Around splitting and reaping

JÖRG BRENDLE

Abstract. We prove several results on some cardinal invariants of the continuum which are closely related to either the splitting number \mathfrak{s} or its dual, the reaping number \mathfrak{r} .

Keywords: cardinal invariants of the continuum, splitting number, open splitting number, reaping number, σ -reaping number, Cichoń's diagram, Hechler forcing, finite support iteration

Classification: 03E05, 03E35

Introduction

We investigate, and give (partial) answers to, several questions related to splitting and reaping. Our work is motivated by recent work of Kamburelis and Weglorz [KW].

As usual $[S]^{\omega}$ denotes the countable subsets of an infinite set S. Given $A, X \in$ $[\omega]^{\omega}$, we say X splits A if both $X \cap A$ and $A \setminus X$ are infinite. A family $\mathcal{F} \subseteq [\omega]^{\omega}$ such that every member of $[\omega]^{\omega}$ is split by an element of \mathcal{F} is called a *splitting* family. The splitting number \mathfrak{s} is the size of the smallest splitting family. Now let \mathcal{B}_0 be the standard base of the Cantor space 2^{ω} — that is, \mathcal{B}_0 consists of all clopen sets of the form $[\sigma] := \{f \in 2^{\omega}; \sigma \subseteq f\}$ where $\sigma \in 2^{<\omega}$ is a finite sequence of 0's and 1's. Given a sequence $\langle B_n; n \in \omega \rangle$ of pairwise disjoint members of \mathcal{B}_0 , we say $X \subset 2^{\omega}$ splits $\langle B_n; n \in \omega \rangle$ if both $\{n; B_n \subset X\}$ and $\{n; B_n \cap X = \emptyset\}$ are infinite. A family $\mathcal{F} \subseteq P(2^{\omega})$ is an open splitting family if each such $\langle B_n; n \in \omega \rangle$ is split by an element of \mathcal{F} — and the open splitting number $\mathfrak{s}(\mathcal{B}_0)$ is the size of the least open splitting family. Note that we can assume all members of an open splitting family are themselves open, for going over to the interior of a subset of 2^{ω} does not change the phenomenon of open splitting. It is easy to see that $\mathfrak{s}(\mathcal{B}_0) \geq \mathfrak{s}$, and Kamburelis and Weglorz [KW, Proposition 3.6] characterized $\mathfrak{s}(\mathcal{B}_0)$ as the maximum of \mathfrak{s} and another cardinal, the separating number \mathfrak{sep} , which we shall define below in § 1. We prove in Theorem 1.1 that \mathfrak{sep} (and thus $\mathfrak{s}(\mathcal{B}_0)$) is at least the size of the smallest non-meager set. As a consequence, $\mathfrak{s}(\mathcal{B}_0)$ and \mathfrak{sep} are equal (Corollary 1.2); this answers a question implicit in the work of Kamburelis and Weglorz [KW, p. 273].

Another consequence of Theorem 1.1 are new lower bounds for the *off-branch* number \mathfrak{o} , the minimum number of sets needed to blow up an almost disjoint family consisting of branches of a tree to a mad family. For example, one gets $\mathfrak{o} \geq \mathfrak{s}$ (Corollary 1.4). This complements results of Leathrum [Le].

J. Brendle

In Section 2 of the present work, we show that the lower and upper bounds obtained for $\mathfrak{s}(\mathcal{B}_0)$ by Kamburelis, Węglorz and in our Theorem 1.1 are best possible when one compares it to cardinal invariants in Cichoń's diagram — i.e., to cardinals related to measure and category, see [BJ, Chapter 2]. This is done by using several well-known independence results and by proving a new one which shows the consistency of $\mathfrak{s}(\mathcal{B}_0) > \operatorname{cof}(\mathcal{M})$ in Theorem 2.3.

Here, given an ideal \mathcal{I} , $\operatorname{cof}(\mathcal{I})$, the *cofinality of* \mathcal{I} , is the size of the smallest $\mathcal{F} \subseteq \mathcal{I}$ such that every member of \mathcal{I} is contained in a member of \mathcal{F} . We also let $\operatorname{non}(\mathcal{I})$, the *uniformity of* \mathcal{I} , denote the size of the least subset of $\bigcup \mathcal{I}$ not in \mathcal{I} ; and $\operatorname{cov}(\mathcal{I})$, the *covering number of* \mathcal{I} , stands for the cardinality of the smallest $\mathcal{F} \subseteq \mathcal{I}$ with $\bigcup \mathcal{F} = \bigcup \mathcal{I}$. Finally, \mathcal{M} is the meager ideal and \mathcal{N} is the null ideal.

A family $\mathcal{F} \subseteq [\omega]^{\omega}$ is called a *reaping family* iff no $X \in [\omega]^{\omega}$ splits all members of \mathcal{F} iff for all $X \in [\omega]^{\omega}$ there is $A \in \mathcal{F}$ with either $A \subseteq^* X$ or $A \cap X$ being finite. Here, we write $A \subseteq^* X$ (and say A is almost contained in X) iff $A \setminus X$ is finite. The *reaping number* (or *refinement number*) \mathfrak{r} is the size of the least reaping family. $\mathcal{F} \subseteq [\omega]^{\omega}$ is said to be σ -reaping iff for no countable $\mathcal{X} \subseteq [\omega]^{\omega}$, every $A \in \mathcal{F}$ is split by some $X \in \mathcal{X}$ iff for any $\{X_n; n \in \omega\} \subseteq [\omega]^{\omega}$ there is $A \in \mathcal{F}$ such that for all n, either $A \subseteq^* X_n$ or $A \subseteq^* \omega \setminus X_n$. The σ -reaping number \mathfrak{r}_{σ} is the cardinality of the smallest σ -reaping family. Clearly $\mathfrak{r} \leq \mathfrak{r}_{\sigma}$. The following, however, is unknown.

Question (Vojtáš [Vo], see also [Va]). Is $\mathfrak{r} < \mathfrak{r}_{\sigma}$ consistent?

A related open problem is

Question (Miller [Mi 1]). Is $cf(\mathfrak{r}) = \omega$ consistent?

Note that \mathfrak{r}_{σ} must have uncountable cofinality. \mathfrak{r} and \mathfrak{s} are dual in a natural way. There is a version of \mathfrak{s} , the \aleph_0 -splitting number $\aleph_0 - \mathfrak{s}$ (the size of the smallest $\mathcal{F} \subseteq [\omega]^{\omega}$ such that for every countable $\mathcal{X} \subseteq [\omega]^{\omega}$, all members of \mathcal{X} are split by a single member of \mathcal{F}), which has a definition similar to \mathfrak{r}_{σ} even though they are strictly speaking not dual. Kamburelis and Węglorz [KW, Section 2] got some partial results on the question whether $\mathfrak{s} < \aleph_0 - \mathfrak{s}$ is consistent. We show how these results can be "dualized" to yield a partial answer to Vojtáš' question above. In particular we prove that if $\mathfrak{r} < \mathfrak{r}_{\sigma}$, then $\operatorname{non}(\mathcal{M})$ must be large while \mathfrak{d} must be small (Corollaries 3.4 and 3.7).

Here, given $f, g \in \omega^{\omega}$ we write $f \leq^* g$ (and say g eventually dominates f) iff $f(n) \leq g(n)$ for all but finitely many n. The dominating number \mathfrak{d} is the size of the least family $\mathcal{F} \subseteq \omega^{\omega}$ such that each $g \in \omega^{\omega}$ is eventually dominated by a member of \mathcal{F} . The dual unbounding number \mathfrak{b} is the size of the least $\mathcal{F} \subseteq \omega^{\omega}$ such that no single $g \in \omega^{\omega}$ eventually dominates all members of \mathcal{F} .

Our notation is standard. Basic references for cardinal invariants are [vD], [Va] and [BJ].

Acknowledgments. I am grateful to Menachem Kojman for pointing out Shelah's result used in Theorem 3.6. I also thank Claude Laflamme for explaining why the

consistency of $\mathfrak{r} < \mathfrak{r}_{\sigma}$ cannot be proved by a countable support iteration (see end of § 3).

1. Open splitting versus separating

The phenomenon of open splitting defined in the Introduction turns out to be closely related to the one of *separating*, due to Kamburelis and Węglorz [KW, p. 271], which we shall explain shortly. The related cardinal invariant will figure prominently in the next section (on consistency results) as well.

Given a real $x \in 2^{\omega}$ and $n \in \omega$, let r(x, n) denote the sequence of length n + 1which agrees with x in the first n places, but differs in the last, i.e. $r(x, n) \upharpoonright n = x \upharpoonright n$ and r(x, n)(n) = 1 - x(n). We say that an open set $G \subseteq 2^{\omega}$ separates a pair (x, A)where $x \in 2^{\omega}$ and $A \in [\omega]^{\omega}$ iff $x \notin G$ but $[r(x, n)] \subseteq G$ for infinitely many $n \in A$. A family \mathcal{G} of open subsets of 2^{ω} is a *separating family* iff each (x, A) is separated by a member of \mathcal{G} . We let

 $\mathfrak{sep} := \min\{|\mathcal{G}|; \mathcal{G} \text{ is a separating family}\},\$

the *separating number*. We show

1.1 Theorem. $non(\mathcal{M}) \leq \mathfrak{sep}$.

PROOF: Let \mathcal{G} be a family of open sets of 2^{ω} of size less than $\operatorname{non}(\mathcal{M})$. For $\sigma \in 2^{<\omega}$ and $k > |\sigma|$ let $\tau_{\sigma,k} = \tau$ be such that $|\tau| = k$, $\sigma \subseteq \tau$ and $\tau(i) = 0$ for all $i \ge |\sigma|$. For $G \in \mathcal{G}$, we define a function $f_G : 2^{<\omega} \to \omega$ by

$$f_G(\sigma) := \begin{cases} \min\{k > |\sigma|; \ [\tau_{\sigma,k}] \subseteq G\} & \text{if such a } k \text{ exists} \\ |\sigma| + 1 & \text{otherwise.} \end{cases}$$

Next use Bartoszyński's classical characterization of the cardinal $\operatorname{non}(\mathcal{M})$ (see [Ba], [BJ, Lemma 2.4.8]) to find a function $g: 2^{<\omega} \to \omega$ with $g(\sigma) \neq f_G(\sigma)$ for all $G \in \mathcal{G}$ and almost all σ . Notice that we can assume without loss of generality that $g(\sigma) > |\sigma|$ for all σ (in fact, since all the f_G have this property, we can simply restrict ourselves to the space of such functions and apply Bartoszyński's result there). Now define recursively a sequence $\langle \sigma_n \in 2^{<\omega}; n \in \omega \rangle$ with $\sigma_n \subset \sigma_{n+1}$ as follows:

$$\sigma_0 = \langle \rangle$$

$$\sigma_{n+1}(i) = \begin{cases} 0 & \text{if } |\sigma_n| \le i < |\sigma_{n+1}| - 1\\ 1 & \text{if } i = |\sigma_{n+1}| - 1 \end{cases}$$

where we put $|\sigma_{n+1}| = g(\sigma_n)$. Then $x := \bigcup_{n \in \omega} \sigma_n$ defines a real number. Put $A = \{i; x(i) = 1\}$. We claim that no $G \in \mathcal{G}$ separates (x, A). The proof of this claim will conclude our argument.

To see this is true, fix $G \in \mathcal{G}$. We know that $f_G(\sigma_n) \neq g(\sigma_n)$ for almost all n. Fix such an n and let $i := |\sigma_{n+1}| - 1 = g(\sigma_n) - 1$. Notice that all *i*'s from A are of this form, so they are the only ones we have to deal with. Two cases may hold: Case 1. $f_G(\sigma_n) > g(\sigma_n) = i + 1$. Then $r(x, i) = \tau_{\sigma_n, i+1}$ and $[r(x, i)] \not\subseteq G$ by definition of f_G .

Case 2. $f_G(\sigma_n) < g(\sigma_n) = i+1$. Then $\tau_{\sigma_n, f_G(\sigma_n)} \subseteq \sigma_{n+1}$. Since $[\tau_{\sigma_n, f_G(\sigma_n)}] \subseteq G$ by definition of f_G , we conclude $x \in G$.

If the second case holds at least once, then G does not separate (x, A) — and if the first case holds almost always, then G does not separate (x, A) either. Hence we are done.

We immediately infer

1.2 Corollary. $\mathfrak{sep} \geq \mathfrak{s}$; in particular, one has $\mathfrak{sep} = \mathfrak{s}(\mathcal{B}_0)$ as well as $\mathfrak{s}(\mathcal{B}_0) \geq \operatorname{non}(\mathcal{M})$.

PROOF: It is well-known (and easy to see) that $\operatorname{non}(\mathcal{M}) \geq \mathfrak{s}$. The second part follows now from the characterization of $\mathfrak{s}(\mathcal{B}_0)$ as $\max{\mathfrak{s},\mathfrak{sep}}$ due to Kamburelis and Węglorz which we mentioned in the Introduction.

We now proceed to compare $\mathfrak{s}(\mathcal{B}_0)$ to other cardinal invariants of the continuum. Since the open splitting number equals the separating number by the Corollary, we may as well deal with \mathfrak{sep} which seems to be combinatorially simpler. The two lower bounds for \mathfrak{sep} which are known are $\mathsf{non}(\mathcal{M})$ (see above) and $\mathsf{cov}(\mathcal{M})$ [KW, Proposition 3.7] — other lower bounds for \mathfrak{sep} which have been given previously (like $\mathsf{cov}(\mathcal{N})$) are subsumed by our Theorem 1.1; the only known upper bound is $\mathsf{cof}(\mathcal{N})$ [KW, Proposition 3.9]. Using the same argument, this upper bound can be improved to the modified version of localization $\mathsf{cov}(\mathcal{J}_\ell)$ discussed in [BS, Theorem 3.5(b)].

An upper bound of a different flavour can be got as follows. The branches in $\omega^{<\omega}$ form an almost disjoint family \mathcal{A} . The *off-branch number* \mathfrak{o} , introduced by Leathrum [Le] and further studied in [Br], is the size of the smallest almost disjoint family \mathcal{B} of subsets of $\omega^{<\omega}$ needed to extend \mathcal{A} to a mad (maximal almost disjoint) family. Families which are almost disjoint and each member of which meets each branch only finitely often, like \mathcal{B} , are called *off-branch families*. It is known that $\mathfrak{a} \leq \mathfrak{o}$ [Le, Theorem 4.1] where \mathfrak{a} is the (standard) *almost-disjointness number*. The following is easy to see.

1.3 Proposition. $\mathfrak{sep} \leq \mathfrak{o}$.

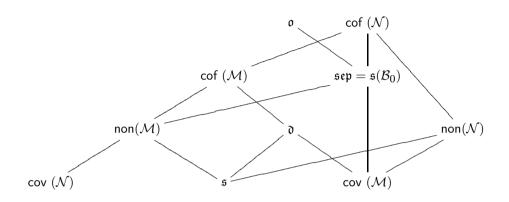
PROOF: Let us work with $2^{<\omega}$ instead of $\omega^{<\omega}$ (this does not affect \mathfrak{o} , see [Le, Lemma 3.1]). Given $A \subseteq 2^{<\omega}$, define open sets $G_{A,n} = \bigcup_{s \in A_n} [s]$ where A_n is A with the first n elements removed. We claim that if \mathcal{A} is a maximal off-branch family, then $\{G_{A,n}; A \in \mathcal{A} \text{ and } n \in \omega\}$ is a separating family.

To see this, take a pair (x, B) with $x \in 2^{\omega}$ and $B \subseteq \omega$. By maximality of \mathcal{A} , there must be $A \in \mathcal{A}$ such that $r(x, n) \in A$ for infinitely many $n \in B$. Since A is *off-branch*, it can contain only finitely many initial segments of x. Hence there is m such that $x \notin G_{A,m}$ as well as $[r(x, n)] \subseteq G_{A,m}$ for infinitely many $n \in B$, as required.

1.4 Corollary. $\mathfrak{o} \geq \operatorname{non}(\mathcal{M})$, and hence $\mathfrak{o} \geq \mathfrak{s}$.

The inequality $\mathfrak{o} \geq \mathfrak{s}$ answers a question implicitly asked in [Le, Section 8]. Note that Proposition 1.3 and Corollary 1.4 improve the lower bounds given for \mathfrak{o} in [Le].

The known ZFC-results about the cardinals discussed here can be subsumed in the following diagram where cardinals increase as one moves upwards along the lines (see above or the standard references [vD], [Va] and [BJ] for the arguments).



Let us note that the cardinal $cov(\mathcal{J})$ discussed in [BS, 3.5] sits in a similar place as \mathfrak{sep} in the diagram. We therefore ask

1.5 Question. What is the relationship between \mathfrak{sep} and $\mathsf{cov}(\mathcal{J})$? Can one prove $\mathsf{cov}(\mathcal{J}) \geq \mathfrak{sep}$ in ZFC?

2. Some consistency results concerning the separating number

By results of Kamburelis and Węglorz and of the preceding section, \mathfrak{sep} is comparable to most of the cardinals in Cichoń's diagram — the only ones which are not covered by these results being \mathfrak{d} , $\mathsf{cof}(\mathcal{M})$ and $\mathsf{non}(\mathcal{N})$. We proceed to show that any of those may be both larger and smaller than \mathfrak{sep} .

Let us deal first with $\operatorname{non}(\mathcal{N})$: the consistency of $\mathfrak{sep} > \operatorname{non}(\mathcal{N})$ follows from the well-known consistency of $\operatorname{non}(\mathcal{M}) > \operatorname{non}(\mathcal{N})$ [BJ] and Theorem 1.1 while the consistency of $\mathfrak{sep} < \operatorname{non}(\mathcal{N})$ follows from the one of $\operatorname{cov}(\mathcal{J}_{\ell}) < \operatorname{non}(\mathcal{N})$ (cf. [BS]) and the remark in Section 1 saying that $\mathfrak{sep} \le \operatorname{cov}(\mathcal{J}_{\ell})$ — alternatively, using a standard argument, one can show that $\mathfrak{sep} = \omega_1$ in Miller's infinitely often equal reals model [Mi] which generically blows up $\operatorname{non}(\mathcal{N})$.

Since $\mathfrak{d} \leq \operatorname{cof}(\mathcal{M})$ (see [BJ, Theorem 2.2.11]), it suffices to show the consistency of $\mathfrak{sep} < \mathfrak{d}$ as well as the one of $\mathfrak{sep} > \operatorname{cof}(\mathcal{M})$. The former follows from the consistency of $\mathfrak{o} < \mathfrak{d}$ [Br, Section 1], and Proposition 1.3. For the latter we shall use a modified version \mathbb{D} of *Hechler forcing*. The reason for using the modification

J. Brendle

is that it makes rank arguments much simpler (see [Br 1] for similar forcing notions). Apart from that it has the same effect as Hechler forcing on cardinal invariants of the continuum.

Conditions in \mathbb{D} are pairs (s, ϕ) where $s \in \omega^{<\omega}$ is strictly increasing and ϕ : $\omega^{<\omega} \to \omega$ is such that $\phi(s) > s(|s|-1)$. We put $(s, \phi) \le (t, \psi)$ iff $s \supseteq t$, $\phi \ge \psi$ everywhere and $s(i) \ge \psi(s|i)$ for all $|t| \le i < |s|$. To show the required consistency, we shall use an ω_1 -iteration of \mathbb{D} with finite supports over a model of $MA + \mathfrak{c} = \kappa$ where $\kappa \ge \omega_2$ is an arbitrary regular cardinal. It is well-known that the extension satisfies $\operatorname{cof}(\mathcal{M}) = \omega_1$ [BJ, 7.6.10]. So it suffices to show it also satisfies $\mathfrak{c} = \mathfrak{sep} = \kappa$. The crucial point is:

2.1 Main Lemma. Let \dot{G} be a \mathbb{D} -name for an open set. Then we can find countably many open sets $\{G_i; i \in \omega\}$ such that whenever no G_i separates (x, A), then

 $\Vdash_{\mathbb{D}}$ " \dot{G} does not separate (x, A)".

PROOF: Fix $\tau \in 2^{<\omega}$. For $s \in \omega^{<\omega}$ strictly increasing, we define the rank $rk(s, \tau)$ by induction on the ordinals.

 $\alpha = 0$. We say $rk(s, \tau) = 0$ iff $(s, \psi) \models "[\tau] \subseteq \dot{G}$ " for some ψ .

 $\alpha > 0$. We say $rk(s, \tau) \leq \alpha$ iff there are infinitely many j such that $rk(s^{\hat{j}}j, \tau) < \alpha$. For $s \in \omega^{<\omega}$, define $G_s = \bigcup\{[\tau]; rk(s, \tau) < \infty\}$ and also $H_{s,i} = \bigcup\{[\tau]; rk(s^{\hat{j}}j, \tau) < \infty$ for some $j \geq i\}$, for $i \in \omega$. We claim the collection $\mathcal{G} = \{G_s, H_{s,i}; s \in \omega^{<\omega}, i \in \omega\}$ is as required. To see this take (x, A) such that no $G \in \mathcal{G}$ separates it. We have to show that

$$\Vdash_{\mathbb{D}}$$
 "G does not separate (x, A) ".

Take $(s, \phi) \in \mathbb{D}$. Without loss of generality assume $(s, \phi) \models x \notin \dot{G}$. Note that this means $x \notin G_s$. Hence there are only finitely many $n \in A$ with $[r(x, n)] \subseteq G_s$. Let n_0 be their maximum +1. We shall construct $\psi \ge \phi$ such that

 $(s,\psi) \models "[r(x,n)] \not\subseteq \dot{G}$ for all $n \ge n_0$ with $n \in A$ ".

Clearly this is sufficient.

The construction of ψ proceeds by recursion. We start by defining $\psi(s)$. We know that $x \notin H_{s,\phi(s)}$ — otherwise we could find a condition stronger than (s,ϕ) which forces $x \in \dot{G}$, a contradiction. Hence there are only finitely many $n \in A$, $n \geq n_0$, with $[r(x,n)] \subseteq H_{s,\phi(s)}$. Now note that, since $[r(x,n)] \not\subseteq G_s$ for any $n \geq n_0$ with $n \in A$, for each such n there can be only finitely many i with $[r(x,n)] \subseteq H_{s,i}$. Thus we can find $\psi(s) \geq \phi(s)$ such that $[r(x,n)] \not\subseteq H_{s,\psi(s)}$ for any $n \in A$, $n \geq n_0$. This means that $[r(x,n)] \not\subseteq G_{s\uparrow j}$ for any $n \in A$, $n \geq n_0$ and $j \geq \psi(s)$. Therefore we can proceed with the recursive construction in exactly the same fashion.

Now, (s, ψ) forces the required statement because for any $t \supseteq s$ with $t(i) \ge \psi(t \upharpoonright i)$ for $|s| \le i < |t|$, we will have $rk(t, r(x, n)) = \infty$ for any $n \in A$, $n \ge n_0$ — i.e. no $(t, \chi) \le (s, \psi)$ can force $[r(x, n)] \subseteq G$.

Let us say a p.o. has property (\star) iff it shares with \mathbb{D} the property exhibited in 2.1.

2.2 Iteration Lemma. Let $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}; \alpha < \delta \rangle$ be a finite support iteration of *ccc* p.o.'s. Assume that all \mathbb{P}_{α} 's have property (\star). Then also \mathbb{P}_{δ} has property (\star).

PROOF: Let \dot{G} be a \mathbb{P}_{δ} -name for an open set. Without loss of generality $\delta = \omega$. Step into $V_n = V^{\mathbb{P}_n}$. Let $G_n = \bigcup \{ [\tau]; p \parallel -[\tau] \subseteq \dot{G}$ for some $p \in \mathbb{P}_{\omega}/\mathbb{P}_n \}$. Find, by assumption, sets $G_n^k \in V$ such that whenever no G_n^k , $k \in \omega$, separates (x, A), then

 $\Vdash_{\mathbb{P}_n}$ " \dot{G}_n does not separate (x, A)".

Take (x, A) such that no G_n^k , $k, n \in \omega$, separates it. We claim that

 $\Vdash_{\mathbb{P}_{\omega}}$ " \dot{G} does not separate (x, A)".

Let $p \in \mathbb{P}_{\omega}$. Without loss of generality assume that

$$p \Vdash_{\mathbb{P}_{\omega}} x \notin \dot{G}$$
.

Find n such that $p \in \mathbb{P}_n$, and step into V_n (with $p \in G_n$, \mathbb{P}_n -generic over V). We know G_n does not separate (x, A). By assumption we must have $x \notin G_n$. Hence there are only finitely many $k \in A$ with $[r(x, k)] \subseteq G_n$. Thus we have that

 $\Vdash_{\mathbb{P}_{\omega}/\mathbb{P}_{n}}$ "there are only finitely many k with $[r(x,k)] \subseteq \dot{G}$ "

as required.

Putting everything together we now see

2.3 Theorem. It is consistent to assume $cof(\mathcal{M}) = \omega_1$ and $\mathfrak{sep} = \kappa$ where $\kappa \geq \omega_2$ is an arbitrary regular cardinal.

PROOF: As mentioned before we use an ω_1 -iteration of \mathbb{D} with finite supports over a model of $MA + \mathfrak{c} = \kappa, \kappa \geq \omega_2$ regular. We still have to argue that $\mathfrak{sep} = \kappa$. $\mathfrak{sep} \leq \kappa$ is obvious because $\mathfrak{c} = \kappa$. To see $\mathfrak{sep} \geq \kappa$, let \mathcal{G} be a family of less than κ many open sets. By the Main Lemma 2.1 and the Iteration Lemma 2.2 we can find, in the ground model, a family \mathcal{H} of less than κ many open sets such that whenever no $H \in \mathcal{H}$ separates (x, A), then also no $G \in \mathcal{G}$ separates (x, A). Since MA holds in the ground model, we easily find (x, A) such that no $H \in \mathcal{H}$ separates it, and we are done. \Box

In fact, if we replace the ω_1 -iteration of \mathbb{D} by a λ -iteration where $\lambda < \kappa$ is an arbitrary uncountable regular cardinal, we get the consistency of $cof(\mathcal{M}) = \lambda < \kappa = \mathfrak{sep}$.

3. Reaping versus σ -reaping

Let us quickly review the results of Kamburelis and Węglorz on splitting and \aleph_0 -splitting to motivate how they can be dualized to get analogous results on reaping and on Vojtáš' notion of σ -reaping. Let $\bar{X} = \langle X_n; n \in \omega \rangle$ be a partition of ω into finite sets. Say that $A \in [\omega]^{\omega}$ splits \bar{X} iff both $\{n; X_n \subseteq A\}$ and $\{n; X_n \cap A = \emptyset\}$ are infinite. Put

 $\mathfrak{fs} := \min\{|\mathcal{F}|; \mathcal{F} \subseteq [\omega]^{\omega} \text{ and every partition is split by a member of } \mathcal{F}\},$ the *finitely splitting number*, and

 $\mathfrak{fr} := \min\{|\mathcal{F}|; \mathcal{F} \text{ consists of partitions}\}$

and no single $A \in [\omega]^{\omega}$ splits all members of \mathcal{F} },

the finitely reaping number. Similarly we put

 $\aleph_0 - \mathfrak{fs} := \min\{|\mathcal{F}|; \mathcal{F} \subseteq [\omega]^{\omega} \text{ and every countable set}$

of partitions is split by a member of \mathcal{F} },

 $\mathfrak{fr}_{\sigma} := \min\{|\mathcal{F}|; \mathcal{F} \text{ consists of partitions and } \}$

no countable $\mathcal{A} \subseteq [\omega]^{\omega}$ splits all members of \mathcal{F} }.

Now, Kamburelis and Węglorz showed that $\mathfrak{fs} = \max{\mathfrak{b}, \mathfrak{s}}$ [KW, Proposition 2.1]. Similarly, one shows that $\aleph_0 - \mathfrak{fs} = \max{\mathfrak{b}, \aleph_0 - \mathfrak{s}}$, but, in fact, one can easily argue that $\aleph_0 - \mathfrak{fs} = \mathfrak{fs}$. Dualizing this, we get

3.1 Proposition. $\mathfrak{fr} = \min{\mathfrak{d}, \mathfrak{r}}.$

PROOF: $\mathfrak{r} \geq \mathfrak{fr}$ is obvious. To see $\mathfrak{d} \geq \mathfrak{fr}$, take $\mathcal{F} \subseteq \omega^{\omega}$ dominating. Given $f \in \mathcal{F}$, define a partition $\bar{X}^f = \langle X_n^f; n \in \omega \rangle$ with $X_n^f = [f^n(0), f^{n+1}(0))$ where $f^0(0) = 0$ and $f^{n+1}(0) = f(f^n(0))$. It remains to check that no $A \in [\omega]^{\omega}$ splits all \bar{X}^f : for such A, define $g_A \in \omega^{\omega}$ such that both A and its complement meet any of the intervals $[n, g_A(n))$; if $g_A \leq^* f$, then both A and its complement meet almost all of the X_n^f , and we are done.

We finally prove that $\mathfrak{fr} \geq \min{\{\mathfrak{d}, \mathfrak{r}\}}$. Take $\kappa < \min{\{\mathfrak{d}, \mathfrak{r}\}}$ and a family of partitions $\{\bar{X}^{\alpha} = \langle X_n^{\alpha}; n \in \omega \rangle; \alpha < \kappa\}$. Given $\alpha < \kappa$, define $g^{\alpha} \in \omega^{\omega}$ such that each interval $[k, g^{\alpha}(k))$ contains (at least) one X_n^{α} . Since $\kappa < \mathfrak{d}$ find $f \in \omega^{\omega}$ increasing such that for all α , we have $f(k) \geq g^{\alpha}(g^{\alpha}(k))$ for infinitely many k.

Now we check that for all α there are infinitely many n with $X_n^{\alpha} \subseteq [f^i(0), f^{i+1}(0))$ for some i: indeed, if k is such that $f(k) \geq g^{\alpha}(g^{\alpha}(k))$, then either $[k, g^{\alpha}(k)) \subseteq [f^i(0), f^{i+1}(0))$ for some i, or $f^i(0) \in (k, g^{\alpha}(k))$ for some i in which case $f^{i+1}(0) \geq f(k) \geq g^{\alpha}(g^{\alpha}(k))$ so that $[g^{\alpha}(k), g^{\alpha}(g^{\alpha}(k))) \subseteq [f^i(0), f^{i+1}(0))$. Since each of the intervals defined by g^{α} contains some X_n^{α} , we are done.

Let us define $A^{\alpha} = \{i; X_n^{\alpha} \subseteq [f^i(0), f^{i+1}(0)) \text{ for some } n\}$. By what we just proved, the A^{α} are all infinite. Since $\kappa < \mathfrak{r}$, we find $B \in [\omega]^{\omega}$ splitting all the A^{α} . Putting $C = \bigcup_{i \in B} [f^i(0), f^{i+1}(0))$ we easily see that C splits all \bar{X}^{α} , so that the \bar{X}^{α} do not form a finitely reaping family.

Similarly, one has

3.2 Proposition. $\mathfrak{fr}_{\sigma} = \min{\{\mathfrak{d}, \mathfrak{r}_{\sigma}\}}.$

3.3 Proposition. $\mathfrak{fr} \leq \mathfrak{fr}_{\sigma} \leq \mathrm{cof}([\mathfrak{fr}]^{\omega}).$

PROOF: The first inequality is obvious. To see the second, let $\{\bar{X}^{\alpha}; \alpha < \mathfrak{fr}\}$ be a finitely reaping family. With each countable subset A of \mathfrak{fr} we associate a partition \bar{X}^A such that for each $\alpha \in A$, almost all members of \bar{X}^A contain some member of \bar{X}^{α} . This is done easily. By construction, the \bar{X}^A form a finitely σ -reaping family, and we are done.

3.4 Corollary. If $\mathfrak{r}_{\sigma} \leq \mathfrak{d}$, then $\mathfrak{r}_{\sigma} \leq \operatorname{cof}([\mathfrak{r}]^{\omega})$.

3.5 Questions. (1) Is $\mathfrak{fr} < \mathfrak{fr}_{\sigma}$ consistent? (2) Is it consistent that $cf(\mathfrak{fr}) = \omega$?

These two questions correspond (and are related) to Vojtáš' and Miller's questions on \mathfrak{r} and \mathfrak{r}_{σ} , respectively. Let us notice that from large cardinals one can get the consistency of $\operatorname{cof}([\mathfrak{fr}]^{\omega}) > \mathfrak{fr}_{\sigma}$. On the other hand, if the covering lemma holds, one has $\operatorname{cof}([\mathfrak{fr}]^{\omega}) = \mathfrak{fr}$ and, in particular, $\mathfrak{fr} = \mathfrak{fr}_{\sigma}$ unless $cf(\mathfrak{fr}) = \omega$ in which case one would have $\operatorname{cof}([\mathfrak{fr}]^{\omega}) = \mathfrak{fr}_{\sigma} = \mathfrak{fr}^+$. Note that $cf(\mathfrak{fr}_{\sigma})$ is necessarily uncountable.

Kamburelis and Węglorz also proved [KW, Proposition 2.3] that $\mathfrak{s} \geq \min{\{\aleph_0 - \mathfrak{s}, \operatorname{cov}(\mathcal{M})\}}$. Dualizing this is more intricate.

3.6 Theorem. $\mathfrak{r}_{\sigma} \leq \max\{\operatorname{cof}([\mathfrak{r}]^{\omega}), \operatorname{non}(\mathcal{M})\}.$

PROOF: Let $\kappa = \max\{\operatorname{cof}([\mathfrak{r}]^{\omega}), \operatorname{non}(\mathcal{M})\}$. Let $\{B_{\beta}; \beta < \mathfrak{r}\}$ be a reaping family. Without loss of generality, we can assume that for each $\beta < \mathfrak{r}, \{B_{\delta}; B_{\delta} \subseteq B_{\beta}\}$ is reaping below B_{β} . Let $\{A_{\alpha}; \alpha < \kappa\}$ be stationary in $[\mathfrak{r}]^{\omega}$. We use here a deep result of Shelah [Sh, Theorem 2.6], saying that $\operatorname{cof}([\lambda]^{\omega}) = \min\{|X|; X \subseteq [\lambda]^{\omega}$ is stationary} (the inequality \leq is straightforward, but \geq is not and uses some pcf-theory). For $\alpha < \kappa$ fix a bijection $f_{\alpha} : A_{\alpha} \to \omega$. Finally let $\{g_{\gamma}; \gamma < \kappa\} \subseteq \omega^{\omega}$ be non-meager. Given α and γ construct $C_{\alpha,\gamma}$, an infinite subset of ω , recursively as follows:

$$\begin{split} C^0_{\alpha,\gamma} &= \omega \\ C^{n+1}_{\alpha,\gamma} &= \begin{cases} B_{f_{\alpha}^{-1}(g_{\gamma}(n))} & \text{if this set is almost contained in } C^n_{\alpha,\gamma} \\ C^n_{\alpha,\gamma} & \text{otherwise.} \end{cases} \end{split}$$

In the end let $C_{\alpha,\gamma}$ be an infinite pseudointersection of the $C_{\alpha,\gamma}^n$. We claim that the $C_{\alpha,\gamma}$ form a σ -reaping family.

To see this, fix $\{D_n; n \in \omega\} \subseteq [\omega]^{\omega}$. We have to find $\alpha, \gamma < \kappa$ such that for all n we have either $C_{\alpha,\gamma} \subseteq^* D_n$ or $C_{\alpha,\gamma} \cap D_n$ is finite. Let us form the set $E = \{F \subseteq \mathfrak{r}; F \text{ is countable and for all } n \in \omega \text{ and } \beta \in F \text{ there is } \delta \in F \text{ such that}$ either $B_{\delta} \subseteq^* B_{\beta} \cap D_n$ or $B_{\delta} \subseteq^* B_{\beta} \setminus D_n\}$. Note that E is club in $[\mathfrak{r}]^{\omega}$ by choice of the B_{β} . Hence we find $\alpha < \kappa$ such that $A_{\alpha} \in E$. Let M be a countable model

such that $\{B_{\beta}; \beta < \mathfrak{r}\}, f_{\alpha} \in M$ and $\{D_n; n \in \omega\}, A_{\alpha} \subseteq M$. There is $\gamma < \kappa$ such that g_{γ} is Cohen over M. We check the pair α, γ works.

For this, by a straightforward genericity argument as well as by the definition of $C_{\alpha,\gamma}$ and the $C_{\alpha,\gamma}^n$, it suffices to show that given $n \in \omega$, $s \in \omega^{<\omega}$ and k < |s|with $C_{\alpha,s}^{|s|} = B_{f_{\alpha}^{-1}(s(k))} =: B$ (which lies in M), there is (in M) $t \supset s$ with |t| = |s| + 1 such that $C_{\alpha,t}^{|t|} = B_{f_{\alpha}^{-1}(t(|s|))}$ is either almost contained in $B \cap D_n$ or almost contained in $B \setminus D_n$. This, however, is easy: since $A_{\alpha} \in E$, there is $\delta \in A_{\alpha}$ such that $B_{\delta} \subseteq^* B \cap D_n$ or $B_{\delta} \subseteq^* B \setminus D_n$. Hence, we can put $t(|s|) = f_{\alpha}(\delta)$, and we are done. \Box

 \square

We immediately infer

3.7 Corollary. If $\operatorname{non}(\mathcal{M}) < \mathfrak{r}_{\sigma}$, then $\mathfrak{r}_{\sigma} \leq \operatorname{cof}([\mathfrak{r}]^{\omega})$.

As a consequence of their results, Kamburelis and Węglorz got that if $\mathfrak{s} < \aleph_0 - \mathfrak{s}$, then $\operatorname{cov}(\mathcal{M}) \leq \mathfrak{s} < \aleph_0 - \mathfrak{s} \leq \mathfrak{b}$; a fortiori, the consistency of $\mathfrak{s} < \aleph_0 - \mathfrak{s}$ cannot be got with a finite support iteration because such an iteration forces $\operatorname{cov}(\mathcal{M}) \geq$ $\operatorname{non}(\mathcal{M})$ and one has $\mathfrak{b} \leq \operatorname{non}(\mathcal{M})$ and $\mathfrak{d} \geq \operatorname{cov}(\mathcal{M})$ in ZFC. Our results about \mathfrak{r} and \mathfrak{r}_{σ} are somewhat weaker, but we still get, e.g., that if $\mathfrak{r}_{\sigma} = \omega_2 > \omega_1 = \mathfrak{r}$, then $\mathfrak{d} = \omega_1$ and $\operatorname{non}(\mathcal{M}) = \omega_2$ so that this consistency cannot be got with a finite support iteration either. On the other hand, Laflamme (unpublished) has shown that the latter consistency cannot be got by a countable support iteration of proper forcing over a model for CH. So, if $\mathfrak{r} = \omega_1 < \omega_2 = \mathfrak{r}_{\sigma}$ is consistent at all, a completely new forcing technique would be needed for the proof, and there may well be a ZFC-result lurking behind.

References

- [Ba] Bartoszyński T., Combinatorial aspects of measure and category, Fundamenta Mathematicae 127 (1987), 225–239.
- [BJ] Bartoszyński T., Judah H., Set Theory. On the Structure of the Real Line, A.K. Peters, Wellesley, Massachusetts, 1995.
- [Br] Brendle J., Mob families and mad families, Archive for Mathematical Logic, to appear.
- [Br 1] Brendle J., Dow's principle and Q-sets, Canadian Math. Bull., to appear.
- [BS] Brendle J., Shelah S., Evasion and prediction II, Journal of the London Mathematical Society 53 (1996), 19–27.
- [KW] Kamburelis A., Węglorz B., Splittings, Archive for Mathematical Logic 35 (1996), 263– 277.
- [Le] Leathrum T., A special class of almost disjoint families, Journal of Symbolic Logic 60 (1995), 879–891.
- [Mi] Miller A., Some properties of measure and category, Transactions of the American Mathematical Society 266 (1981), 93–114 and 271 (1982), 347–348.
- [Mi 1] Miller A., A characterization of the least cardinal for which the Baire category theorem fails, Proceedings of the American Mathematical Society 86 (1982), 498–502.
- [Sh] Shelah S., Advances in cardinal arithmetic, Finite and infinite combinatorics in sets and logic (N.W. Sauer, R.E. Woodrow and B. Sands, eds.), Kluwer, Dordrecht, 1993, pp. 355–383.
- [vD] van Douwen E.K., The integers and topology, Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 111-167.

- [Va] Vaughan J., Small uncountable cardinals and topology, Open problems in topology (J. van Mill and G. Reed, eds.), North-Holland, Amsterdam, 1990, pp. 195-218.
- [Vo] Vojtáš P., Cardinalities of noncentered systems of subsets of ω , Discrete Mathematics **108** (1992), 125–129.

DEPARTMENT OF MATHEMATICS, BRADLEY HALL, DARTMOUTH COLLEGE, HANOVER, NH 03755, USA and

Graduate School of Science and Technology, Kobe University, Rokko-dai 1-1, Nada, Kobe 657, Japan

E-mail: brendle@pascal.seg.kobe-u.ac.jp

(Received June 23, 1997)