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Around splitting and reaping
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Introduction

We investigate, and give (partial) answers to, several questions related to splitting
and reaping. Our work is motivated by recent work of Kamburelis and Wȩglorz
[KW].
As usual [S]ω denotes the countable subsets of an infinite set S. Given A,X ∈

[ω]ω, we say X splits A if both X ∩A and A \X are infinite. A family F ⊆ [ω]ω

such that every member of [ω]ω is split by an element of F is called a splitting
family. The splitting number s is the size of the smallest splitting family. Now let
B0 be the standard base of the Cantor space 2

ω — that is, B0 consists of all clopen
sets of the form [σ] := {f ∈ 2ω; σ ⊆ f} where σ ∈ 2<ω is a finite sequence of 0’s
and 1’s. Given a sequence 〈Bn; n ∈ ω〉 of pairwise disjoint members of B0, we say
X ⊂ 2ω splits 〈Bn; n ∈ ω〉 if both {n; Bn ⊂ X} and {n; Bn∩X = ∅} are infinite.
A family F ⊆ P (2ω) is an open splitting family if each such 〈Bn; n ∈ ω〉 is split
by an element of F — and the open splitting number s(B0) is the size of the least
open splitting family. Note that we can assume all members of an open splitting
family are themselves open, for going over to the interior of a subset of 2ω does
not change the phenomenon of open splitting. It is easy to see that s(B0) ≥ s,
and Kamburelis and Wȩglorz [KW, Proposition 3.6] characterized s(B0) as the
maximum of s and another cardinal, the separating number sep, which we shall
define below in § 1. We prove in Theorem 1.1 that sep (and thus s(B0)) is at least
the size of the smallest non-meager set. As a consequence, s(B0) and sep are equal
(Corollary 1.2); this answers a question implicit in the work of Kamburelis and
Wȩglorz [KW, p. 273].
Another consequence of Theorem 1.1 are new lower bounds for the off-branch

number o, the minimum number of sets needed to blow up an almost disjoint
family consisting of branches of a tree to a mad family. For example, one gets
o ≥ s (Corollary 1.4). This complements results of Leathrum [Le].
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In Section 2 of the present work, we show that the lower and upper bounds
obtained for s(B0) by Kamburelis, Wȩglorz and in our Theorem 1.1 are best
possible when one compares it to cardinal invariants in Cichoń’s diagram — i.e.,
to cardinals related to measure and category, see [BJ, Chapter 2]. This is done by
using several well-known independence results and by proving a new one which
shows the consistency of s(B0) > cof(M) in Theorem 2.3.
Here, given an ideal I, cof(I), the cofinality of I, is the size of the smallest

F ⊆ I such that every member of I is contained in a member of F . We also let
non(I), the uniformity of I, denote the size of the least subset of

⋃

I not in I;
and cov(I), the covering number of I, stands for the cardinality of the smallest
F ⊆ I with

⋃

F =
⋃

I. Finally,M is the meager ideal and N is the null ideal.
A family F ⊆ [ω]ω is called a reaping family iff no X ∈ [ω]ω splits all members

of F iff for all X ∈ [ω]ω there is A ∈ F with either A ⊆∗ X or A ∩ X being
finite. Here, we write A ⊆∗ X (and say A is almost contained in X) iff A \ X
is finite. The reaping number (or refinement number) r is the size of the least
reaping family. F ⊆ [ω]ω is said to be σ-reaping iff for no countable X ⊆ [ω]ω,
every A ∈ F is split by some X ∈ X iff for any {Xn; n ∈ ω} ⊆ [ω]ω there is A ∈ F
such that for all n, either A ⊆∗ Xn or A ⊆∗ ω \Xn. The σ-reaping number rσ
is the cardinality of the smallest σ-reaping family. Clearly r ≤ rσ. The following,
however, is unknown.

Question (Vojtáš [Vo], see also [Va]). Is r < rσ consistent?

A related open problem is

Question (Miller [Mi 1]). Is cf(r) = ω consistent?

Note that rσ must have uncountable cofinality. r and s are dual in a natural way.
There is a version of s, the ℵ0-splitting number ℵ0 − s (the size of the smallest
F ⊆ [ω]ω such that for every countable X ⊆ [ω]ω, all members of X are split by
a single member of F), which has a definition similar to rσ even though they are
strictly speaking not dual. Kamburelis and Wȩglorz [KW, Section 2] got some
partial results on the question whether s < ℵ0 − s is consistent. We show how
these results can be “dualized” to yield a partial answer to Vojtáš’ question above.
In particular we prove that if r < rσ, then non(M) must be large while d must be
small (Corollaries 3.4 and 3.7).
Here, given f, g ∈ ωω we write f ≤∗ g (and say g eventually dominates f) iff

f(n) ≤ g(n) for all but finitely many n. The dominating number d is the size
of the least family F ⊆ ωω such that each g ∈ ωω is eventually dominated by a
member of F . The dual unbounding number b is the size of the least F ⊆ ωω

such that no single g ∈ ωω eventually dominates all members of F .
Our notation is standard. Basic references for cardinal invariants are [vD], [Va]

and [BJ].

Acknowledgments. I am grateful to Menachem Kojman for pointing out Shelah’s
result used in Theorem 3.6. I also thank Claude Laflamme for explaining why the
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consistency of r < rσ cannot be proved by a countable support iteration (see end
of § 3).

1. Open splitting versus separating

The phenomenon of open splitting defined in the Introduction turns out to be
closely related to the one of separating, due to Kamburelis and Wȩglorz [KW,
p. 271], which we shall explain shortly. The related cardinal invariant will figure
prominently in the next section (on consistency results) as well.
Given a real x ∈ 2ω and n ∈ ω, let r(x, n) denote the sequence of length n+ 1

which agrees with x in the first n places, but differs in the last, i.e. r(x, n)↾n = x↾n
and r(x, n)(n) = 1−x(n). We say that an open set G ⊆ 2ω separates a pair (x,A)
where x ∈ 2ω and A ∈ [ω]ω iff x /∈ G but [r(x, n)] ⊆ G for infinitely many n ∈ A.
A family G of open subsets of 2ω is a separating family iff each (x,A) is separated
by a member of G. We let

sep := min{|G|; G is a separating family},

the separating number. We show

1.1 Theorem. non(M) ≤ sep.

Proof: Let G be a family of open sets of 2ω of size less than non(M). For
σ ∈ 2<ω and k > |σ| let τσ,k = τ be such that |τ | = k, σ ⊆ τ and τ(i) = 0 for all

i ≥ |σ|. For G ∈ G, we define a function fG : 2
<ω → ω by

fG(σ) :=

{

min{k > |σ|; [τσ,k] ⊆ G} if such a k exists

|σ|+ 1 otherwise.

Next use Bartoszyński’s classical characterization of the cardinal non(M) (see
[Ba], [BJ, Lemma 2.4.8]) to find a function g : 2<ω → ω with g(σ) 6= fG(σ) for all
G ∈ G and almost all σ. Notice that we can assume without loss of generality that
g(σ) > |σ| for all σ (in fact, since all the fG have this property, we can simply
restrict ourselves to the space of such functions and apply Bartoszyński’s result
there). Now define recursively a sequence 〈σn ∈ 2<ω; n ∈ ω〉 with σn ⊂ σn+1 as
follows:

σ0 = 〈〉

σn+1(i) =

{

0 if |σn| ≤ i < |σn+1| − 1

1 if i = |σn+1| − 1

where we put |σn+1| = g(σn). Then x :=
⋃

n∈ω σn defines a real number. Put
A = {i; x(i) = 1}. We claim that no G ∈ G separates (x,A). The proof of this
claim will conclude our argument.
To see this is true, fix G ∈ G. We know that fG(σn) 6= g(σn) for almost all n.

Fix such an n and let i := |σn+1| − 1 = g(σn)− 1. Notice that all i’s from A are
of this form, so they are the only ones we have to deal with. Two cases may hold:
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Case 1. fG(σn) > g(σn) = i+ 1. Then r(x, i) = τσn,i+1 and [r(x, i)] 6⊆ G
by definition of fG.

Case 2. fG(σn) < g(σn) = i+1. Then τσn,fG(σn) ⊆ σn+1. Since [τσn,fG(σn)] ⊆ G

by definition of fG, we conclude x ∈ G.

If the second case holds at least once, then G does not separate (x,A) — and if
the first case holds almost always, then G does not separate (x,A) either. Hence
we are done. �

We immediately infer

1.2 Corollary. sep ≥ s; in particular, one has sep = s(B0) as well as s(B0) ≥
non(M).

Proof: It is well-known (and easy to see) that non(M) ≥ s. The second part
follows now from the characterization of s(B0) as max{s, sep} due to Kamburelis
and Wȩglorz which we mentioned in the Introduction. �

We now proceed to compare s(B0) to other cardinal invariants of the con-
tinuum. Since the open splitting number equals the separating number by the
Corollary, we may as well deal with sep which seems to be combinatorially sim-
pler. The two lower bounds for sep which are known are non(M) (see above)
and cov(M) [KW, Proposition 3.7] — other lower bounds for sep which have
been given previously (like cov(N )) are subsumed by our Theorem 1.1; the only
known upper bound is cof(N ) [KW, Proposition 3.9]. Using the same argument,
this upper bound can be improved to the modified version of localization cov(Jℓ)
discussed in [BS, Theorem 3.5(b)].
An upper bound of a different flavour can be got as follows. The branches

in ω<ω form an almost disjoint family A. The off-branch number o, introduced
by Leathrum [Le] and further studied in [Br], is the size of the smallest almost
disjoint family B of subsets of ω<ω needed to extend A to a mad (maximal almost
disjoint) family. Families which are almost disjoint and each member of which
meets each branch only finitely often, like B, are called off-branch families. It is
known that a ≤ o [Le, Theorem 4.1] where a is the (standard) almost-disjointness
number. The following is easy to see.

1.3 Proposition. sep ≤ o.

Proof: Let us work with 2<ω instead of ω<ω (this does not affect o, see [Le,
Lemma 3.1]). Given A ⊆ 2<ω, define open sets GA,n =

⋃

s∈An
[s] where An is A

with the first n elements removed. We claim that if A is a maximal off-branch
family, then {GA,n; A ∈ A and n ∈ ω} is a separating family.
To see this, take a pair (x,B) with x ∈ 2ω and B ⊆ ω. By maximality of A,

there must be A ∈ A such that r(x, n) ∈ A for infinitely many n ∈ B. Since A is
off-branch, it can contain only finitely many initial segments of x. Hence there is
m such that x /∈ GA,m as well as [r(x, n)] ⊆ GA,m for infinitely many n ∈ B, as
required. �
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1.4 Corollary. o ≥ non(M), and hence o ≥ s. �

The inequality o ≥ s answers a question implicitly asked in [Le, Section 8]. Note
that Proposition 1.3 and Corollary 1.4 improve the lower bounds given for o

in [Le].
The known ZFC-results about the cardinals discussed here can be subsumed

in the following diagram where cardinals increase as one moves upwards along the
lines (see above or the standard references [vD], [Va] and [BJ] for the arguments).

o
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Let us note that the cardinal cov(J ) discussed in [BS, 3.5] sits in a similar place
as sep in the diagram. We therefore ask

1.5 Question. What is the relationship between sep and cov(J )? Can one prove
cov(J ) ≥ sep in ZFC?

2. Some consistency results concerning the separating number

By results of Kamburelis and Wȩglorz and of the preceding section, sep is com-
parable to most of the cardinals in Cichoń’s diagram — the only ones which are
not covered by these results being d, cof(M) and non(N ). We proceed to show
that any of those may be both larger and smaller than sep.
Let us deal first with non(N ): the consistency of sep > non(N ) follows from

the well-known consistency of non(M) > non(N ) [BJ] and Theorem 1.1 while the
consistency of sep < non(N ) follows from the one of cov(Jℓ) < non(N ) (cf. [BS])
and the remark in Section 1 saying that sep ≤ cov(Jℓ) — alternatively, using a
standard argument, one can show that sep = ω1 in Miller’s infinitely often equal
reals model [Mi] which generically blows up non(N ).
Since d ≤ cof(M) (see [BJ, Theorem 2.2.11]), it suffices to show the consistency

of sep < d as well as the one of sep > cof(M). The former follows from the
consistency of o < d [Br, Section 1], and Proposition 1.3. For the latter we shall
use a modified version D of Hechler forcing. The reason for using the modification
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is that it makes rank arguments much simpler (see [Br 1] for similar forcing
notions). Apart from that it has the same effect as Hechler forcing on cardinal
invariants of the continuum.
Conditions in D are pairs (s, φ) where s ∈ ω<ω is strictly increasing and φ :

ω<ω → ω is such that φ(s) > s(|s| − 1). We put (s, φ) ≤ (t, ψ) iff s ⊇ t,
φ ≥ ψ everywhere and s(i) ≥ ψ(s↾i) for all |t| ≤ i < |s|. To show the required
consistency, we shall use an ω1-iteration of D with finite supports over a model
of MA + c = κ where κ ≥ ω2 is an arbitrary regular cardinal. It is well-known
that the extension satisfies cof(M) = ω1 [BJ, 7.6.10]. So it suffices to show it also
satisfies c = sep = κ. The crucial point is:

2.1 Main Lemma. Let Ġ be a D-name for an open set. Then we can find

countably many open sets {Gi; i ∈ ω} such that whenever no Gi separates (x,A),
then

‖−D“Ġ does not separate (x,A)”.

Proof: Fix τ ∈ 2<ω. For s ∈ ω<ω strictly increasing, we define the rank rk(s, τ)
by induction on the ordinals.

α = 0. We say rk(s, τ) = 0 iff (s, ψ) ‖−“[τ ] ⊆ Ġ” for some ψ.
α > 0. We say rk(s, τ) ≤ α iff there are infinitely many j such that rk(ŝ j, τ) < α.

For s ∈ ω<ω, define Gs =
⋃

{[τ ]; rk(s, τ) <∞} and also Hs,i =
⋃

{[τ ]; rk(ŝ j, τ)
< ∞ for some j ≥ i}, for i ∈ ω. We claim the collection G = {Gs, Hs,i; s ∈
ω<ω, i ∈ ω} is as required. To see this take (x,A) such that no G ∈ G separates
it. We have to show that

‖−D“Ġ does not separate (x,A)”.

Take (s, φ) ∈ D. Without loss of generality assume (s, φ) ‖−x /∈ Ġ. Note that this
means x /∈ Gs. Hence there are only finitely many n ∈ A with [r(x, n)] ⊆ Gs. Let
n0 be their maximum +1. We shall construct ψ ≥ φ such that

(s, ψ) ‖−“[r(x, n)] 6⊆ Ġ for all n ≥ n0 with n ∈ A”.

Clearly this is sufficient.
The construction of ψ proceeds by recursion. We start by defining ψ(s). We

know that x /∈ Hs,φ(s) — otherwise we could find a condition stronger than (s, φ)

which forces x ∈ Ġ, a contradiction. Hence there are only finitely many n ∈ A,
n ≥ n0, with [r(x, n)] ⊆ Hs,φ(s). Now note that, since [r(x, n)] 6⊆ Gs for any

n ≥ n0 with n ∈ A, for each such n there can be only finitely many i with
[r(x, n)] ⊆ Hs,i. Thus we can find ψ(s) ≥ φ(s) such that [r(x, n)] 6⊆ Hs,ψ(s) for

any n ∈ A, n ≥ n0. This means that [r(x, n)] 6⊆ Gŝ j for any n ∈ A, n ≥ n0 and
j ≥ ψ(s). Therefore we can proceed with the recursive construction in exactly
the same fashion.
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Now, (s, ψ) forces the required statement because for any t ⊇ s with t(i) ≥
ψ(t↾i) for |s| ≤ i < |t|, we will have rk(t, r(x, n)) = ∞ for any n ∈ A, n ≥ n0 —

i.e. no (t, χ) ≤ (s, ψ) can force [r(x, n)] ⊆ Ġ. �

Let us say a p.o. has property (⋆) iff it shares with D the property exhibited
in 2.1.

2.2 Iteration Lemma. Let 〈Pα, Q̇α; α < δ〉 be a finite support iteration of ccc
p.o.’s. Assume that all Pα’s have property (⋆). Then also Pδ has property (⋆).

Proof: Let Ġ be a Pδ-name for an open set. Without loss of generality δ = ω.
Step into Vn = V Pn . Let Gn =

⋃

{[τ ]; p ‖−[τ ] ⊆ Ġ for some p ∈ Pω/Pn}. Find,
by assumption, sets Gkn ∈ V such that whenever no Gkn, k ∈ ω, separates (x,A),
then

‖−Pn
“Ġn does not separate (x,A)”.

Take (x,A) such that no Gkn, k, n ∈ ω, separates it. We claim that

‖−Pω
“Ġ does not separate (x,A)”.

Let p ∈ Pω. Without loss of generality assume that

p ‖−Pω
“x /∈ Ġ”.

Find n such that p ∈ Pn, and step into Vn (with p ∈ Gn, Pn-generic over V ). We
know Gn does not separate (x,A). By assumption we must have x /∈ Gn. Hence
there are only finitely many k ∈ A with [r(x, k)] ⊆ Gn. Thus we have that

‖−Pω/Pn
“there are only finitely many k with [r(x, k)] ⊆ Ġ”

as required. �

Putting everything together we now see

2.3 Theorem. It is consistent to assume cof(M) = ω1 and sep = κ where κ ≥ ω2
is an arbitrary regular cardinal.

Proof: As mentioned before we use an ω1-iteration of D with finite supports
over a model of MA+ c = κ, κ ≥ ω2 regular. We still have to argue that sep = κ.
sep ≤ κ is obvious because c = κ. To see sep ≥ κ, let G be a family of less than
κ many open sets. By the Main Lemma 2.1 and the Iteration Lemma 2.2 we
can find, in the ground model, a family H of less than κ many open sets such
that whenever no H ∈ H separates (x,A), then also no G ∈ G separates (x,A).
Since MA holds in the ground model, we easily find (x,A) such that no H ∈ H
separates it, and we are done. �

In fact, if we replace the ω1-iteration of D by a λ-iteration where λ < κ is an
arbitrary uncountable regular cardinal, we get the consistency of cof(M) = λ <
κ = sep.
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3. Reaping versus σ-reaping

Let us quickly review the results of Kamburelis and Wȩglorz on splitting and ℵ0-
splitting to motivate how they can be dualized to get analogous results on reaping
and on Vojtáš’ notion of σ-reaping. Let X̄ = 〈Xn; n ∈ ω〉 be a partition of ω into
finite sets. Say that A ∈ [ω]ω splits X̄ iff both {n; Xn ⊆ A} and {n; Xn∩A = ∅}
are infinite. Put

fs := min{|F|; F ⊆ [ω]ω and every partition is split by a member of F},

the finitely splitting number, and

fr := min{|F|; F consists of partitions

and no single A ∈ [ω]ω splits all members of F},

the finitely reaping number. Similarly we put

ℵ0 − fs := min{|F|; F ⊆ [ω]ω and every countable set

of partitions is split by a member of F},

frσ :=min{|F|; F consists of partitions and

no countable A ⊆ [ω]ω splits all members of F}.

Now, Kamburelis and Wȩglorz showed that fs = max{b, s} [KW, Proposition 2.1].
Similarly, one shows that ℵ0 − fs = max{b,ℵ0 − s}, but, in fact, one can easily
argue that ℵ0 − fs = fs. Dualizing this, we get

3.1 Proposition. fr = min{d, r}.

Proof: r ≥ fr is obvious. To see d ≥ fr, take F ⊆ ωω dominating. Given

f ∈ F , define a partition X̄f = 〈Xf
n ; n ∈ ω〉 with Xf

n = [f
n(0), fn+1(0)) where

f0(0) = 0 and fn+1(0) = f(fn(0)). It remains to check that no A ∈ [ω]ω splits
all X̄f : for such A, define gA ∈ ωω such that both A and its complement meet
any of the intervals [n, gA(n)); if gA ≤∗ f , then both A and its complement meet

almost all of the X
f
n , and we are done.

We finally prove that fr ≥ min{d, r}. Take κ < min{d, r} and a family of
partitions {X̄α = 〈Xα

n ; n ∈ ω〉; α < κ}. Given α < κ, define gα ∈ ωω such
that each interval [k, gα(k)) contains (at least) one Xα

n . Since κ < d find f ∈ ωω

increasing such that for all α, we have f(k) ≥ gα(gα(k)) for infinitely many k.
Now we check that for all α there are infinitely many n with Xα

n ⊆
[f i(0), f i+1(0)) for some i: indeed, if k is such that f(k) ≥ gα(gα(k)), then either
[k, gα(k)) ⊆ [f i(0), f i+1(0)) for some i, or f i(0) ∈ (k, gα(k)) for some i in which
case f i+1(0) ≥ f(k) ≥ gα(gα(k)) so that [gα(k), gα(gα(k))) ⊆ [f i(0), f i+1(0)).
Since each of the intervals defined by gα contains some Xα

n , we are done.
Let us define Aα = {i; Xα

n ⊆ [f i(0), f i+1(0)) for some n}. By what we just
proved, the Aα are all infinite. Since κ < r, we find B ∈ [ω]ω splitting all the Aα.
Putting C =

⋃

i∈B [f
i(0), f i+1(0)) we easily see that C splits all X̄α, so that the

X̄α do not form a finitely reaping family. �

Similarly, one has
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3.2 Proposition. frσ = min{d, rσ}. �

3.3 Proposition. fr ≤ frσ ≤ cof([fr]ω).

Proof: The first inequality is obvious. To see the second, let {X̄α; α < fr}
be a finitely reaping family. With each countable subset A of fr we associate a
partition X̄A such that for each α ∈ A, almost all members of X̄A contain some
member of X̄α. This is done easily. By construction, the X̄A form a finitely
σ-reaping family, and we are done. �

3.4 Corollary. If rσ ≤ d, then rσ ≤ cof([r]ω). �

3.5 Questions. (1) Is fr < frσ consistent?

(2) Is it consistent that cf(fr) = ω?

These two questions correspond (and are related) to Vojtáš’ and Miller’s questions
on r and rσ, respectively. Let us notice that from large cardinals one can get the
consistency of cof([fr]ω) > frσ. On the other hand, if the covering lemma holds,
one has cof([fr]ω) = fr and, in particular, fr = frσ unless cf(fr) = ω in which
case one would have cof([fr]ω) = frσ = fr+. Note that cf(frσ) is necessarily
uncountable.
Kamburelis andWȩglorz also proved [KW, Proposition 2.3] that s ≥ min{ℵ0−s,

cov(M)}. Dualizing this is more intricate.

3.6 Theorem. rσ ≤ max{cof([r]ω), non(M)}.

Proof: Let κ = max{cof([r]ω), non(M)}. Let {Bβ ; β < r} be a reaping family.
Without loss of generality, we can assume that for each β < r, {Bδ; Bδ ⊆ Bβ}
is reaping below Bβ . Let {Aα; α < κ} be stationary in [r]ω . We use here a deep
result of Shelah [Sh, Theorem 2.6], saying that cof([λ]ω) = min{|X |; X ⊆ [λ]ω

is stationary} (the inequality ≤ is straightforward, but ≥ is not and uses some
pcf-theory). For α < κ fix a bijection fα : Aα → ω. Finally let {gγ ; γ < κ} ⊆ ωω

be non-meager. Given α and γ construct Cα,γ , an infinite subset of ω, recursively
as follows:

C0α,γ = ω

Cn+1α,γ =

{

Bf−1α (gγ(n))
if this set is almost contained in Cnα,γ

Cnα,γ otherwise.

In the end let Cα,γ be an infinite pseudointersection of the C
n
α,γ . We claim that

the Cα,γ form a σ-reaping family.
To see this, fix {Dn; n ∈ ω} ⊆ [ω]ω. We have to find α, γ < κ such that

for all n we have either Cα,γ ⊆∗ Dn or Cα,γ ∩Dn is finite. Let us form the set
E = {F ⊆ r; F is countable and for all n ∈ ω and β ∈ F there is δ ∈ F such that
either Bδ ⊆

∗ Bβ ∩Dn or Bδ ⊆
∗ Bβ \Dn}. Note that E is club in [r]ω by choice

of the Bβ . Hence we find α < κ such that Aα ∈ E. Let M be a countable model
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such that {Bβ ; β < r}, fα ∈M and {Dn; n ∈ ω}, Aα ⊆ M . There is γ < κ such
that gγ is Cohen over M . We check the pair α, γ works.
For this, by a straightforward genericity argument as well as by the definition

of Cα,γ and the C
n
α,γ , it suffices to show that given n ∈ ω, s ∈ ω<ω and k < |s|

with C
|s|
α,s = Bf−1α (s(k)) =: B (which lies in M), there is (in M) t ⊃ s with

|t| = |s|+ 1 such that C
|t|
α,t = Bf−1α (t(|s|)) is either almost contained in B ∩Dn or

almost contained in B \Dn. This, however, is easy: since Aα ∈ E, there is δ ∈ Aα
such that Bδ ⊆

∗ B ∩Dn or Bδ ⊆
∗ B \Dn. Hence, we can put t(|s|) = fα(δ), and

we are done. �

We immediately infer

3.7 Corollary. If non(M) < rσ, then rσ ≤ cof([r]ω). �

As a consequence of their results, Kamburelis and Wȩglorz got that if s < ℵ0− s,
then cov(M) ≤ s < ℵ0 − s ≤ b; a fortiori, the consistency of s < ℵ0 − s cannot
be got with a finite support iteration because such an iteration forces cov(M) ≥
non(M) and one has b ≤ non(M) and d ≥ cov(M) in ZFC. Our results about
r and rσ are somewhat weaker, but we still get, e.g., that if rσ = ω2 > ω1 = r,
then d = ω1 and non(M) = ω2 so that this consistency cannot be got with a
finite support iteration either. On the other hand, Laflamme (unpublished) has
shown that the latter consistency cannot be got by a countable support iteration
of proper forcing over a model for CH . So, if r = ω1 < ω2 = rσ is consistent at
all, a completely new forcing technique would be needed for the proof, and there
may well be a ZFC-result lurking behind.
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