let Σ_0 be a MAD-family on N_0 and fix a bijection $f: \omega \to \omega$ such that $f[N_0] = f[N_1], f[N_1] = N_0$ and f^2 is the identity map. Then $\Sigma_1 = \{f[A] : A \in \Sigma_0\}$ is a MAD-family on N_1 . Now for each $A \in \Sigma_0$ we define $D(A) = A \cup f[A]$. Thus, $\Sigma = \{D(A) : A \in \Sigma_0\}$ is the required MAD-family.

The following example shows the existence of a MAD-family Σ such that for every $f \in \mathbf{S}(\omega)$ without fixed points there is $A \in \Sigma$ with $f[A] \cap A = \emptyset$. We need a lemma which was established by Katetov [Ka] (for a proof see [CN, Lemma 9.1]).

Lemma 2.3. Let α be a cardinal. If $f: \alpha \to \alpha$ is a function such that $f(\xi) \neq \xi$ for $\xi < \alpha$, then there are subsets A_0 , A_1 and A_2 of α such that

- (1) $\alpha = A_0 \cup A_1 \cup A_2;$
- (2) $A_i \cap A_j = \emptyset$ for $i, j \leq 2$ and $i \neq j$; and (3) $A_i \cap f[A_i] = \emptyset$ for $i \leq 2$.

Example 2.4. It is shown in [BV] that for every $p \in \omega^*$ there is an AD-family $\mathcal{A}_p = \{A_C : C \in p\}$ such that $A_C \in [C]^{\omega}$ for every $C \in p$. We now extend \mathcal{A}_p to a MAD-family Σ_p for every $p \in \omega^*$. Fix $p \in \omega^*$. Let $f \in \mathbf{S}(\omega)$ be without fixed points. It follows from Lemma 2.3, that there is a partition $\{C_0, C_1, C_2\}$ of ω such that $f[C_i] \cap C_i = \emptyset$ for every $i \leq 2$. Since p is an ultrafilter, there is $i \leq 2$ with $C_i \in p$. Then, $A_{C_i} \in [C_i]^{\omega}$ satisfies that $f[A_{C_i}] \cap A_{C_i} = \emptyset$.

The following lemma is useful to see when $\Psi(f)$ is a homeomorphism.

Lemma 2.5. Let $\Psi(\Sigma_0)$ and $\Psi(\Sigma_1)$ be MAD-families and $f \in \mathbf{S}(\omega)$. If $\Psi(f) : \Sigma_0 \to \Sigma_1$ is a bijection, then $\Psi(f)$ is a homeomorphism.

PROOF: We shall show that f^{-1} can be extended to a continuous function from $\Psi(\Sigma_1)$ to $\Psi(\Sigma_0)$. In fact, according to Lemma 2.1, it suffices to prove that $f[A] =^* B$ whenever $\Psi(f)(A) = B$ for $A \in \Sigma_0$ and $B \in \Sigma_1$. Indeed, suppose that $\Psi(f)(A) = B$ for $A \in \Sigma_0$ and $B \in \Sigma_1$. By Lemma 2.1, we have $f[A] \subseteq^* B$. Assume that C = B - f[A] is infinite. Then $f^{-1}(C)$ is infinite as well. Hence, there is $D \in \Sigma_0$ such that $f^{-1}(C) \cap D$ is infinite. Since $f[D] \cap B$ is infinite, $\Psi(f)(D) = B$. Thus, $\Psi(f)(A) = \Psi(f)(D)$ and $A \neq D$, which is a contradiction.

We remark that if $\Psi(f, \Sigma_0, \Sigma_1)$ is a homeomorphism, then $\beta f : \beta(\omega) \to \beta(\omega)$ satisfies that for every $A \in \Sigma_0$ there is $B \in \Sigma_1$ for which $\beta f[A^*] = B^*$. Notice that for an arbitrary homeomorphism $\Psi(f, \Sigma_0, \Sigma_1)$ the following property does not hold in general: for every $A \in \Sigma_0$ there is $B \in \Sigma_1$ such that f[A] = B.

Example 2.6. Let $\{A_n : n < \omega\} \subseteq [\omega]^{\omega}$ be a partition of ω . For each $n < \omega$, choose $\{a_j^n : j \leq n\} \subseteq A_n$ and $\{b_j^n : j \leq n\} \subseteq A_{n+1} - \{a_j^{n+1} : j \leq n+1\}$. Set $A = \{a_j^n : j \leq n, n < \omega\}$ and $B = \{b_j^n : j \leq n, n < \omega\}$. Then $\mathcal{A} = \{A, B\} \cup \{A_n : n < \omega\}$ is an AD-family. By Zorn's Lemma, we extend \mathcal{A} to a MAD-family Σ so that if $D \in \Sigma - \mathcal{A}$, then $D \cap \mathcal{A} = \emptyset = D \cap B$. Now, define $f : \omega \to \omega$ by $f(a_j^n) = b_j^n$ and $f(b_j^n) = a_j^n$ for $j \leq n$ and for $n < \omega$, and f(k) = k if $k \in \omega - (\mathcal{A} \cup B)$. Then, we have that $\Psi(f) : \Psi(\Sigma) \to \Psi(\Sigma)$ is a homeomorphism such that $\Psi(f)(D) = D$ for all $D \in \Sigma - \{\mathcal{A}, B\}, \Psi(f)(\mathcal{A}) = B, \Psi(f)(B) = \mathcal{A}, f[\mathcal{A}_n] =^* \mathcal{A}_n$ and $f[\mathcal{A}_n] - \mathcal{A}_n = \{a_j^{n-1} : j \leq n-1\} \cup \{b_j^n : j \leq n\}$ for every $1 \leq n < \omega$.

Let Σ_0 be a *MAD*-family and $\{A_n : n < \omega\} \subseteq \Sigma_0$. Define $B_0 = A_0$ and $B_n = A_n - \bigcup_{m < n} A_m$ for every $0 < n < \omega$. If $\Sigma_1 = (\Sigma_0 - \{A_n : n < \omega\}) \cup \{B_n : n < \omega\}$, then $\{B_n : n < \omega\}$ is pairwise disjoint and $\Psi(\Sigma_0)$ and $\Psi(\Sigma_1)$ are homeomorphic.

Theorem 2.7. Let Σ_0 and Σ_1 be *MAD*-families. If $h : \Psi(\Sigma_0) \to \Psi(\Sigma_1)$ is a homeomorphism, then $f = h \mid_{\omega}$ is a permutation of ω , $h = \Psi(f)$ and for every $A \in \Sigma_0$ there is $B \in \Sigma_1$ such that $f[A] =^* B$ (equivalently, $\beta f[A^*] = B^*$).

Our next goal is to prove the main theorem of this section. First, we show several preliminary results. We omit the proof of the following easy lemma.

Lemma 2.8. Let $f \in \mathbf{S}(\omega)$ and $A \in [\omega]^{\omega}$. Then the following are equivalent:

- (1) $\{D \in [\omega]^{\omega} : D = f^k[A] \text{ for some } k \in \mathbb{Z}\}$ is an AD-family;
- (2) $\{D \in [\omega]^{\omega} : D = f^n[A] \text{ for some } n < \omega\}$ is an AD-family;
- (3) for every $n < \omega$, either $f^n[A] = A$ or $|A \cap f^n[A]| < \omega$.

We should remark that for $A \in [\omega]^{\omega}$ and $f \in S(\omega)$, the condition "for every $n < \omega$, either $f^n[A] =^* A$ or $|A \cap f^n[A]| < \omega$ " does not necessarily imply that

"{ $D \in [\omega]^{\omega} : D = f^k[A]$ for some $k \in \mathbf{Z}$ } is an *AD*-family". Indeed, let $A = \omega - \{1\}$ and define $f \in S(\omega)$ by f(0) = 1, f(1) = 0 and f(k) = k for every $1 < k < \omega$. Then, $f^{2k}[A] = A$ and $f^{2k+1}[A] = f[A] = (A - \{0\}) \cup \{1\}$ for every $k < \omega$.

The next result is a direct consequence of Lemma 2.4 (for the details of the proof, we referred the reader to [CN, Theorem 9.2 (a)]).

Lemma 2.9. If $p \in \beta(\omega)$ and $f : \omega \to \omega$ is a function, then $\beta f(p) = p$ if and only if $\{n < \omega : f(n) = n\} \in p$.

The following lemma is essentially due to A.I. Baskirov [Ba, Lemma 2].

Lemma 2.10. Let $f \in \mathbf{S}(\omega)$ be such that f^n has no fixed points for every $1 \leq n < \omega$. Then for every $A \in [\omega]^{\omega}$ there is $B \in [A]^{\omega}$ such that $\{f^k[B] : k \in \mathbf{Z}\}$ is an infinite *AD*-family.

Baskirov's Lemma may be generalized as follows.

Lemma 2.11. Let $f \in \mathbf{S}(\omega)$. Then for every $A \in [\omega]^{\omega}$ there is $B \in [A]^{\omega}$ such that

$$\{D \in [\omega]^{\omega} : D = f^k[B] \text{ for some } k \in \mathbf{Z}\}$$

is an AD-family and if $f^k[B] \cap B$ is infinite for some $k < \omega$, then $f^k \mid_B$ is the identity map.

PROOF: In virtue of Lemma 2.9 and Lemma 2.10, we may assume that there is $1 \leq n < \omega$ such that $\{k \in A : f^n(k) = k\}$ is infinite. Without loss of generality, we may assume that $f^n |_A$ is the identity map and that n is the least positive integer such that $\{k \in A : f^i(k) = k\}$ is finite for every $1 \leq i < n$. If n = 1, then we put A = B. Suppose that 1 < n. Reasoning as in the proof of Lemma 2 of [Ba], for every $1 \leq i < n$ we can find $B_i \in [A]^{\omega}$ such that $B_{n-1} \subseteq B_{n-2} \subseteq \cdots \subseteq B_1 \subseteq A$ and $f^i[B_i] \cap B_i = \emptyset$ for every $1 \leq i < n$. Then, we put $B = B_{n-1}$. Hence, we have that $\{D \in [\omega]^{\omega} : D = f^k[B]$ for some $k \in \mathbb{Z}\} = \{f^{1-n}[B], \ldots, f^{-1}[B], B, f[B], \ldots, f^{n-1}[B]\}$. The conclusion follows from Lemma 2.8.

Lemma 2.12. Let $\{f_n : n < \omega\}$ be a set of permutations. Then for every $A \in [\omega]^{\omega}$ there is $B \in [A]^{\omega}$ such that

$$\{D^*: D = f_n^k[B] \text{ for some } n < \omega \text{ and for some } k \in \mathbf{Z}\}$$

is a set of pairwise disjoint clopen subsets of ω^* . In addition, if there is $m < \omega$ such that f_m^k has no fixed points on A for every $k \in \mathbf{Z}$, then $\{D^* : D = f_n^k[B] \text{ for some } n < \omega \text{ and for some } k \in \mathbf{Z}\}$ is infinite.

PROOF: Enumerate the set $\{f_n^k \circ f_m^j : (n,m) \in \omega \times \omega, (k,j) \in \mathbf{Z} \times \mathbf{Z}\}$ as $\{g_s : s < \omega\}$. By Lemma 2.11 and by induction, for each $s < \omega$ we may find $B_s \in [A]^{\omega}$ such that

(1) $B_s \subseteq B_t$ whenever $s < t < \omega$; and

S. García-Ferreira

(2) $\{D \in [\omega]^{\omega} : D = g_s^k[B_s] \text{ for some } k \in \mathbf{Z}\}$ is an *AD*-family and if $g_s^k[B_s] \cap B_s$ is infinite for some $k \in \mathbf{Z}$, then $g_s^k|_{B_s}$ is the identity map.

Since ω^* is an almost *P*-space (see [L]), there is $B \in [A]^{\omega}$ such that $B^* \subseteq \bigcap_{s < \omega} B^*_s$. Fix $(n, m) \in \omega \times \omega$ and $(j, k) \in \mathbb{Z}^2$. Then, we have that $|f_n^k[B]^* \cap f_m^j[B]^*| = |\beta f_n^k[B^*] \cap \beta f_m^j[B^*]| = |B^* \cap \beta (f_n^{-k} \circ f_m^j)[B^*]|$. Choose $t < \omega$ so that $g_t = f_n^{-k} \circ f_m^j$ and consider B_t . If $\beta g_t[B_t^*] \cap B_t^* = \emptyset$, then $\beta g_t[B^*] \cap B^* = \emptyset$ and hence $f_n^k[B]^* \cap f_m^j[B]^* = \emptyset$. Suppose that $\beta g_t[B_t^*] \cap B_t^* \neq \emptyset$. Then $g_t[B_t] \cap B_t$ is infinite. By clause (2), we obtain that $g_t \mid_{B_t}$ is the identity map and since $B \subseteq^* B_t$, we must have that $B^* = \beta g_t[B^*] = \beta (f_n^{-k} \circ f_m^j)[B^*]$; that is, $\beta f_n^k[B^*] = \beta f_m^j[B^*]$.

Assume that there is $m < \omega$ such that f_m^k has no fixed points on A for every $k \in \mathbb{Z}$. By Lemma 2.10, we may choose $C \in [A]^{\omega}$ so that $\{f_m^k[C] : k \in \mathbb{Z}\}$ is an infinite AD-family and $B \subseteq^* C$. Hence, $\{f_m^k[B]^* : k \in \mathbb{Z}\}$ is infinite. \Box

Theorem 2.13. Let G be a countable subgroup of $\mathbf{S}(\omega)$. Then there is a MAD-family Σ such that

$$\Psi(f) \in Aut(\Psi(\Sigma))$$
 for all $f \in G$.

PROOF: Without loss of generality we may assume that there is $h \in G$ such that h^n has no fixed points for every $1 \leq n < \omega$: if such a function h is not in G, then we add one to G. Now, enumerate $[\omega]^{\omega}$ as $\{A_{\xi} : \xi < \mathfrak{c}\}$, where A_0 satisfies that $\mathcal{O}_0 = \{D^* : D = f[A_0], f \in G\}$ is an infinite pairwise disjoint set (this is possible because of Lemma 2.12). Notice that if $D^* \in \mathcal{O}_0$, then $\beta f[D^*] \in \mathcal{O}_0$ for ever $f \in G$. Now, we proceed by transfinite induction. Assume that for every $\xi < \lambda < \mathfrak{c}$ we have defined a set $B_{\xi} \in [\omega]^{\omega}$ and an infinite set \mathcal{O}_{ξ} of pairwise disjoint clopen subsets of ω^* such that

(1) for every $\xi < \lambda$, either one of the following conditions holds:

- a. there is $B_{\xi} \in [A_{\xi}]^{\omega}$ such that $\beta f[B_{\xi}^*] \in \mathcal{O}_{\xi}$ for all $f \in G$; or
- b. $A_{\xi}^* \cap D^* \neq \emptyset$ for some $D^* \in \mathcal{O}_{\xi}$, in this case we have that $B_{\xi} = B_{\zeta}$ for some $\zeta < \xi$.

(2)
$$\mathcal{O}_{\xi} = \{D^* : D = f[B_{\zeta}], f \in G \text{ and } \zeta \leq \xi\}, \text{ for all } \xi < \lambda.$$

We should remark that:

- (3) $\mathcal{O}_{\xi} \subseteq \mathcal{O}_{\zeta}$ whenever $\xi < \zeta < \lambda$;
- (4) if $D^* \in \mathcal{O}_{\xi}$, for some $\xi < \lambda$, then $\beta f[D^*] \in \mathcal{O}_{\xi}$ for all $f \in G$;
- (5) $B_{\xi}^* \in \mathcal{O}_{\xi}$ for every $\xi < \lambda$.

Put $\mathcal{O} = \bigcup_{\xi < \lambda} \mathcal{O}_{\xi}$ and observe that \mathcal{O} is an infinite pairwise disjoint set, by clause (3). We consider two cases:

Case I. Suppose that $D^* \cap \beta f[A^*_{\lambda}] = \emptyset$ for every $f \in G$ and for every $D^* \in \mathcal{O}$. According to Lemma 2.12, we may find $B_{\lambda} \in [A_{\lambda}]^{\omega}$ such that $\{E^* : E = f[B_{\lambda}], f \in G\}$ is pairwise disjoint and infinite. Then, we define $\mathcal{O}_{\lambda} = \bigcup_{\xi < \lambda} \mathcal{O}_{\xi} \cup \{E^* : E = f[B_{\lambda}], f \in G\}$. It is not hard to see that \mathcal{O}_{λ} is pairwise disjoint. Case II. There are $D^* \in \mathcal{O}$ and $f \in G$ such that $D^* \cap \beta f[A^*_{\lambda}] \neq \emptyset$. Then, we have that $A^*_{\lambda} \cap \beta f^{-1}(D^*) \neq \emptyset$ and $\beta f^{-1}(D^*) \in \mathcal{O}$. In this case we define $\mathcal{O}_{\lambda} = \mathcal{O}$ and $B_{\lambda} = B_{\xi}$ for some $\xi < \lambda$.

Put $\mathcal{P} = \bigcup_{\xi < \mathfrak{c}} \mathcal{O}_{\xi}$. We have that \mathcal{P} is a set of pairwise disjoint clopen subsets of ω^* , because of clause (3). Choose $\Sigma \subseteq [\omega]^{\omega}$ so that $\Sigma^* = \mathcal{P}$ and $|A \cap B| < \omega$ whenever $A, B \in \Sigma$ and $A \neq B$. We have that Σ is an infinite AD-family. By clause (1), we obtain that Σ is a MAD-family. Fix $f \in G$ and $A \in \Sigma$. Then, $A^* \in \mathcal{O}_{\lambda}$ for some $\lambda < \mathfrak{c}$. By clause (4), we obtain that $\beta f[A^*] \in \mathcal{O}_{\lambda}$ and hence $\beta f[A^*] = B^*$ for some $B \in \Sigma$. So f extends to a continuous function $\Psi(f)$: $\Psi(\Sigma) \to \Psi(\Sigma)$, by Lemma 2.1. It remains to show that $\Psi(f)$ is a homeomorphism. In virtue of Lemma 2.5, it suffices to prove that $\Psi(f)$ is a bijection. Indeed, suppose that $\Psi(f)(A) = \Psi(f)(B)$ for $A, B \in \Sigma$. Then, $\beta f[A^*] = \beta f[B^*]$. Hence, $A^* = B^*$ since βf is a homeomorphism. But this is possible only for the case when A = B, by the definition of Σ . This shows that $\Psi(f)$ is one-to-one. Let $C \in \Sigma$. Then $C^* = \beta h[B^*_{\xi}]$ for some $h \in G$ and for some $\xi < \mathfrak{c}$. Hence, $C^* = \beta f[\beta(f^{-1} \circ h)[B^*_{\xi}]]. \text{ Since } \beta(f^{-1} \circ h)[B^*_{\xi}] \in \mathcal{O}_{\xi} \subseteq \mathcal{P}, \ \beta(f^{-1} \circ h)[B^*_{\xi}] = D^*$ for some $D \in \Sigma$. Hence, $\Psi(f)(D) = C$. Thus, $\Psi(f)$ is a surjection. Therefore, $\Psi(f) \in Aut(\Psi(\Sigma)).$

In Example 2.6, we saw that there are $f \in S(\omega)$ and a *MAD*-family Σ such that $\Psi(f) \in Aut(\Psi(\Sigma))$ and $f[A] \notin \Sigma$ for some $A \in \Sigma$.

For a *MAD*-family Σ , we set

$$Inv(\Sigma) = \{ f \in \mathbf{S}(\omega) : f[A] \in \Sigma \text{ for all } A \in \Sigma \}.$$

Observe that $Inv(\Sigma)$ is a subgroup of $\mathbf{S}(\omega)$ and if $f \in Inv(\Sigma)$, then $\Psi(f) \in Aut(\Psi(\Sigma))$, for every MAD-family Σ . The MAD-family Σ of Example 2.6 satisfies that there is $f \in \mathbf{S}(\omega)$ such that $\Psi(f) \in Aut(\Psi(\Sigma))$ and $f \notin Inv(\Sigma)$. It is not hard to prove that $Inv(\Sigma) \neq S(\omega)$ for every MAD-family Σ (see Theorem 2.19 below). It was shown in Theorem 2.13 that for every countable subgroup G of $\mathbf{S}(\omega)$ there is a MAD-family Σ such that $\Psi(f) \in Aut(\Psi(\Sigma))$ for all $f \in G$. This leads us to ask:

Question 2.14. If $F \subseteq \mathbf{S}(\omega)$ is countable, does there a MAD-family Σ exist so that $F \subseteq Inv(\Sigma)$?

Unfortunately, the previous question remains open. If $F = \{f\}$ for $f \in \mathbf{S}(\omega)$, then the answer is in the positive fashion as it is shown in the next theorem.

Theorem 2.15. For every $f \in \mathbf{S}(\omega)$ there is a MAD-family Σ such that $f \in Inv(\Sigma)$.

PROOF: Fix $f \in \mathbf{S}(\omega)$. We consider two cases:

Case I. There is $1 \le n < \omega$ such that $\{k < \omega : f^n(k) = k\}$ is infinite. Let *n* be the least positive integer with this property. If n = 1, then we choose a *MAD*-family Σ_0 of infinite subsets of $F = \{k < \omega : f^n(k) = k\}$ and we define either

 $\Sigma = \Sigma_0 \cup \{\omega - F\}$ if $\omega - F$ is infinite or $\Sigma = \Sigma_0$ otherwise. Suppose that 1 < n. Then, we have that $\{k < \omega : f^i(k) = k\}$ is finite for every $1 \le i < n$. Following the proof of Lemma 2.11, we may find an infinite subset B of $\{k < \omega : f^n(k) = k\}$ such that

$$\{D \in [\omega]^{\omega} : D = f^{k}[B] \text{ for some } k \in \mathbf{Z}\} = \{f^{1-n}[B], \dots, f^{-1}[B], B, \dots, f^{n-1}[B]\}.$$

and $f^{i}[B] \cap f^{j}[B] = \emptyset$, whenever -n < i < j < n and |j - i| < n. Let Σ_{1} be a *MAD*-family on *B*. Set $N = \omega - (\bigcup_{k \in \mathbb{Z}} f^{k}[B])$ and notice that $f^{k}[N] = N$ for every $k \in \mathbb{Z}$. Define either $\Sigma = \{f^{i}[A] : A \in \Sigma_{1}, -n < i < n\} \cup \{N\}$ if *N* is infinite or $\Sigma = \Sigma_{1}$ otherwise. Then, we have that Σ is an infinite *AD*-family on ω . If $C \in [\omega]^{\omega}$, then either $C \cap N$ is infinite or there is -n < i < n such that $C \cap f^{i}[B]$ is infinite. Then, $f^{-i}[C] \cap B$ is infinite and hence there is $A \in \Sigma_{1}$ such that $|A \cap f^{-i}[C] \cap B| = |C \cap f^{i}[A]| = \omega$. Thus, Σ is a *MAD*-family and $f \in Inv(\Sigma)$.

Case II. Suppose that $\{k < \omega : f^n(k) = k\}$ is finite for every $1 \le n < \omega$. In virtue of Lemma 2.9, we have that f^n has no fixed points for every $1 \le n < \omega$. Now, enumerate $[\omega]^{\omega}$ as $\{E_{\xi} : \xi < \mathfrak{c}\}$. We shall proceed by transfinite induction. By Lemma 2.10, choose $A_0 \in [E_0]^{\omega}$ so that $\{f^k[A_0] : k \in \mathbf{Z}\}$ is an infinite *AD*-family. Suppose that for every $\xi < \lambda < \mathfrak{c}$ we have defined $A_{\xi} \in [\omega]^{\omega}$ such that

(1) $\bigcup_{\zeta < \xi} \{ f^k[A_{\zeta}] : k \in \mathbf{Z} \}$ is an *AD*-family for every $\xi < \lambda$; and

(2) for every $\xi < \lambda$ there is $k \in \mathbb{Z}$ such that $E_{\xi} \cap f^k[A_{\xi}]$ is infinite.

If there are $\xi < \lambda$ and $k \in \mathbf{Z}$ such that $E_{\lambda} \cap f^{k}[A_{\xi}]$ is infinite, then we put $A_{\lambda} = A_{\xi}$. Now, Suppose that $|E_{\lambda} \cap f^{k}[A_{\xi}]| < \omega$ for every $\xi < \lambda$ and for every $k \in \mathbf{Z}$. By Lemma 2.10, we may find $A_{\lambda} \in [E_{\lambda}]^{\omega}$ such that $\{f^{k}[A_{\lambda}] : k \in \mathbf{Z}\}$ is an infinite *AD*-family. Let $j, k \in \mathbf{Z}$ and $\xi < \lambda$. Then,

$$|f^{j}[A_{\lambda}] \cap f^{k}[A_{\xi}]| = |A_{\lambda} \cap (f^{-j} \circ f^{k})[A_{\xi}]| =$$
$$= |A_{\lambda} \cap f^{k-j}[A_{\xi}]| \le |E_{\lambda} \cap f^{k-j}[A_{\xi}]| < \omega.$$

Therefore, $\bigcup_{\zeta \leq \lambda} \{D : D = f^k[A_{\zeta}], k \in \mathbb{Z}\}$ is an *AD*-family.

Finally, we define $\Sigma = \bigcup_{\xi < \mathfrak{c}} \{D : D = f^k[A_{\xi}], k \in \mathbb{Z}\}$. It follows from clauses (1) and (2) that Σ is a *MAD*-family and $f \in Inv(\Sigma)$.

Corollary 2.16. There is a MAD-family Σ such that $n + A \in \Sigma$ whenever $A \in \Sigma$ and $n < \omega$, where $n + A = \{n + a : a \in A\}$ for $n < \omega$.

PROOF: Define $\tau : \omega \to \omega$ by $\tau(k) = 1 + k$ for every $k \in \omega$. If $n < \omega$, then $\tau^n(k) = n + k$ for every $k < \omega$. Applying Theorem 2.15, there is a *MAD*-family Σ such that $\tau^n(A) = n + A \in \Sigma$ for every $n < \omega$ and for every $A \in \Sigma$. \Box

We shall verify that a MAD-family which is invariant under the multiplication of positive integers does not exist:

Theorem 2.17. There is no MAD-family Σ such that

 $n \cdot A \in \Sigma$,

for every $A \in \Sigma$ and for every $1 \le n < \omega$, where $n \cdot A = \{n \cdot a : a \in A\}$ for $1 \le n < \omega$.

PROOF: We define

$$\mathcal{D} = \{ D \in [\omega]^{\omega} : |\{ d \in D : n \setminus d\}| < \omega \text{ for every } 1 < n < \omega \}.$$

Suppose that Σ is a *MAD*-family such that $n \cdot A \in \Sigma$, for every $A \in \Sigma$ and for every $1 \leq n < \omega$. Fix $A \in \Sigma$ and assume that $A \notin \mathcal{D}$. Then, there is $1 < n_0 < \omega$ such that $B_0 = \{a \in A : n_0 \setminus a\}$ is infinite. Choose $C_0 \in [\omega]^{\omega}$ with $n_0 \cdot C_0 = B_0$. We have that there is $D_0 \in \Sigma$ such that $|D_0 \cap C_0| = \omega$ and so $n_0 \cdot D_0 \cap A$ is infinite. Since $n_0 \cdot D_0 \in \Sigma$, we have $n_0 \cdot D_0 = A$. If $D_0 \notin \mathcal{D}$, by an argument similar to the previous one, we may find $1 < n_1$ and $D_1 \in \Sigma$ such that $n_1 \cdot D_1 = D_0$ and hence $n_0 \cdot n_1 \cdot D_1 = A$. Since every positive natural number has finitely many divisors, there must be $D_r \in \mathcal{D} \cap \Sigma$ and $n_0, \ldots, n_r < \omega$ such that $1 < n_i$ for each $j \leq r$ and $n_0 \cdot \ldots \cdot n_r \cdot D_r = A$. This shows that for every $A \in \Sigma$ either $A \in \mathcal{D}$ or there are $D \in \mathcal{D} \cap \Sigma$ and $1 < n_0 \leq \cdots \leq n_r < \omega$ such that $n_0 \cdot \ldots \cdot n_r \cdot D = A$. Now, enumerate the set of all prime numbers by $\{p_n : n < \omega\}$ and let $P = \{p_0 \cdot \ldots \cdot p_n : n < \omega\}$. It is clear that $|P \cap A| < \omega$ for every $A \in \mathcal{D} \cap \Sigma$. By the maximality of Σ , there is $B \in \Sigma - \mathcal{D}$ such that $P \cap B$ is infinite. We may find $D \in \mathcal{D} \cap \Sigma$ and $1 < n_0 < \cdots < n_r < \omega$ such that $n_0 \cdot \ldots \cdot n_r \cdot D = B$. Let $N < \omega$ be such that p_n does not divide n_j for every $j \leq r$ and for every $N \leq n < \omega$. Since $P \cap B$ is infinite, the intersection $\{k : p_N \setminus k\} \cap D$ must be infinite, but this is a contradiction.

We pointed out that $\mathbf{S}(\Sigma)$ is a dense subgroup of $\mathbf{S}(\omega)$ for every *MAD*-family Σ . This fact may be improved as follows. We need some notation to describe the topology on $S(\omega)$.

If $j < \omega$ and $n < \omega$, then we write $[j, n] = \{f \in \mathbf{S}(\omega) : f(j) = n\}$. We know that $\{[j, n] : (j, n) \in \omega \times \omega\}$ forms a subbase for the topology on $\mathbf{S}(\omega)$ which is considered as a subspace of the product space ω^{ω} .

Theorem 2.18. For every MAD-family Σ , we have that $S(\Sigma) - Inv(\Sigma)$ is dense in $S(\omega)$.

PROOF: Let $V = \bigcap_{j < n} [j, k_j] \neq \emptyset$ be a basic open subset of $S(\omega)$. Fix $A \in \Sigma$, $a \in A - (n \cup \{k_j : j < n\})$ and $b \in \omega - (A \cup n \cup \{k_j : j < n\})$. Define $f : \omega \to \omega$ by $f(j) = k_j$ for every j < n, $f(k_j) = j$ for every j < n, f(a) = b, f(b) = a and f(k) = k for every $k \in \omega - (n \cup \{k_j : j < n\} \cup \{a, b\})$. It is clear that $f \in S(\Sigma)$ and $f[A] =^* A$, but $f[A] \notin \Sigma$, since $f[A] \neq A$. Therefore, $f \in V \cap (S(\Sigma) - Inv(\Sigma))$.

As a particular case of Theorem 2.18 we have that $S(\Sigma) \neq Inv(\Sigma)$ for every *MAD*-family Σ .

We do not know whether there is a MAD-family Σ such that $Inv(\Sigma)$ is dense in $\mathbf{S}(\omega)$. Next we present some results related to the density of $Inv(\Sigma)$, in $S(\Sigma)$, and an example of a MAD-family Σ for which $Inv(\Sigma)$ is not dense in $\mathbf{S}(\omega)$.

Let $S = \{s : s : n \to \omega \text{ is one-to-one, } n < \omega\}$. For $n < \omega$ and a one-to-one function $s : n \to \omega$, $h_s : \omega \to \omega$ will stand for an arbitrary extension of s (i.e., $s \subseteq h_s$), and $\mathcal{H} = \{h_s : s \in S\}$ will stand for an arbitrary set of these extensions. Two different choices of extensions $h'_s s$ will produce two different sets $\mathcal{H}'s$.

Lemma 2.19. Let Σ be a *MAD*-family. Then $Inv(\Sigma)$ is dense in $\mathbf{S}(\omega)$ if and only if there is a set \mathcal{H} of extensions such that $\mathcal{H} \subseteq Inv(\Sigma)$.

PROOF: Necessity. Suppose that $Inv(\Sigma)$ is dense in $\mathbf{S}(\omega)$ and fix $s \in S$. We have that the domain of s is equal to n for some $n < \omega$. Consider the basic open $V = \bigcap_{j < n+1} [j, s(j)]$. We have that $V \cap \mathbf{S}(\omega) \neq \emptyset$. By assumption, there is $h \in V \cap Inv(\Sigma)$. It is evident that h extends s. Thus, the set \mathcal{H} satisfies the conditions.

Sufficiency. Suppose that $\mathcal{H} \subseteq Inv(\Sigma)$ and let $V = \bigcap_{j < n} [j, k_j]$ be a basic nonempty open set of $\mathbf{S}(\omega)$. Notice that $k_i \neq k_j$ provided that i < j < n. Define $s : n \to \omega$ by $s(j) = k_j$ for every j < n. Then, we have that $s \in \mathcal{S}$. By hypothesis, there is $h_s \in \mathcal{H} \subseteq Inv(\Sigma)$ which extends s. Therefore, $h_s \in V \cap Inv(\Sigma)$. This shows that $Inv(\Sigma)$ is dense in $\mathbf{S}(\omega)$.

We remark that if the condition of Question 2.14 holds for some of the countable sets \mathcal{H} , then there is a *MAD*-family Σ such that $Inv(\Sigma)$ is dense in $\mathbf{S}(\omega)$.

Definition 2.20. Let Σ be a *MAD*-family. We say that a finite set $\{a_0, \ldots, a_n\}$ of positive integers generates Σ if

 $\{a_0,\ldots,a_n\} \cap A \neq \emptyset$ for all $A \in \Sigma$.

Theorem 2.21. If Σ is a *MAD*-family generated by a finite set $\{a_0, \ldots, a_n\}$ of positive integers, then $Inv(\Sigma)$ is not dense in $\mathbf{S}(\omega)$.

PROOF: Suppose that $Inv(\Sigma)$ is dense in $\mathbf{S}(\omega)$. According to Lemma 2.19, there is a set $\mathcal{H} = \{h_s : s \in \mathcal{S}\}$ of extensions such that $\mathcal{H} \subseteq Inv(\Sigma)$. Since $Inv(\Sigma)$ is a subgroup of $\mathbf{S}(\omega), h_s^{-1} \in Inv(\Sigma)$ for all $s \in \mathcal{S}$. Fix $A \in \Sigma$. We have that $\omega - A$ is infinite. Choose a one-to-one function $s : m \to \omega$, where $m = \max\{a_j : j \leq n\} + 1$, so that $s(a_j) \in \omega - A$ for every $j \leq n$. Consider $h_s \in \mathcal{H}$. Since $h_s^{-1}(A) \in \Sigma$ there is $i \leq n$ such that $a_i \in h_s^{-1}(A)$ and hence $h_s(a_i) = s(a_i) \in A$, but this is a contradiction. \Box

As a direct application of Theorem 2.21, we have that if Σ is a *MAD*-family, then $\Delta = \{A \cup \{0\} : A \in \Sigma\}$ is also a *MAD*-family such that $Inv(\Delta)$ is not dense in $\mathbf{S}(\omega)$.

The proof of the next result is straightforward.

Theorem 2.22. Let Σ be a *MAD*-family generated by the finite set $\{a_0, \ldots, a_n\}$. If for every $F \in [\omega - \{a_0, \ldots, a_n\}]^{<\omega}$ there is $A \in \Sigma$ such that $A \cap F = \emptyset$, then f is a permutation of $\{a_0, \ldots, a_n\}$ for every $f \in Inv(\Sigma)$.

Let Σ be a *MAD*-family generated by the set $\{a_0, \ldots, a_n\}$. We have that $|\Sigma| > \omega$ and hence Σ can be enumerated as $\{A_{\xi} : \xi < \alpha\}$, where α is an uncountable cardinal number. Enumerate $[\omega - \{a_0, \ldots, a_n\}]^{<\omega}$ as $\{F_n : n < \omega\}$. Define $B_n = A_n - F_n$ for each $n < \omega$ and $B_{\xi} = A_{\xi}$ for every $\omega \leq \xi < \alpha$. Then, $\{B_{\xi} : \xi < \alpha\}$ is a *MAD*-family satisfying the conditions of Theorem 2.22.

Theorem 2.23. If Σ is a MAD-family satisfying that there is $A \in \Sigma$ such that

(1) $A \cap B \neq \emptyset$ for every $B \in \Sigma$; and

(2) for every $B \in \Sigma - \{A\}$ there is $C \in \Sigma$ such that $B \cap C = \emptyset$,

then f[A] = A for every $f \in Inv(\Sigma)$.

PROOF: Let $f \in Inv(\Sigma)$. If $f^{-1}(A) \neq A$, then, by clause (2), there is $C \in \Sigma$ such that $f^{-1}(A) \cap C = \emptyset$ and hence $A \cap f[C] = \emptyset$, which is a contradiction to clause (1). Therefore, $f^{-1}(A) = A$ and hence f[A] = A.

Let $\{A, B, C\}$ be a partition of ω in three infinite subsets. Fix a_0 and a_1 two different points of A. Let Σ_0 and Σ_1 be MAD-families on B and C, respectively. Then,

$$\Sigma = \{ D \cup \{a_0\} : D \in \Sigma_0 \} \cup \{ D \cup \{a_1\} : D \in \Sigma_1 \} \cup \{A\}$$

is a MAD-family on ω that satisfies the conditions of Theorem 2.23.

Question 2.24. Is there a MAD-family Σ such that $Inv(\Sigma)$ is dense in $S(\Sigma)$?

Question 2.25. Is there a MAD-family Σ such that $Inv(\Sigma)$ is closed in $S(\Sigma)$?

References

- [BV] Balcar B., Vojtáš P., Almost disjoint refinement of families of subsets of N, Proc. Amer. Math. Soc. 79 (1980), 465–470.
- [Ba] Baskirov A.I., On maximal almost disjoint systems and Franklin bicompacta, Soviet. Math. Dokl. 19 (1978), 864–868.
- [CN] Comfort W.W., Negrepontis S., The Theory of Ultrafilters, Grudlehren der Mathematischen Wissenschaften, Vol. 211, Springer-Verlag, 1974.
- [GJ] Gillman L., Jerison M., Rings of Continuous Functions, Graduate Texts in Mathematics, Vol. 43, Springer-Verlag, 1976.
- [Ka] Katětov M., A theorem on mappings, Comment. Math. Univ. Carolinae 8 (1967), 431-433.
- [L] Levy R., Almost P-spaces, Can. J. Math. 29 (1977), 284–288.
- [Mr] Mrówka S., On completely regular spaces, Fund. Math. 41 (1954), 105–106.

INSTITUTO DE MATEMÁTICAS, CIUDAD UNIVERSITARIA (UNAM), 04510, MÉXICO, D.F.

E-mail: sgarcia@zeus.ccu.umich.mx garcia@servidor.unam.mx

(Received January 24, 1997, revised July 21, 1997)