ω H-sets and cardinal invariants

Alessandro Fedeli

Abstract. A subset A of a Hausdorff space X is called an ω H-set in X if for every open family \mathcal{U} in X such that $A \subset \bigcup \mathcal{U}$ there exists a countable subfamily \mathcal{V} of \mathcal{U} such that $A \subset \bigcup \{\overline{V} : V \in \mathcal{V}\}$. In this paper we introduce a new cardinal function $t_{s\theta}$ and show that $|A| \leq 2^{t_{s\theta}(X)\psi_c(X)}$ for every ω H-set A of a Hausdorff space X.

Keywords: cardinal function, ω H-set Classification: 54A25, 54D20

All spaces considered in this paper are Hausdorff. We refer the reader to [8], [10] and [11] for notations and details on cardinal functions. Our approach to elementary submodels follows that of [15] (see also [5], [6], [9]). As usual $\psi(X)$ and $\chi(X)$ denote the pseudocharacter and the character of the space X. A Urysohn space is a space in which distinct points have disjoint closed neighbourhoods. Moreover, for any set S, we denote by $\mathcal{P}_m(S)$ the collection of all subsets of S whose cardinality is not greater than m.

A subset A of a space X is called an H-set (ω H-set) in X if for every open family \mathcal{U} in X such that $A \subset \bigcup \mathcal{U}$ there exists a finite (countable) family $\mathcal{V} \subset \mathcal{U}$ satisfying $A \subset \bigcup \overline{\mathcal{V}}$. A space X is said to be quasi Lindelöf if for every open cover \mathcal{U} of X there is a countable subfamily \mathcal{V} of \mathcal{U} satisfying $X = \bigcup \{\overline{U} : U \in \mathcal{V}\}$. It is clear that every H-set in a space X and every quasi Lindelöf space X is an ω H-set in X.

Let $x \in X$, a closed pseudobase for x in X is a family \mathcal{V} of open neighbourhoods of x in X such that $\bigcap \{\overline{V} : V \in \mathcal{V}\} = \{x\}$. The closed pseudocharacter of X, denoted by $\psi_c(X)$, is the smallest infinite cardinal κ such that every point has a closed pseudobase of cardinality not greater than κ .

The θ -closure of a subset A of a space X, denoted by $cl_{\theta}(A)$, is the set of all points $x \in X$ such that $\overline{U} \cap A \neq \emptyset$ for every open neighbourhood U of x ([13]).

For any space X, $t_{s\theta}(X)$ will denote the smallest infinite cardinal κ such that for every $C \subset X$ and any $x \in cl_{\theta}(C)$ there is $S \subset C$ with $|S| \leq \kappa$, $x \in cl_{\theta}(S)$ and $|cl_{\theta}(S)| \leq 2^{\kappa}$ (see [12] for related concepts).

Remark 1. If X is a Urysohn space, then $t_{s\theta}(X)\psi_c(X) \leq \chi(X)$. Set $\chi(X) = \kappa$ and for every $x \in X$ let $\mathcal{B}(x)$ be a base for X at the point x such that $|\mathcal{B}(x)| \leq \kappa$. Now let $C \subset X$ and $p \in cl_{\theta}(C)$, for every $B \in \mathcal{B}(p)$ take a point $x_B \in \overline{B} \cap C$ and set $S = \{x_B : B \in \mathcal{B}(p)\}$. Clearly $|S| \leq \kappa$ and $p \in cl_{\theta}(S)$. Now let us show that $|cl_{\theta}(S)| \leq 2^{\kappa}$. Since X is a Urysohn space, it follows that $\bigcap\{cl_{\theta}(\overline{B} \cap S) :$ $B \in \mathcal{B}(x) = \{x\}$ for every $x \in cl_{\theta}(S)$. Set $\mathcal{G}(x) = \{\overline{B} \cap S : B \in \mathcal{B}(x)\}$ and let $\psi : cl_{\theta}(S) \to \mathcal{P}_{\kappa}(\mathcal{P}(S))$ be the map defined by $\psi(x) = \mathcal{G}(x)$. Since ψ is injective, it follows that $|cl_{\theta}(S)| \leq |\mathcal{P}_{\kappa}(\mathcal{P}(S))| \leq 2^{\kappa}$. Therefore $t_{s\theta}(X) \leq \kappa$ and $t_{s\theta}(X)\psi_c(X) \leq \chi(X)$.

Theorem 2. If A is an ω H-set of the space X, then $|A| \leq 2^{t_{s\theta}(X)\psi_c(X)}$.

PROOF: Let $t_{s\theta}(X)\psi_c(X) = \kappa$, let τ be the topology on X, and for every $x \in X$ let $\mathcal{B}(x)$ be a closed pseudobase for x in X such that $|\mathcal{B}(x)| \leq \kappa$.

Let $f: X \to \mathcal{P}(\tau)$ be the map defined by $f(x) = \mathcal{B}(x)$ for every $x \in X$. Now let $T = 2^{\kappa} \cup \{A, X, \tau, 2^{\kappa}, f\}$ and take an elementary submodel \mathcal{M} such that $T \subset \mathcal{M}$, $|\mathcal{M}| = 2^{\kappa}$, and which reflects enough formulas so that the following conditions are satisfied:

- (i) $C \in \mathcal{M}$ for every $C \in \mathcal{P}_{\kappa}(\mathcal{M})$;
- (ii) $\mathcal{B}(x) \in \mathcal{M}$ for every $x \in X \cap \mathcal{M}$;
- (iii) if $C \subset X$ and $C \in \mathcal{M}$, then $\overline{C}, cl_{\theta}(C) \in \mathcal{M}$;
- (iv) if $\mathcal{A} \in \mathcal{M}$, then $\bigcup \mathcal{A} \in \mathcal{M}$;
- (v) if C, D are subsets of X such that $C \cap \mathcal{M} \subset D$ and $C, D \in \mathcal{M}$, then $C \subset D$;
- (vi) if $E \in \mathcal{M}$ and $|E| \leq 2^{\kappa}$, then $E \subset \mathcal{M}$.

Observe also that by (ii) and (vi) $\mathcal{B}(x) \subset \mathcal{M}$ for every $x \in X \cap \mathcal{M}$.

Now let us show that $cl_{\theta}(X \cap \mathcal{M}) = X \cap \mathcal{M}$. Let $x \in cl_{\theta}(X \cap \mathcal{M})$, since $t_{s\theta}(X) \leq \kappa$, there is a subset S of $X \cap \mathcal{M}$ such that $|S| \leq \kappa$, $x \in cl_{\theta}(S)$ and $|cl_{\theta}(S)| \leq 2^{\kappa}$. Since $S \in \mathcal{M}$ (by (i)), it follows by (iii) that $cl_{\theta}(S) \in \mathcal{M}$. So by (vi) $cl_{\theta}(S) \subset \mathcal{M}$ and $x \in X \cap \mathcal{M}$.

The last step is to show that $A \subset X \cap \mathcal{M}$ (and hence $|A| \leq 2^{t_{s\theta}(X)\psi_c(X)}$).

Suppose there is a point $p \in A \setminus \mathcal{M}$. For every $x \in A \cap \mathcal{M}$ let $U_x \in \mathcal{B}_x$ (observe that $U_x \in \mathcal{M}$) such that $p \notin \overline{U}_x$, and for every $x \in A \setminus \mathcal{M}$ let U_x be an open neighbourhood of x such that $\overline{U}_x \cap \mathcal{M} = \emptyset$. Since A is an ω H-set in X, it follows that there is a $C \in \mathcal{P}_{\omega}(A)$ such that $A \subset \bigcup \{\overline{U}_x : x \in C\}$. Now let $G = \bigcup \{\overline{U}_x : x \in C \cap \mathcal{M}\}$. If $y \in A \cap \mathcal{M}$, then there is some $x \in C$ such that $y \in \overline{U}_x$; hence $\overline{U}_x \cap \mathcal{M} \neq \emptyset$ and $x \in C \cap \mathcal{M}$. Therefore $y \in \overline{U}_x \subset G$ and $A \cap \mathcal{M} \subset G$.

Now $\overline{U}_x \in \mathcal{M}$ for every $x \in C \cap \mathcal{M}$ (by (iii)), therefore $\{\overline{U}_x : x \in C \cap \mathcal{M}\} \subset \mathcal{M}$. By (i) it follows that $\{\overline{U}_x : x \in C \cap \mathcal{M}\} \in \mathcal{M}$. Hence $G \in \mathcal{M}$ (by (iv)).

Therefore, by (v), it follows that $A \subset G$. Since $p \notin G$, we have a contradiction.

Corollary 3 (see [1]). If A is an H-set in the Urysohn space X, then $|A| \leq 2^{\chi(X)}$.

Corollary 4 (see [2]). If X is a quasi Lindelöf Urysohn space, then $|X| \leq 2^{\chi(X)}$.

Example 5. Let τ be the euclidean topology on R and let X be R with the topology $\sigma = \{V \setminus C : V \in \tau, C \in \mathcal{P}_{\omega}(R)\}$. X is a Urysohn hereditarily Lindelöf space (so, a fortiori, every subset of X is an ω H-set in X). Observe that $\psi_c(X) = \omega$ and $\chi(X) = c$. Now let us show that $t_{s\theta}(X) = \omega$. First note that $cl_{\sigma}(V \setminus C) =$

 $cl_{\sigma}(V)$ for every $V \setminus C \in \sigma$. In fact, let $x \in cl_{\sigma}(V)$ and take $W \setminus K \in \sigma$ such that $x \in W \setminus K$. Since $(W \setminus K) \cap V \neq \emptyset$, it follows that $|(W \cap V) \setminus K| = c$ (observe that $W \cap V$ is a non-empty open set of the euclidean line). Therefore $\emptyset \neq (W \cap V) \setminus (K \cup C) = (W \setminus K) \cap (V \setminus C)$, and $x \in cl_{\sigma}(V \setminus C)$. Now let $B \subset R$ and $x \in cl_{\theta}(B)$. Set $V_n = (x - \frac{1}{n}, x + \frac{1}{n})$ for every $n \in N$ and take a point $x_n \in cl_{\sigma}(V_n) \cap B$. The set $S = \{x_n : n \in N\}$ is a countable subset of B such that $|cl_{\theta}(S)| \leq c$. It remains to show that $x \in cl_{\theta}(S)$. Let $G = V \setminus C \in \sigma$ such that $x \in G$ and let n be such that $V_n \subset V$. Then $x_n \in cl_{\sigma}(V_n) \subset cl_{\sigma}(V) = cl_{\sigma}(V \setminus C) = cl_{\sigma}(G)$ and $cl_{\sigma}(G) \cap S \neq \emptyset$. So $x \in cl_{\theta}(S)$. Therefore $|X| = 2^{t_{s\theta}(X)\psi_c(X)} < 2^{\chi(X)}$.

Recently A. Bella and I.V. Yaschenko have shown that "Urysohn" cannot be omitted in the above corollaries ([3]).

Remark 6. A space X is H-closed if every open cover of X has a finite subfamily whose union is dense in X. It is worth noting that $|X| \leq 2^{\psi_c(X)}$ for every H-closed space X ([7]). Moreover there is an H-closed space X such that $|X| > 2^{2^{\psi(X)}}$ ([4]). Question 7. Let A be an H-set in the Urysohn space X. Is it true that $|A| \leq 2^{\psi_c(X)}$?

Remark 8. Observe that it is not possible to obtain a bound for the cardinality of an ω H-set in terms of its character, in fact there are discrete H-sets of any cardinality (see, e.g., [1] and [4]).

References

- Bella A., A couple of questions concerning cardinal invariants, Q & A in General Topology 14.2 (1996), pages ???.
- [2] Bella A., Cammaroto F., On the cardinality of Urysohn spaces, Canad. Math. Bull. 31 (1988), 153-158.
- [3] Bella A., Yaschenko I.V., Embeddings into first countable spaces with H-closed like properties, preprint.
- Bella A., Porter J., Local cardinal functions of H-closed spaces, Comment. Math. Univ. Carolinae 37.2 (1996), 371–374.
- [5] Dow A., An introduction to applications of elementary submodels in topology, Topology Proceedings 13 (1988), 17–72.
- [6] Dow A., More set-theory for topologists, Topology Appl. 64 (1995), 243–300.
- [7] Dow A., Porter J., Cardinalities of H-closed spaces, Topology Proceedings 7 (1982), 27–50.
- [8] Engelking R., General Topology, Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin, 1989.
- [9] Fedeli A., Watson S., Elementary submodels and cardinal functions, Topology Proceedings 20 (1995), 91–110.
- [10] Hodel R.E., Cardinal functions I, Handbook of Set-theoretic Topology, (Kunen K. and Vaughan J.E., eds.), Elsevier Science Publishers B.V., North Holland, 1984, pp. 1–61.
- [11] Juhàsz I., Cardinal functions in topology ten years later, Mathematical Centre Tracts 123, Amsterdam, 1980.
- [12] Kočinac Lj., On the cardinality of Urysohn and H-closed spaces, Proc. of the Mathematical Conference in Priština, 1994, pp. 105–111.
- [13] Veličhko N.V., H-closed topological spaces, Amer. Math. Soc. Transl. 78 (ser. 2) (1969), 103–118.

A. Fedeli

- [14] Watson S., The construction of topological spaces: Planks and Resolutions, Recent Progress in General Topology, (Hušek M. and Van Mill J., eds.), Elsevier Science Publishers, B.V., North Holland, 1992, pp. 675–757.
- [15] Watson S., The Lindelöf number of a power; an introduction to the use of elementary submodels in general topology, Topology Appl. 58 (1994), 25–34.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF L'AQUILA, VIA VETOIO (LOC. COPPITO), 67100 L'AQUILA, ITALY

E-mail: fedeli@axscaq.aquila.infn.it

(Received June 20, 1997)