On monotone nonlinear variational inequality problems

RAM U. VERMA

Abstract. The solvability of a class of monotone nonlinear variational inequality problems in a reflexive Banach space setting is presented.

 $Keywords\colon$ nonlinear varionational inequality problems, p-monotone and p-Lipschitzian operators, KKM mappings

Classification: 47H15

1. Introduction

General theory of monotone variational inequalities has been applied to various problems in applied mathematics, physics, engineering sciences, and others. A closely associated notion of the complementarity involves several problems in mathematical programming, game theory, economics, and mechanics. For more details on general variational inequalities, we advise to consult [1], [4]–[14].

Let X be a reflexive real Banach space with dual X^* and [w, x] denote a continuous duality pairing between the elements w in X^* and x in X. Let K be a nonempty closed convex subset of X. Here we present the solvability of a class of monotone nonlinear variational inequality (MNVI) problems: Determine an element x in K for a given w in X^* such that

(1.1)
$$[Sx - Tx - w, v - x] + f(v) - f(x) \ge 0 \text{ for all } v \in K,$$

where $S, T: K \to X^*$ are nonlinear operators, and $f: X \to (-\infty, +\infty]$ is convex lower semicontinuous functional with $f \neq \infty$. Here S and T are, respectively, *p*-monotone and *p*-Lipschitz continuous (or *p*-Lipschitzian).

Next, we recall some definitions needed for the work at hand.

Definition 1.1. An operator $S: K \to X^*$ is said to be *p*-monotone if, for all $u, v \in K$, there exist constants r > 0 and p > 1 such that

(1.2)
$$[Su - Sv, u - v] \ge r ||u - v||^p.$$

The inequality (1.2) implies that S is strictly monotone and coercive for p > 1, S is strongly monotone for p = 2, and S is uniformly monotone for $p \ge 2$.

R.U. Verma

Definition 1.2. An operator $T: K \to X^*$ is called *p*-Lipschitz continuous (or *p*-Lipschitzian) if, for all $u, v \in K$, there exist constants k > 0 and p > 1 such that

(1.3)
$$[Tu - Tv, u - v] \le k ||u - v||^p.$$

Let us consider an example of p-Lipschitzian operators in the context of generalized pseudocontractions — a mild generalization of the pseudocontractions introduced by Browder and Petryshyn [2] — in a Hilbert space H. Generalized pseudocontractions are more general than Lipschitzian operators and unify certain classes of operators.

Definition 1.3. An operator $T: H \to H$ is said to be a *generalized pseudocon*traction if, for all $u, v \in H$, there exists a constant k > 0 such that

(1.4)
$$||Tu - Tv||^2 \le k^2 ||u - v||^2 + ||Tu - Tv - k(u - v)||^2.$$

This is equivalent to

(1.5)
$$\langle Tx - Ty, x - y \rangle \le k \|x - y\|^2,$$

where $T: H \to H$ is 2-Lipschitzian.

Example 1.4 ([JY]). Let K be a closed convex subset of a real Hilbert space H, and let $T : K \to K$ be hemicontinuous and 2-Lipschitzian with a constant 0 < k < 1. Then T has a unique fixed point in K.

Definition 1.5. A multivalued mapping $F : X \to P(X)$ is called the *KKM* mapping if, for every finite subset $\{u_1, u_2, \ldots, u_n\}$ of X, $conv\{u_1, u_2, \ldots, u_n\}$ is contained in $\bigcup_{i=1}^{n} F(u_i)$, where $conv\{A\}$ is the convex hull of set A and P(X) denotes the power set of X.

Before we present our main results, we need to recall some auxiliary results [3].

Lemma 1.6 ([3, Theorem 4]). Let Y be a convex set in a topological vector space X, and let K be a nonempty subset of Y. For all $x \in K$, let F(x) be a relatively closed subset of Y such that the convex hull of every finite subset $\{x_1, x_2, \ldots, x_n\}$ of K is contained in the corresponding union $\bigcup_{i=1}^n F(x_i)$. If there is a nonempty subset K_0 of K such that the intersection $\bigcap_{x \in K_0} F(x)$ is compact and K_0 is contained in a compact convex subset of Y, then $\bigcap_{x \in K} F(x) \neq \emptyset$.

Lemma 1.7 ([3, Corollary 1]). Let K be a nonempty set in a topological vector space X. Let $F : K \to P(K)$ be a KKM mapping from K into the power set of K. If F(u) is closed in X for all $u \in K$ and is compact for at least one $u \in K$, then $\bigcap_{u \in K} F(u) \neq \emptyset$.

We note that in Lemma 1.6 the hypothesis " $\bigcap_{x \in K_0} F(x)$ is compact" does not rule out the possibility that it may be empty. However, the conclusion " $\bigcap_{x \in K} F(x) \neq \emptyset$ " does imply that $\bigcap_{x \in K_0} F(x)$ is nonempty. The compactness condition in Lemma 1.7 is relaxed in Lemma 1.6.

2. The main results

Theorem 2.1. Let K be a convex subset of a reflexive real Banach space X with dual X^* and $0 \in K$. Let $S : K \to X^*$ be hemicontinuous and p-monotone and let $T : K \to X^*$ be hemicontinuous and p-Lipschitz continuous. Let us further assume that $f : K \to (-\infty, \infty]$ is a convex functional with f(0) = 0, f(u) > 0and $f \not\equiv \infty$. Then, for a given $w \in X^*$, an element u in K is a solution of the MNVI problem

(2.1)
$$[Su - Tu - w, v - u] + f(v) - f(u) \ge 0 \text{ for all } v \in K$$

iff u is a solution of a new MNVI problem

(2.2)
$$[Sv - Tv - w, v - u] + f(v) - f(u) \ge c ||v - u||^p \text{ for all } v \in K,$$

where c = r - k > 0 and p > 1. Here r is the p-monotonicity constant of S and k is the p-Lipschitz continuity constant of T.

When S and T are monotone and antimonotone, respectively, and w = 0, Theorem 2.1 reduces to [8, Lemma 1].

Corollary 2.2. Let K be a nonempty convex subset of X and let $S : K \to X^*$ and $T : K \to X^*$ both be hemicontinuous, and be monotone and antimonotone, respectively. Let f be convex with $f \neq \infty$. Then the following variational inequality problems are equivalent:

(2.3) $u \in K : [Su - Tu, v - u] + f(v) - f(u) \ge 0$ for all $v \in K$;

(2.4)
$$u \in K : [Sv - Tv, v - u] + f(v) - f(u) \ge 0$$
 for all $v \in K$.

For T = 0 and f an indicator functional (that is, f = 0 on K and $f = \infty$ off K), Theorem 2.1 reduces to

Corollary 2.3. Let K be a nonempty closed convex subset of a reflexive real Banach space X with dual X^* and let $S : K \to X^*$ be hemicontinuous and p-monotone. Then the MNVI problem

(2.5)
$$u \in K : [Su - w, v - u] \ge 0 \text{ for all } v \in K,$$

has a unique solution iff the MNVI problem

(2.6)
$$u \in K : [Sv - w, v - u] \ge r ||v - u||^p$$
 for all $v \in K$,

has a unique solution for each $w \in X^*$.

PROOF OF THEOREM 2.1: Suppose that (2.1) holds. Since S is p-monotone and T is p-Lipschitz continuous, this implies that

$$[(S - T)v - (S - T)u, v - u] \ge c ||v - u||^p$$

or

$$[(S-T)v, v-u] \ge c ||v-u||^p + [(S-T)u, v-u]$$

$$\ge c ||v-u||^p + [w, v-u] + f(u) - f(v).$$

This implies that

t

$$[(S-T)v - w, v - u] + f(v) - f(u) \ge c ||v - u||^{p}.$$

Conversely, if (2.2) holds, then by choosing an element v with $f(v) < +\infty$, we find that f(u) is finite. Let x be an element of K such that $v_t = (1 - t)u + tx$ satisfies (2.2) for 0 < t < 1. Then, it follows that $v_t - u = t(x - u)$ and, as a result, we find that

$$[(S - T)v_t - w, v_t - u] + f(v_t) - f(u) \ge c ||v_t - u||^p$$

 \mathbf{or}

$$[(S-T)v_t - w, x - u] + f((1-t)u + tx) - f(u) \ge c ||v_t - u||^p.$$

Since f is convex, this implies that

$$t[(S-T)v_t - w, x - u] \ge c ||v_t - u||^p + f(u) - (1-t)f(u) - tf(x)$$

= $c ||t(x-u)||^p + t(f(u) - f(x)).$

Thus, given that t > 0, we find

$$[(S-T)v_t - w, x - u] + f(x) - f(u) \ge ct^{p-1} ||x - u||^p.$$

Since the hemicontinuity of S and T implies the hemicontinuity of S - T, we find that $(S - T)v_t$ converges weakly to (S - T)u in X^* as $t \to 0$. Hence, we obtain

$$[(S - T)u - w, x - u] + f(x) - f(u) \ge 0 \text{ for all } x \in K,$$

that is, the variational inequality (2.1) holds.

Theorem 2.4. Let K be a nonempty closed convex subset of a reflexive real Banach space X with $0 \in K$. Let $S: K \to X^*$ be hemicontinuous and p-monotone with constant r > 0, $T: K \to X^*$ be hemicontinuous and p-Lipschitz continuous with constant k > 0, and $f: X \to (-\infty, +\infty]$ be convex lower semicontinuous with $f \not\equiv \infty$. Then the MNVI problem

(2.7)
$$u \in K : [Su - Tu - w, v - u] + f(v) - f(u) \ge 0$$
 for all $v \in K$

has a unique solution for each $w \in X^*$.

For w = 0, S strictly monotone, T strictly antimonotone, and K bounded, Theorem 2.4 reduces to [8, Theorem 3].

Corollary 2.5. Let K be a nonempty bounded closed convex subset of X, and $S, T: K \to X^*$ both be hemicontinuous and be strictly monotone and antimonotone, respectively. Let $f: X \to (-\infty, +\infty]$ be convex lower semicontinuous with $f \neq \infty$. Then the variational inequality problem

(2.8)
$$u \in K : [Su - Tu, v - u] + f(v) - f(u) \ge 0$$
 for all $v \in K$

has a unique solution.

When T = 0 and f is an indicator functional on K (that is, f = 0 on K and $f = \infty$ off K), Theorem 2.4 reduces to [5, Theorem 2].

Corollary 2.6. Let X be a reflexive real Banach space with dual X^* and K be a nonempty closed convex subset X. Let $S : K \to X^*$ be hemicontinuous and p-monotone. Then the variational inequality problem

(2.9)
$$u \in K : [Su - w, v - u] \ge 0 \text{ for all } v \in K$$

has a unique solution for each $w \in X^*$.

PROOF OF THEOREM 2.4: We first prove the existence of the solution of the MNVI problem (2.7). Let us define the multivalued mappings $F, G: K \to P(K)$ by

$$F(v) = \{ u \in K : [Su - Tu - w, v - u] + f(v) - f(u) \ge 0 \} \text{ for all } v \in K$$

and

$$G(v) = \{u \in K : [Sv - Tv - w, v - u] + f(v) - f(u) \ge c ||v - u||^p\} \text{ for all } v \in K,$$
respectively. We show by a contradiction approach that F is a KKM mapping.
Assume $\{v_1, v_2, \dots, v_n\}$ is in K , $\sum_{i=1}^n t_i = 1, t_i > 0$ and $v = \sum_{i=1}^n t_i v_i$ is not in $\bigcup_{i=1}^n F(v_i)$. Then for $u = v$,
 $[Su - Tu - w, v_i - u] < f(u) - f(v_i)$ for any $i = 1, \dots, n$.

Thus, we find

$$0 = [Su - Tu - w, v - u] = [Su - Tu - w, \sum_{i=1}^{n} t_i v_i - u]$$

$$= \sum_{i=1}^{n} t_i [Su - Tu - w, v_i - u] < \sum_{i=1}^{n} t_i (f(u) - f(v_i))$$

$$= f(u) - \sum_{i=1}^{n} t_i f(v_i) \le f(u) - f(\sum_{i=1}^{n} t_i v_i)$$

$$= f(u) - f(v) = 0,$$

a contradiction. This implies that $conv\{v_1, v_2, \ldots, v_n\}$ is contained in $\bigcup_{i=1}^{n} F(v_i)$.

Next, to show $F(v) \subset G(v)$ for all $v \in K$, let u belong to F(v). Then using the p-monotonicity of S and p-Lipschitz continuity of T, we obtain

$$[(S - T)v - (S - T)u, v - u] \ge c ||v - u||^{p}$$

Thus,

$$\begin{split} [(S-T)v, v-u] &\geq c \|v-u\|^p + [(S-T)u, v-u] \text{ or} \\ [(S-T)v-w, v-u] &\geq c \|v-u\|^p + [(S-T)u-w, v-u] \\ &\geq c \|v-u\|^p + f(u) - f(v) \text{ or} \\ [(S-T)v-w, v-u] + f(v) - f(u) &\geq c \|v-u\|^p \text{ for all } v \in K. \end{split}$$

This implies that u belongs to G(v) and, consequently, G is a KKM mapping on K. Hence, by Theorem 2.1, we find $\bigcap_{v \in K} F(v) = \bigcap_{v \in K} G(v)$.

Since f is lower semicontinuous and the duality pairing $[\cdot, \cdot]$ is continuous, it follows that G(v) is closed for all $v \in K$. Clearly, K is a weakly compact set in X with weak topology and, as a result, G(v) is weakly compact in K since G(v) is contained in K for each $v \in K$. Now, by Lemma 1.7, we find

$$\bigcap_{v \in K} F(v) = \bigcap_{v \in K} G(v) \neq \emptyset.$$

Hence, there exists an element u_0 in K such that

$$[Su_0 - Tu_0 - w, v - u_0] + f(v) - f(u_0) \ge 0 \text{ for all } v \in K.$$

To show the uniqueness of the solution, let x_1, x_2 be two solutions of the MNVI problem (2.7), that is,

(2.10)
$$[Sx_1 - Tx_1 - w, v - x_1] + f(v) - f(x_1) \ge 0 \text{ for all } v \in K,$$

and

(2.11)
$$[Sx_2 - Tx_2 - w, v - x_2] + f(v) - f(x_2) \ge 0 \text{ for all } v \in K.$$

Setting $v = x_2$ in (2.10) and $v = x_1$ in (2.11), and adding, we obtain

$$-[Sx_1 - Tx_1 - w, x_1 - x_2] + [Sx_2 - Tx_2 - w, x_1 - x_2] \ge 0,$$

or

$$-[Sx_1 - Sx_2, x_1 - x_2] + [Tx_1 - Tx_2, x_1 - x_2] \ge 0,$$

or

$$[Sx_1 - Sx_2, x_1 - x_2] \le [Tx_1 - Tx_2, x_1 - x_2].$$

Since S is p-monotone with constant r > 0 and T is p-Lipschitz continuous with constant k > 0, this implies that

$$r||x_1 - x_2||^p \le [Sx_1 - Sx_2, x_1 - x_2] \le [Tx_1 - Tx_2, x_1 - x_2] \le k||x_1 - x_2||^p.$$

It follows that

$$(r-k)||x_1-x_2||^p \le 0.$$

Since r - k > 0, we find that $x_1 = x_2$. This completes the proof.

Acknowledgment. The author wishes to express his sincere appreciation to the referee for some valuable suggestions leading to the revised version.

References

- Browder F.E., On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 419–425.
- [2] Browder F.E., Petryshyn W.V., Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197–228.
- [3] Fan K., Some properties of convex sets related to fixed point theorems, Math. Annal. 266 (1984), 519–537.
- [4] Glowinski R., Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984.
- [5] Goeleven D., Motreanu D., Eigenvalue and dynamic problems for variational and hemivariational inequalities, Comm. Appl. Nonlinear Anal. 3 (4) (1996), 1–21.
- [6] Noor M.A., Mixed variational inequalities, Appl. Math. Lett. 3 (1990), 73–75.
- [7] Noor M.A., General auxiliary principle for variational inequalities, PanAmerican Math. J. 4 (1) (1994), 27–44.
- [8] Siddiqi A.H., Ansari Q.H., Kazmi K.R., On nonlinear variational inequalities, Indian J. Pure Appl. Math. 25 (9) (1994), 969–973.
- [9] Szulkin A., Positive solutions of variational inequalities: A degree-theoretic approach, J. Diff. Equ. 57 (1985), 90–111.
- [10] Verma R.U., Iterative algorithms for variational inequalities and associated nonlinear equations involving relaxed Lipschitz operators, Appl. Math. Lett. 9 (4) (1996), 61–63.
- [11] Verma R.U., Generalized variational inequalities involving multivalued relaxed monotone operators, Appl. Math. Lett., to appear.

 \square

R.U. Verma

- [12] Verma R.U., Nonlinear variational and constrained hemi-variational inequalities involving relaxed operators, Z. Angew. Math. Mech. 77 (1997), 387–391.
- [13] Yao J.-C., Applications of variational inequalities to nonlinear analysis, Appl. Math. Lett. 4 (1991), 89–92.
- [14] Zeidler E., Nonlinear Functional Analysis and its Applications IV, Springer-Verlag, New York, 1988.

INTERNATIONAL PUBLICATIONS, 12046 COED DRIVE, ORLANDO, FLORIDA 32826, USA

ISTITUTO PER LA RICERCA DI BASE, DIVISION OF MATHEMATICS, I-86075 MONTERODUNI (IS), MOLISE, ITALY

(Received February 3, 1997, revised August 6, 1997)