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On monotone nonlinear variational inequality problems
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Abstract. The solvability of a class of monotone nonlinear variational inequality prob-
lems in a reflexive Banach space setting is presented.
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1. Introduction

General theory of monotone variational inequalities has been applied to vari-
ous problems in applied mathematics, physics, engineering sciences, and others.
A closely associated notion of the complementarity involves several problems in
mathematical programming, game theory, economics, and mechanics. For more
details on general variational inequalities, we advise to consult [1], [4]-[14].

Let X be a reflexive real Banach space with dual X* and [w,z] denote a
continuous duality pairing between the elements w in X* and x in X. Let K
be a nonempty closed convex subset of X. Here we present the solvability of a
class of monotone nonlinear variational inequality (MNVI) problems: Determine
an element x in K for a given w in X™* such that

(1.1) [Sz—Tx—w,v—z]+ f(v) — f(x) >0 forall veK,

where S, T : K — X* are nonlinear operators, and f : X — (—o00, +00] is convex
lower semicontinuous functional with f # oco. Here S and T are, respectively,
p-monotone and p-Lipschitz continuous (or p-Lipschitzian).

Next, we recall some definitions needed for the work at hand.

Definition 1.1. An operator S : K — X* is said to be p-monotone if, for all
u,v € K, there exist constants » > 0 and p > 1 such that

(1.2) [Su— Sv,u—v] > r|lu—v|P.

The inequality (1.2) implies that S is strictly monotone and coercive for p > 1, S
is strongly monotone for p = 2, and S is uniformly monotone for p > 2.
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Definition 1.2. An operator T : K — X™* is called p-Lipschitz continuous (or
p-Lipschitzian) if, for all u,v € K, there exist constants k¥ > 0 and p > 1 such
that

(1.3) [Tu—Tv,u—v] < k|u—v|?.

Let us consider an example of p-Lipschitzian operators in the context of gen-
eralized pseudocontractions — a mild generalization of the pseudocontractions
introduced by Browder and Petryshyn [2] — in a Hilbert space H. Generalized
pseudocontractions are more general than Lipschitzian operators and unify certain
classes of operators.

Definition 1.3. An operator T': H — H is said to be a generalized pseudocon-
traction if, for all u,v € H, there exists a constant k > 0 such that

(1.4) | Tu —To||> < k2|u — v||? + || Tu — Tv — k(u —v)]||%.

This is equivalent to
(1.5) (Tw = Ty,x —y) < klle -y,

where T : H — H is 2-Lipschitzian.

Example 1.4 ([JY]). Let K be a closed convex subset of a real Hilbert space
H, and let T : K — K be hemicontinuous and 2-Lipschitzian with a constant
0 <k < 1. Then T has a unique fixed point in K.

Definition 1.5. A multivalued mapping F' : X — P(X) is called the KKM

mapping if, for every finite subset {uy, ug,...,un} of X, conv{uy,ug,...,un} is
n

contained in |J F(u;), where conv{A} is the convex hull of set A and P(X)
i=1

denotes the power set of X.
Before we present our main results, we need to recall some auxiliary results [3].

Lemma 1.6 ([3, Theorem 4]|). Let Y be a convex set in a topological vector
space X, and let K be a nonempty subset of Y. For all x € K, let F(x) be
a relatively closed subset of Y such that the convex hull of every finite subset

n
{x1,22,...,2n} of K is contained in the corresponding union |J F(z;). If there
i=1
is a nonempty subset Ko of K such that the intersection mmeKo F(z) is compact
and Ky is contained in a compact convex subset of Y, then [\ F(xz) # 0.
zeK
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Lemma 1.7 ([3, Corollary 1]). Let K be a nonempty set in a topological vector
space X. Let F : K — P(K) be a KKM mapping from K into the power set
of K. If F(u) is closed in X for all u € K and is compact for at least one u € K,
then (| F(u) # 0.

ueK

We note that in Lemma 1.6 the hypothesis “ (| F(z) is compact” does
z€Ky
not rule out the possibility that it may be empty. However, the conclusion

“N F(z) #0” does imply that [ F(z) is nonempty. The compactness con-
zeK zeKy
dition in Lemma 1.7 is relaxed in Lemma 1.6.

2. The main results

Theorem 2.1. Let K be a convex subset of a reflexive real Banach space X with
dual X* and 0 € K. Let S : K — X* be hemicontinuous and p-monotone and
let T : K — X™* be hemicontinuous and p-Lipschitz continuous. Let us further
assume that f : K — (—o00,00] is a convex functional with f(0) = 0, f(u) > 0
and f # oo. Then, for a given w € X*, an element u in K is a solution of the
MNVTI problem

(2.1) [Su—Tu—w,v—u]+ f(v) — f(u) >0 forall ve K

iff w is a solution of a new MINVI problem

(2.2) [Sv—Tv—w,v—u|+ f(v) = f(u) > c|lv—ul|P forall veK,
where c =7 —k > 0 and p > 1. Here r is the p-monotonicity constant of S and

k is the p-Lipschitz continuity constant of T'.

When S and T are monotone and antimonotone, respectively, and w = 0,
Theorem 2.1 reduces to [8, Lemma 1].

Corollary 2.2. Let K be a nonempty convex subset of X and let S: K — X*
and T : K — X™* both be hemicontinuous, and be monotone and antimono-
tone, respectively. Let f be convex with f # oco. Then the following variational
inequality problems are equivalent:

(2.3) ue K :[Su—Tu,v—u]l+ f(v)— f(u) >0 forall vekK;
(2.4) ue K :[Sv—Tv,v—u]+ f(v)— f(u) >0 forall veK.

For T = 0 and f an indicator functional (that is, f = 0 on K and f = oo
off K'), Theorem 2.1 reduces to
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Corollary 2.3. Let K be a nonempty closed convex subset of a reflexive real
Banach space X with dual X* and let S : K — X* be hemicontinuous and
p-monotone. Then the MNVI problem

(2.5) ue K :[Su—w,v—u]>0 foral veK,
has a unique solution iff the MNVI problem

(2.6) ue K:[Sv—w,v—u]>r|v—u|P foral veK,
has a unique solution for each w € X*.

PROOF OF THEOREM 2.1: Suppose that (2.1) holds. Since S is p-monotone and
T is p-Lipschitz continuous, this implies that

[(S—T)o—(S—T)u,v —u] >c|lv—ul?
(S —T)v,v—u] >c|lv—ul|P +[(S—T)u,v — ]
2 cllv —ull” + [w,v —u] + f(u) = f(v).
This implies that
(S =T)v—w,v—u]+ f(v) = f(u) = cllv—ul|P.

Conversely, if (2.2) holds, then by choosing an element v with f(v) < 400, we
find that f(u) is finite. Let z be an element of K such that vy = (1 — t)u + tx
satisfies (2.2) for 0 < ¢t < 1. Then, it follows that vy —u = ¢(x — u) and, as a
result, we find that

[(S = T)or —w,vp —u] + f(vr) = f(u) = cllor —ul|?

t[(S —T)vy —w,z —u]+ f(1 —t)u+tz) — f(u) > cljvr — u|P.

Since f is convex, this implies that
(S = Tyve —w,x —u] = cllog — ullP + f(u) = (1= 1) f(u) — tf(x)
= d[[t(x — W) [P + t(f(u) — f(2)).
Thus, given that ¢t > 0, we find
[(S = Tyt — w,x — u] + f(2) — F(u) = ct?~ |z — u|]P.

Since the hemicontinuity of S and 7" implies the hemicontinuity of S — T, we find
that (S — T)v; converges weakly to (S — T)u in X* as ¢t — 0. Hence, we obtain

[(S—T)u—w,x —u]+ f(z) — f(u) >0 forall xe€ K,
that is, the variational inequality (2.1) holds. O
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Theorem 2.4. Let K be a nonempty closed convex subset of a reflexive real
Banach space X with0 € K. Let S : K — X™* be hemicontinuous and p-monotone
with constant r > 0, T : K — X* be hemicontinuous and p-Lipschitz continuous
with constant k > 0, and f : X — (—o00,+00| be convex lower semicontinuous
with f # oo. Then the MNVI problem

(2.7) ue K :[Su—Tu—wv—ul+ f(v)— f(u) >0 forall ve K
has a unique solution for each w € X*.

For w = 0, S strictly monotone, T strictly antimonotone, and K bounded,
Theorem 2.4 reduces to [8, Theorem 3].

Corollary 2.5. Let K be a nonempty bounded closed convex subset of X, and
S, T : K — X™* both be hemicontinuous and be strictly monotone and antimono-
tone, respectively. Let f : X — (—o00,400] be convex lower semicontinuous with
f # oco. Then the variational inequality problem

(2.8) u€ K :[Su—Tu,v—u]l+ f(v) — f(u) >0 forall ve K
has a unique solution.

When T = 0 and f is an indicator functional on K (that is, f = 0 on K and
f = o0 off K), Theorem 2.4 reduces to [5, Theorem 2].

Corollary 2.6. Let X be a reflexive real Banach space with dual X* and K be
a nonempty closed convex subset X. Let S : K — X* be hemicontinuous and
p-monotone. Then the variational inequality problem

(2.9) ue K :[Su—w,v—u]>0 forall ve K
has a unique solution for each w € X*.

PrROOF OF THEOREM 2.4: We first prove the existence of the solution of the
MNVI problem (2.7). Let us define the multivalued mappings F, G : K — P(K)
by

F)={ue K:[Su—Tu—w,v—u]+ f(v) — f(u) >0} forall ve K
and
Gv)={ue K :[Sv—Tv—w,v—u|l+ f(v) — f(u) > cl|lv—u|P} forall vekK,
respectively. We show by a contra(iiction approach that F' is a 7IL(KM mapping.

Assume {vy,va,...,vn} isin K, > ¢; =1, t > 0 and v = ) t;v; is not in

i=1 i=1
n

U F(v;). Then for u = v,
=1

[Su—Tu—w,v; —u] < f(u) — f(v;) forany i=1,...,n.

95



R.U. Verma
Thus, we find

n
0:[Su—Tu—w,v—u]:[Su—Tu—w,Ztivi—u]
i=1

Z ti[Su — Tu — w,v; — ul Zfz(f(u)_f(vz))
(w) = > tif(v5) < flu Ztm

n

a contradiction. This implies that conv{vy,va,..., vy} is contained in |J F(v;).
=1

Next, to show F(v) C G(v) for all v € K, let u belong to F(v). Then using

the p-monotonicity of S and p-Lipschitz continuity of T', we obtain
[(S=T)v—(S—T)u,v—u] >cl|v —ul?.
Thus,

[(S—T)v,v—u]
[(S—=T)yv—w,v—ul

>cllv—ul|P+[(S—T)u,v —u] or
>cllv—ul|’+[(S — T)u — w,v — ul
> cllo — ullP + f(u) — f(v) on

> c|lv—wul|P forall ve K.

(S =T)v—w,v—ul+ f(v) = f(u)

This implies that u belongs to G(v) and, consequently, G is a KKM mapping

on K. Hence, by Theorem 2.1, we find (| F(v) = () G(v).
veEK veK
Since f is lower semicontinuous and the duality pairing [-, -] is continuous, it

follows that G(v) is closed for all v € K. Clearly, K is a weakly compact set in
X with weak topology and, as a result, G(v) is weakly compact in K since G(v)
is contained in K for each v € K. Now, by Lemma 1.7, we find

N Fv)= () Gv) #0

veEK veEK
Hence, there exists an element ug in K such that
[Sug — Tug — w,v — ug] + f(v) — f(ug) >0 for all ve K.

To show the uniqueness of the solution, let x1, x2 be two solutions of the MNVI
problem (2.7), that is,

(2.10) [St1 — Tz —w,v—z1]+ f(v) — f(x1) >0 forall ve K,
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and
(2.11) [Szo — Txg — w,v —x2] + f(v) — f(z2) >0 forall ve K.
Setting v = z2 in (2.10) and v = 27 in (2.11), and adding, we obtain

—[Sz1 — Txy — w, 1 — 22 + [Sxg — Taxg —w,x1 — 23] >0,
or
—[le — Sxo,x1 — IQ] + [T:Z?l —Txo,x1 — {EQ] >0,

or
[Sz1 — Sxo,x1 — x9] < [Tx1 — Txo, 21 — 23]

Since S is p-monotone with constant » > 0 and T is p-Lipschitz continuous
with constant k > 0, this implies that

rl|lz1 — z2||P < [Sz1 — Swo,x1 — 2] < [Tz — Two, 21 — x2] < kllz1 — 22]|P.

It follows that
(r = k)llzr — 22|P < 0.

Since r — k > 0, we find that 1 = x2. This completes the proof. O
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