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On sub-, pseudo- and quasimaximal spaces

J. Schröder

Dedicated to Professor Banaschewski on his seventyfirst birthday.

Abstract. The structure of sub-, pseudo- and quasimaximal spaces is investigated.
A method of constructing non-trivial quasimaximal spaces is presented.
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Introduction. A topological space is called submaximal, if every dense set is
open. Or equivalently, every subset is the intersection of a closed set and an open
set. The reader is expected to be familiar with the basic results about sub- and
quasimaximal spaces as they are e.g. presented in Hewitt [Hew43] and Bourbaki
[Bou66]. General topological notions are adopted from Engelking [Eng77]. I am
assuming AC. Recently Arhangel’skii & Collins [A&C95] gave a systematic study
of submaximal spaces. Submaximality often comes along with maximal-P spaces
(e.g. P = connected, feebly compact, pseudocompact) see Cameron [Cam77] and
Raha [Rah71], because it resembles a property of ultrafilters: If A ⊆ X and A
intersects every O ∈ X \ {∅}, then A ∈ X . Quasi- and submaximal spaces were
introduced by Bourbaki [Bou66]. If without isolated points, Hewitt [Hew43] calls
the latter MI-spaces. We begin with a few simple observations. Recall that a
space is called TD, if cl{x} \ {x} is closed for all points x ∈ X . TD is stronger
than T0.

Definition 1. A topological space (X,X ) is called

(a) submaximal, if every dense set is open,
(b) pseudomaximal, if every strictly finer topology adds new isolated points,
(c) quasimaximal, if (X,X ) is pseudomaximal and possesses no isolated
points.

Lemma 2. Let (X,X ) be a submaximal space. Then

(a) (X,X ) is TD,

(b) if x ∈ X is non-isolated, then cl{x} = {x}.

Proof: (a) {x} is open in cl{x}.
(b) X \ {x} is dense. �
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Remark 3. Hence submaximality alone does not impose strong separation ax-
ioms. A trivial ultrafilter on a set provides an example of a submaximal space
with a dense singleton.

Lemma 4. Let (X,X ) be a topological space. Then the following statements are
equivalent:

(a) (X,X ) is pseudomaximal;
(b) every subspace without new isolated points (i.e. every isolated point of
the subspace is isolated in X) is open.

Proof: Easy. �

Lemma 5. A subspace A ⊆ X of a pseudomaximal space (X,X ) is pseudomax-
imal.

Proof: Suppose B ⊆ A does not have new isolated points with respect to A.
For every isolated point i ∈ B choose Ui ∈ X such that A∩Ui = {i}. Then B̃ :=
B ∪

⋃
i Ui has no new isolated points with respect to X : Assume Oz ∩ B̃ = {z}.

Then Oz ∩
⋃
Ui = {z} and z is isolated in X or Oz ∩ B = {z} and z belongs to

one of the Ui’s. Now make use of Lemma 4 and observe A ∩ B̃ = B. �

Theorem 6. Let (X,X ) be a topological space. Then the following statements
are equivalent:

(a) (X,X ) is pseudomaximal and T0;
(b) (X,X ) is submaximal and extremally disconnected.

Proof:

⇓ Let O ∈ X . clO does not have new isolated points and is therefore open. Let
D be dense. Then D contains all isolated points of X . Assume {d} = D ∩Od

is a new isolated point of D, where Od ∈ X . Since D is dense, Od ⊆ cl{d} and
Od \ {d} is not open (it even has empty interior). Hence ∃Uz ∈ X : Uz ∩Od \
{d} = {z}. It follows Uz ∩Od = Uz∩(Od \{d}∪{d}) = {z}∪Uz∩{d} = {z, d}.
Every finite open set in a T0 space contains an open singleton. {d} cannot be
open, because d is a new isolated point, neither can {z} be open.

⇑ Let A ⊆ X be without new isolated points. By submaximality, A \ intA is
discrete. So x ∈ A \ intA implies ∃Ux : Ux ∩A \ intA = {x}. Since A has no
new isolated points, Ux ∩ intA 6= ∅ follows. Hence clA = cl(intA), which is
open, because of extremally disconnectedness and A is open as dense subset of
the open set clA. �

Corollary 7 (Bourbaki [Bou66] for T2). Let (X,X ) be a topological space. Then
the following statements are equivalent:

(a) X is submaximal, extremally disconnected and without isolated points;
(b) X is quasimaximal and T0.
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Proof:

⇓ By Lemma 2, X is T1. By Theorem 6, X is pseudomaximal.
⇑ See Theorem 6. �

Remark 8. (a) A quasimaximal T0 space is always T1. The example from Re-
mark 3 is pseudomaximal but not T1. The two-point indiscrete space is quasi-
maximal but not submaximal.

(b) More generally, a quasimaximal space can have at most two-point indiscrete
subspaces and each of these is open. The set of supersets of a two-point subset
together with the empty set provides an example of a quasimaximal topology
where the two-point indiscrete subspace is not closed.

(c) Since there are maximal connected T2 spaces ([GSW77]), there are non-
pseudomaximal submaximal spaces without isolated points.

(d) For T0-spaces, quasimaximal⇒ pseudomaximal⇒ submaximal. None of these
implications can be reversed. The Alexandroff compactification N ∪ {∞} of the
naturals is submaximal but not pseudomaximal. Refine the filter of finite comple-
ments belonging to ∞ to an ultrafilter and the resulting space is pseudomaximal
but not quasimaximal.

(e) Recall that a space (X,X ) is called (strongly) σ-discrete, if X can be repre-
sented as countable union of (closed) discrete subspaces.

Lemma 9. Let (X,X ) be submaximal without isolated points. Then the follow-
ing statements are equivalent:

(a) X is strongly σ-discrete;
(b) X is σ-discrete;
(c) ∃ dense Dn ∈ X , n ∈ N :

⋂
N
Dn = ∅.

Proof:

⇓ Trivial.
⇑ Let A ⊆ X be discrete. Since X has no isolated points, X \ A is dense
and therefore A is closed.

⇓⇓⇑⇑ Set Dn := X \An and An = X \Dn. Since Dn∩Dm is dense for n,m ∈ N

we may even assume Dn ⊆ Dm for m ≤ n.

�

Theorem 10. If every submaximal space is σ-discrete, then there are no mea-
surable cardinals.

Proof: Let M be a countable complete ultrafilter on X . Then (X,M ∪ {∅})
is submaximal (even quasimaximal). Assume there are sets Dn as indicated in
Lemma 9(c). Since all Dn are dense, we have Dn ∈ M for all n ∈ N. But⋂
Dn = ∅ is a contradiction. �
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Remark 11. (a) Theorem 10 answers partly a question of Arhangel’skii & Collins
[A&C95].

(b) In the sequel U−(x) denotes the filter generated by {Ux \ {x} |Ux ∈ U(x)},
where x is non-isolated and U(x) is the neighbourhood filter of x.

(c) An open ultrafilter is an ultrafilter with a base of open sets (= open generated
ultrafilter). A maximal open filter instead is a maximal filter in X . A filter is
called free if it has no adherence points. A filter is non-trivial if it is finer than
the filter of finite complements.

Theorem 12. Let (X,X ) be submaximal and let x ∈ X be non-isolated. Further
let F be a filter with F ⊇ U−(x). Then {intF |F ∈ F} generates an open filter
finer than F .

Proof: Let F ∈ F . {x} ∪ X \ F is not open, because (Ux \ {x}) ∩ F 6= ∅ for
all Ux ∈ U(x). Hence {x} ∪ X \ F is not dense. There is O ∈ X \ {∅} with
O ∩ ({x} ∪ X \ F ) = ∅. This yields O ∩ X \ F = ∅ and O ⊆ F . Therefore
F ∈ F ⇒ intF 6= ∅ and ∅ 6= int(F ∩G) = intF ∩ intG for F,G ∈ F . �

Corollary 13. Every ultrafilter finer than U−(x) is open generated. �

Theorem 14. Let (X,X ) be a T0-space. Then the following statements are
equivalent:

(a) X is pseudomaximal;
(b) U−(x) is ultrafilter for every non-isolated x ∈ X .

Proof:

⇓ Take two different ultrafilters F ,F ′ finer than U−(x). There are F ∈ F ,
F ′ ∈ F ′ such that F ∩ F ′ = ∅. By Corollary 13 we may assume that both
F, F ′ are open. By Theorem 6 clF ∩ clF ′ = ∅, too. But x ∈ clF ∩ clF ′ is a
contradiction. Hence there is exactly one ultrafilter finer than U−(x). This
implies that U−(x) is a prime filter and in turn an ultrafilter itself.

⇑ Let A ⊆ X be non-open. We have to show that the subspace A adds an isolated
point. Since A is non-open, there is a point a ∈ A no neighbourhood of which
is contained in A. Certainly a is not isolated. Since U−(a) is ultrafilter, there
is V ∈ U−(a) with V ⊆ X \ A. Va := V ∪ {a} is a neighbourhood of a with
Va ∩A = {a}. �

Corollary 15. Let (X,X ) be T0-space. Then the following statements are equiv-
alent:

(a) X is quasimaximal;
(b) U−(x) is ultrafilter for all x ∈ X . �

Corollary 16. Let (X,X ) be T0-space such that card(X) is below the first mea-
surable. If X is pseudomaximal, then ψ(X) ≤ ℵ0.

Proof: If x ∈ X is non-isolated, choose a countable family {Gn |n ∈ N} ⊂ U−(x)
satisfying

⋂
{Gn} = ∅. Then {x} =

⋂
{Gn ∪ {x}} is Gδ. �
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Remark 17. (a) If N is the collection of nowhere dense sets of X , then {Ux \
N |Ux ∈ U(x) ∧ N ∈ N} generates a filter which is only apparently finer than
U−(x), because in a submaximal space, N ∈ N is closed discrete.

(b) How do quasimaximal spaces look? Let A ⊆ X and take a point x ∈ δA
in the boundary of A. Corollary 15 tells us, that neighbourhoods of x either
reach out to A or to X \A. A picture of this situation suggests that we may call
quasimaximal spaces also zipper spaces. This point of view leads to a new charac-
terization of pseudomaximal spaces in Theorem 18. A similar result is already con-
tained in the paper [vDo93] of the late Eric van Douwen for perfectly disconnected
(= quasimaximal T2) spaces.

(c) U(x) is centered around x. There are other open filters of interest which are
not centered: the non-convergent maximal open filters, which we will use to build
the Katětov extension. This is done in Theorem 19.

Theorem 18. Let (X,X ) be a T0-space. Then the following statements are
equivalent:

(a) (X,X ) is pseudomaximal;
(b) if A,B ⊆ X are disjoint, then ∀x∈Xx /∈ clX(A \ {x}) ∩ clX(B \ {x}).

Proof: We will make use of Theorem 14.
⇓ Of course, an ultrafilter cannot sit simultaneously on two disjoint sets.
⇑ Take x ∈ X and A ⊆ X . If x is isolated, the statement is obviously true. Set
B := X \ A and assume without loss of generality x ∈ clX(A \ {x}). Then
x /∈ clX(B\{x}), which implies x ∈ intX(A∪{x}) and intX(A∪{x})\{x} ⊆ A.
Hence A ∈ U−(x) or X \A ∈ U−(x). �

Theorem 19. Let (X,X ) be a T0-space and κX its Katětov extension.

(a) If X is submaximal, then so is κX .
(b) If X is pseudomaximal, then so is κX .
(c) If X is quasimaximal, then so is κX .

Proof: κX is T0.

(a) Let D ⊆ κX be dense. Since X is open in κX , D∩X is dense in X and hence
open. Since the traces on X of neighbourhood filters U(xκ) of points xκ ∈ κX \X
are all maximal open filters, D ∩X ∪ {xκ} ∈ U(xκ) for all xκ. Since κX \X is
discrete, D ⊆ X is open.

(b) According to Theorem 6 we have to show that κX is extremally disconnected.
Let O ⊆ κX be open. X ∩ clκO is closed and open in X . On the other hand
xκ ∈ clκO ⇒ ∀Uxκ

: Uxκ
∩O ∩X 6= ∅ ⇒ X ∩O ∈ U−(xκ), since U

−(xκ) = xκ is
a maximal open filter.

(c) If X is without isolated points, then so is κX . �
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Corollary 20. In a submaximal space, free maximal open filters are ultrafilters.

Proof: If xκ is a maximal open filter, then X ∪ {xκ} is submaximal subspace
of κX . An ultrafilter finer than U−(xκ) is open generated and must coincide
with xκ. �

Remark 21. (a) All free ultrafilters other than those from Corollary 20 are
sitting on nowhere dense sets and do not converge.

(b) Let (X,X ) be submaximal without isolated points and let B1,B2 be two free
maximal open filters on X . Define a neighbourhood base of∞ by its trace B1∩B2
on X . Then X ∪ {∞} is submaximal. This shows that submaximality together
with the absence of isolated points does not guarantee the maximality property
of Theorem 14.

(c) The existence of free ultrafilters is ensured by AC. Corollary 15 shows that
AC can provide many ultrafilters at once which are even interlinked such that the
4th neighbourhood axiom is fulfilled.

(d) The Katětov extension of a discrete space is pseudomaximal.

Theorem 22. Let (X,X ) be a submaximal space. For every non-isolated x ∈ X
select an ultrafilter P (x) := Fx ⊇ U−(x). Then BP := {{x} ∪ intX Fx |x ∈
X ∧ Fx ∈ P (x)} ∪ {{x} |x is isolated in (X,X )} is basis of a pseudomaximal
topology XP on X with the same isolated points as (X,X ).

Proof: To show: z ∈ B1 ∩B2 ⇒ ∃B3 : z ∈ B3 ⊆ B1 ∩B2.
Let z ∈ ({x} ∪ intX Fx)∩ ({y} ∪ intX Fy). There is no problem, if z is isolated

in (X,X ).

(I) x = y: z = x = y poses no problem. Now z ∈ intX Fx ∩ intX Fy and
intX Fx ∩ intX Fy is in X . Hence ∃Fz : {z} ∪ intX Fz ⊆ intX Fx ∩ intX Fy .

(II) x 6= y: w.l.o.g. z 6= y. Then z ∈ {x} ∩ intX Fy ∪ intX Fx ∩ intX Fy . If
z ∈ intX Fx ∩ intX Fy , see (I), otherwise z = x and intX Fy is a neighbourhood of
x in (X,X ). This yields a Gz ∈ P (x) such that {z} ∪Gz ⊆ intX Fx ∩ intX Fy .

Assume z is isolated in XP : {z} = ({x}∪Fx)∩({y}∪Fy), x 6= y. If z = x, then
Fy is neighbourhood of x, hence Fx ∩ Fy 6= ∅, but card(Fx ∩ Fy) > 1. Likewise
z = y. Therefore {x} ∩ Fy = {y} ∩ Fx = ∅ and {z} = Fx ∩ Fy shows that {z} is
already open in (X,X ). (X,XP ) is pseudomaximal by Theorem 14. �

Remark 23. If we are sure that (X,XP ) contains two non-isolated points with
different neighbourhood filters, we may drop the set of isolated points in the
definition of BP at the beginning. Indeed, assume z is isolated in (X,X ). Take
two non-isolated points a, b ∈ X and Fa ∈ P (a), Fb ∈ P (b) with Fa∩Fb = ∅. Then
{a, z} ∪ intX Fa, {b, z} ∪ intX Fb are both open in (X,XP ) and their intersection
is {z}. As the Alexandroff compactification of a discrete space shows the request
for two distinct neighbourhood filters is necessary.
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Theorem 24. Let (X,X ) be submaximal. Then the following statements are
equivalent:

(a) X is σ-discrete;
(b) (X,XP ) (see Theorem 22) is σ-discrete.

Proof:

⇓ X ⊆ XP .
⇑ Let X =

⋃
An, where An is discrete in (X,XP ) for all n ∈ N. Let I(X ) denote

the set of isolated points of (X,X ). Note I(X ) = I(XP ) by Theorem 22.
(X \ An) ∪ I(X ) is dense in (X,XP ) and therefore dense in (X,X ). Because
(X,X ) is submaximal, X \(X \An∪I(X )) = An∩(X \I(X )) is closed discrete.⋃
An ∩ (X \ I(X )) = X \ I(X ). Now simply join I(X ). �

Remark 25. (a) The quest for σ-discreteness could be reduced to pseudomaximal
spaces. Even more, we may assume that all but one term is closed discrete. The
exceptional set is the set of isolated points.

(b) In the next Theorem 26, β|X | indicates the Čech-Stone-compactification
of the discrete space (X,P(X)).

Theorem 26. Let (X,X ) be pseudomaximal and T2. ∃ ℓ : X → β|X | injective
and continuous.

Proof: Take x ∈ X . Define ℓ(x) = U−(x) ∈ β|X | or ℓ(x) = ({x}) if {x} is open.
Let ℓ(x) ∈ U∗, U∗ basic open set. Then U ∈ ℓ(x), {x} ∪ U ∈ U(x), w.l.o.g. U
open. Now let z ∈ U , then U \ {z} ∈ ℓ(z), ℓ(z) ∈ (U \ {z})∗ ⊆ U∗. There is no
problem with discrete points. �

Remark 27. (a) If (X,X ) is in addition T3, ℓ is even embedding. κX provides
examples of non-T3 pseudomaximal spaces.

(b) We learned that regular pseudomaximal spaces (X,X ) can be considered as
subspaces P of (β|X |). There is also a continuous ℓ : X ∪ P → P ∼= (X,X ),
where X ∪ P carries the subspace topology with respect to β|X |. This will be
shown in the next Theorem 28 exploiting the Čech-Stone extension βℓ of ℓ and
Theorem 18. A closely related result is contained in [vDo93].

Theorem 28. Let (X,X ) be T3 and T0. Then (a) ⇒ (b), where

(a) (X,X ) =: P is pseudomaximal;
(b) β(X,X ) = β(P ) is retract of β|X | under a continuous mapping βℓ :

β|X | → β(P ) where βℓ ◦ βℓ = 1β(P ) and βℓ/X : |X | → (X,X ) is the
identity on X .

Proof:

⇓ Define ℓ : X ∪ P → (X,X ) by ℓ(x) := x if x is isolated and ℓ(U−(x)) := x if x
is not isolated. ℓ is continuous: Take U ∈ U(x). There is V ∈ U(x) such that
clV ⊆ U . O := V ∪ {U−(y) |V ∈ U−(y)} is an open set in X ∪ P containing
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U−(x). V ∈ U−(y) implies y ∈ clV , hence ℓ[O] ⊆ clV ⊆ U . Observe that P is
C∗-embedded in β|X |.

�

Theorem 29. Let (X,X ) be a topological space. Then the following statements
are equivalent:

(a) X is submaximal;
(b) every ultrafilter on X is open or closed;
(c) for all non-isolated x ∈ X , U−(x) is the intersection of all its finer open
ultrafilters.

Proof:

⇓ Let U be ultrafilter on X . Either all F ∈ U have non-empty interior (then
U is open), or for one G ∈ U : intG = ∅. Then G is closed discrete and U
is closed.

⇓ Every filter is the intersection of its finer ultrafilters. If U ⊇ U−(x) would
be closed, then x ∈

⋂
clU =

⋂
U = ∅, a contradiction.

⇑⇑ Let D ⊆ X be dense. D contains all isolated points. Let x ∈ X and
F ⊇ U−(x) be open ultrafilter. Then ∀F ∈ F : F ∩D 6= ∅ and D ∈ F .
Hence D ∈

⋂
{F} = U−(x). ∃Ux : Ux \ {x} ⊆ D. If x ∈ D then Ux ⊆ D

and D is open, because x was arbitrary.

�

Corollary 30. Let (X,X ) be a topological space such that X is finite. Then the
following statements are equivalent:

(a) X is submaximal;
(b) every point x ∈ X is open or closed. �

Definition 31. A map f : (X,X )→ (Y,Y) between topological spaces is called
almost open, if A ⊆ X , intA 6= ∅ implies int(f [A]) 6= ∅.

Lemma 32. Let f : (X,X ) → (Y,Y) be a continuous map between topological
spaces. Then the following statements are equivalent:

(a) f is almost open;
(b) the inverse image under f of a dense set is dense. �

Corollary 33. Let (X,X ) be T0. Then the following statements are equivalent:

(a) (X,X ) is submaximal;
(b) (X,X ) is almost open quotient of a topological sum of pseudomaximal T0
spaces (and therefore also quotient of a single pseudomaximal T0-space).

Proof:

⇓ Let Ξ be the set of all maps ξ from X into the set of all ultrafilters on X such
that ξ(x) is an ultrafilter converging to x. As in the proof of Theorem 22 we
can construct for each selection ξ ∈ Ξ a pseudomaximal space Xξ on X . Then
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(X,X ) is quotient of the sum
∐

ξ∈Ξ

Xξ , which corresponds to the intersection of

the topologies on Xξ . The quotient is almost open by Corollary 13. Observe
now that a sum of pseudomaximal spaces is pseudomaximal.

⇑ Let q : (Y,Y) → (X,X ) be almost open quotient. If D ⊆ X is dense in X ,
then q−1 [D] is dense in Y by Lemma 32. Hence q−1 [D] is open, because Y is
submaximal and D is open, because q is quotient. �

Remark 34. (a) Corollary 33 is not true for plain quotient maps, because the
quotient of submaximal spaces is not necessarily submaximal, see [A&C95].

(b) I am turning now to the problem of constructing quasimaximal spaces, since so
far only trivial or elusive examples (provided by AC) are known, see [C&G96]. The
close connection to ultrafilters (see Theorem 14) suggest a construction similar
to the tensor product in ultrafilter theory. An attempt at infinite products leads
to zero-dimensional quasimaximal spaces on a countable tree. I believe that the
most fascinating quasimaximal spaces are not zero-dimensional (i.e. not regular).

Definition 35. Let (X,X ), (Y,Y) be two quasimaximal T0 spaces. The tensor
product X ⊗ Y of (X,X ) and (Y,Y) is defined by the following neighbourhood
system of points (x, y) ∈ X × Y : U(x, y) = {{(x, y)} ∪W |W ∈ U−(x)⊗U−(y)},
where W ∈ U−(x)⊗ U−(y)⇔ {a | {b | (a, b) ∈ W} ∈ U−(y)} ∈ U−(x).

Theorem 36. X ⊗ Y is a quasimaximal topological space.

Proof: First we have to verify the 4th neighbourhood axiom. Let pX : X×Y →
X be the projection and W ∈ U(x, y). There is Ux ⊆ pX [W ], Ux ∈ U(x), such
that pX [W ] ∈ U(r) for all r ∈ Ux. For all r ∈ Ux there is Vr,y ⊆ {b | (r, b) ∈ W},

Vr,y ∈ U−(y), such that {b | (r, b) ∈ W} ∈ U(z) for all z ∈ Vr,y . Define W̃ ⊆ W

by W̃ =
⋃
{{r} × Vr,y | r ∈ Ux}. Then W̃ ∈ U(x, y) and W ∈ U(s, t) for all

(s, t) ∈ W̃ . X ⊗ Y is quasimaximal by Corollary 15. �

Definition 37. Set E := {f | f : ω0 → ω0} and T := {f/n |n < ω0 ∧ f ∈ E}. I
am going to define basic neighbourhoods of g/m ∈ T . Let U be a free ultrafilter
on ω0 and select an assignment ξ : T → ω∗

0. A basic neighbourhood of g/m is

determined by ψ ∈
∏

t∈T

ξ(t) and U ∈ U : U(g/m,ψ, U) := {f/n |n ∈ U ∧ f/n ⊇

g/m ∧ ∀k ≥ m : f(k) ∈ ψ(f/k)} ∪ {g/m}.

Theorem 38. T with the topology from Definition 37 is quasimaximal.

Proof: Note T =
⋃

n

ωn
0 . The trace of U(g/m,ψ, ω0) on ω

n
0 , n > m, for varying

ψ is the tensor product of n−m free ultrafilters with the fixed ultrafilter ({g/m}).
Therefore U−(g/m) is the ultrafiltered sum of ultrafilters and ultrafilter itself. By
Corollary 15, T is quasimaximal. �
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Remark 39. (a) By choosing ξ properly, we can make T rigid or homogeneous.

(b) If U is a fixed ultrafilter ({k}) on ω0, the construction still works, but all
points in levels above k are isolated.
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